Как правило, насос сложное устройство. По существует множество насосов, которые не имеют подвижных частей и состоят только из трубок. Размером всего лишь с ладонь, такой насос способен перекачивать сотни литров жидкости в минуту или подавать ее миллиграммами. Некоторые из них постоянно находятся в нашем доме, хоть мы об этом порой и не задумываемся…
Соедините две «соломинки» для коктейлей при помощи ниток и куска гибкой проволоки. После этого изогните их так, чтобы срез одной трубочки располагался по оси другой (рис. 1).
Поставьте их в стакан с водой и подуйте. Вода начнет подниматься по вертикальной трубочке, переливаться через край, и ее капли подхватит поток воздуха. Что заставляет ее подниматься?
Предположим, воздух заходит в вертикальную трубочку, как-то захватывает воду и тянет ее вверх. Проверим это предположение. Если оно верно, то, вытащив вертикальную трубочку из воды и подув, мы заметим, что из нее вытекает струя воздуха. А чтобы наш эксперимент был точнее, используем горящую свечу.
Если из трубочки вытекает хоть самая слабая струйка воздуха, пламя непременно отклонится в сторону.
Проделаем этот несложный эксперимент и… Пламя свечи не отклоняется, наоборот, оно втягивается в трубочку. Так в чем же причина поднятия воды?
Любой поток (струя) всегда «выбирают» направление своего движения от области, где давление больше, туда, где оно меньше. Поскольку в трубочку втекает воздух из комнаты, имеющий атмосферное давление, значит, в трубочке оно ниже атмосферного.
Вспомним одно из следствий закона Бернулли. Чем больше скорость потока, тем ниже в нем давление. Поэтому давление у находящегося в потоке среза вертикальной трубочки ниже атмосферного. И потому в нижний ее конец втягивается воздух и «вдавливается» атмосферным давлением вода из стакана.
А теперь — о практическом применении этого устройства. Если его немножечко отрегулировать: горизонтальную трубку сдвинуть чуть-чуть назад, а срез ее немного поднять или опустить, то достаточно легкого дуновения, чтобы образовалось облачко мельчайших капель. На этом основан пульверизатор, применяемый в парикмахерской для распыления одеколона. Но работает он не только там. Пульверизатор способен превращать в облачко капель не только воду, но и любую жидкость, будь то краска или удобрение. Карбюратор автомобиля — это тоже пульверизатор, распыляющий бензин. Краска, распыленная пульверизатором, ложится на изделие идеально ровным блестящим слоем.
Можете проверить, сделав пульверизатор посолиднее (рис. 2). Он надевается на горлышко бутылки.
Давление, создаваемое насосом, переменно, и поверхность будет окрашиваться пятнами. Поэтому насос следует соединить с пульверизатором через емкость объемом 2–3 литра. Тогда поток воздуха, поступающего в пульверизатор, станет равномерным и пятен не будет.
Сегодня многие для защиты от вредителей применяют в своих садах ядохимикаты. За последние года химики приложили много сил, чтобы сделать их как можно менее вредными для человека. И все же лучше, чтобы их в вашем саду было поменьше. Для этого, прежде всего, их следует не выливать на растения струями, а распылять. Так расход ядохимикатов будет меньше, а эффект — больше. В обычных садовых приборах распыление происходит за счет непосредственного разбиения потока жидкости.
Это позволяет заметно упростить распылитель, но даваемые им капли все же достаточно велики. Растение опрыскивается неравномерно, часть вещества стекает с листьев на землю. Однако с уменьшением размеров капель они садятся на растение полностью, а активность ядохимиката возрастает. (Происходит это за счет действия поверхностной энергии капель, а суммарная поверхность капель при уменьшении их размеров, как известно, увеличивается.) Пульверизатор же способен распылять жидкость до капель предельно малых размеров — аэрозолей.
Опыты показали, что в этом случае расход ядохимикатов сокращается в десятки раз. Садовый распылитель на основе пульверизатора изображен на рисунке 3.
Получается устройство более сложное, чем обычный жидкостный распылитель, но через эту сложность стоит переступить. Здоровье ведь дороже!
Вот еще о распылении. Запатентован пульверизатор, распыляющий… расплавленный металл. Его капелькам дают остыть и получают тончайший порошок.
Вспомните, при первой пробе пульверизатора мы получали крупные капли, уносимые струей воздуха, и лишь потом настроили прибор на тонкое распыление. Однако это нужно далеко не всегда. Если далее на пути капель поставить сужающийся конус, то они сольются в струю. Ее скорость и давление могут быть достаточно велики. На этом принципе делают насосы для перекачивания жидкостей.
В 1858 г. французским инженером Анри Жиффаром был создан инжектор — насос, подающий в паровой котел свежую воду при помощи струи пара (рис. 4).
Вот как он работал. Струя пара, вытекая из сопла, засасывала воду, захватывала ее и с большой скоростью бросала в сужающийся конический раструб. Здесь пар смешивался с водой, сам превращался в воду, а вода от этого заметно подогревалась. Весь этот поток врывался в котел. Любопытно, что давление воды, покидающей инжектор Жиффара, может быть в десятки раз выше, чем давление поступающего в него пара. В наше время инжекторы такого типа применяются для подачи топлива в двигатели ракет.
Итак, струя газа может успешно перекачивать жидкость. Но возможно и обратное. На любой пожарной машине имеется дымосос. Он присоединяется к широкому брезентовому рукаву, подведенному к задымленному помещению. Сам дымосос: (рис. 5) — это труба переменного сечения, в начале которой установлено сопло, разбрызгивающее воду.
Струи воды смешиваются с воздухом и гонят его к выходу. Так дым отсасывается из помещения, и пожарники получают возможность нормально работать. Такое устройство первоначально применялось для вентиляции шахт. Изобрели его в XIX веке англичане братья Кертинг.
В нашем эксперименте со свечкой пульверизатор засасывал воздух. Это явление используется в горелке газовой плиты. Струя газа захватывает воздух, смешивается с ним и поступает в зону горения.
Но почему газ горит именно в конце горелки? Все дело в площади поперечного сечения канала, по которому движется газовоздушная смесь, и скорости распространения пламени. В начале площадь велика, а скорость движения смеси мала. Но горелка накрыта крышкой. Она оставляет для движения газовоздушной смеси лишь несколько отверстий. Суммарная площадь их сечения мала. Благодаря этому здесь и немного далее, скорость смеси возрастает и становится больше, чем скорость распространения пламени. Но после выхода из горелки скорость смеси начинает вновь уменьшаться и где-то становится равна скорости пламени. Здесь-то и начинается его спокойное устойчивое горение. Изобрел такую горелку с газоструйным инжектором великий немецкий химик XIX века Г.X.Бунзен.
Когда при аварии летчик морского самолета покидает машину, в его ранце находится не только парашют, но и компактная надувная лодка. Однако в раздутом состоянии объем ее достигает 200 и более литров. Надуть ее нужно за считанные секунды. Как? Казалось бы, достаточно присоединить к лодке баллон со сжатым воздухом. Но он получается тяжел и громоздок. Выручает инжектор, в который поступает воздух из крохотного баллончика. При этом он захватывает из окружающей среды в десятки раз больше воздуха, и лодка успешно наполняется. Размером инжектор чуть больше авторучки.
При старте ракеты, когда скорость ее очень мала, порою расходуется десятая часть топлива, что превышает по массе ее полезную нагрузку. Для того чтобы этот расход уменьшить, тоже применяют инжектор (рис. 6).
Он выглядит как окружающее хвост ракеты кольцо обтекаемой формы. В нем происходит множество сложных процессов, но приближенно работу инжектора молено описать так.
Струя газов, выходящих из ракетного двигателя, засасывает воздух и смешивается с ним. Скорость от этого уменьшается, но масса газов, выбрасываемых ракетой, значительно возрастает. От этого во много раз увеличивается тяга двигателя, что и уменьшает расход топлива на старте. Но почему только на старте? Да потому, что с увеличением скорости работа инжектора ухудшается, и его обычно в определенный момент сбрасывают. На этом принципе в нашей стране удалось создать ракеты высочайшего совершенства, но о них нужен особый рассказ.
Перечислять области применения и типы струйных насосов можно до бесконечности. Каждый месяц появляются десятки новых патентов на эту тему. Над чем же бьются изобретатели всего мира? Они решают множество практически важных вопросов, но при этом постоянно остается один главный. Струйный насос, инжектор, энергетически не совершенен. Его КПД всего лишь 10–15 %. Это связано с тем, что в нем происходит так называемый неупругий удар. Проиллюстрировать это понятие поможет такой пример.
Когда шар на бильярдном столе ударяет по другому, неподвижному, происходит обмен энергиями. Первый шар останавливается, второй летит со скоростью первого. Это удар упругий.
Если бы те же два шара были сделаны из пластилина, то при соударении они бы слиплись. Это удар неупругий.
Дальше продолжал бы движение объединенный ком пластилина. Скорость его была бы вдвое меньше скорости первого шара. Кинетическая энергия этого кома составляла бы всего лишь половину энергии первого шара. Куда же девалась вторая половина? Превратилась в тепло, потраченное на деформацию пластилина. В инжекторе масса струи газа или жидкости, подаваемой внешним насосом, объединяется с массой перекачиваемой среды, и далее они движутся совместно. Тут-то и происходит потеря механической энергии на неупругий удар. Однако способы уменьшения этих потерь, в принципе, есть. Их нужно лишь довести до уровня технического решения. И тогда появятся бесшумные самолеты без винтов, простые сверхэкономичные двигатели, холодильники и тепловые насосы.
А. ВАРГИН
Рисунки автора