Такова упрощенная до предела схема гравиметра — прибора, о котором пойдет речь ниже. Но сколько с ним было работы!
Как же выглядит Земля?
Есть на свете сила, которая действует на каждого из нас, бодрствуем мы или спим, находимся в движении или пребываем в покое. Это — сила тяжести, или сила гравитации.
Как определить ее теоретически, известно каждому школьнику, знакомому с законом всемирного тяготения, сформулированным еще 200 с лишним лет тому назад великим Ньютоном. Сила притяжения прямо пропорциональна величине масс тел и обратно пропорциональна квадрату расстояния между ними. Многие помнят также, что стоит уронить любой предмет, и он будет падать на Землю с ускорением «g», равным в среднем 9,8 м/с2.
Вот эту самую силу и связанное с ней ускорение свободного падения вот уже около 40 лет изучает главный специалист Института физики Земли имени О.Ю. Шмидта, доктор технических наук Леонид Кириллович Железняк. Он и прочел мне своеобразную лекцию о гравиметрах — приборах для измерения гравитации, о том, зачем они нужны и как устроены.
Когда-то люди думали, что Земля — круглая, начал Железняк. Сейчас никто из специалистов так не считает. Они знают, что планета наша имеет форму геоида — геометрической фигуры, несколько похожей на грушу. Причем выяснили это еще задолго до того, как ученые получили возможность взглянуть на нашу планету с космической высоты. И помогли им в этом измерители гравитации.
Теоретически решение задачи выглядит достаточно просто. Если бы Земля была идеально круглым шаром, то расстояние от ее поверхности до центра было бы всюду одинаково. А значит, и значение «g» было незыблемым, и шарик, брошенный с одной и той же высоты, пролетал бы расстояние за одно и то же время.
Кстати, один из первых гравиметров именно так и выглядел — вертикальная трубка, в которую бросали шарик и засекали время, которое ему требовалось для того, чтобы пролететь от верхнего конца к нижнему.
Уже этот простейший прибор позволил заметить, что Земля наша сплюснута у полюсов, причем довольна сильно — диаметр ее по экватору примерно на 1/300 больше, чем диаметр от полюса до полюса.
Чтобы повысить точность измерений такого гравиметра, за последние сто лет исследователи придумали немало усовершенствований. Из трубки выкачали воздух. Штатив с этой трубкой ставят обычно на амортизирующее основание, чтобы исключить посторонние колебания, а время и длину пути измеряют с помощью лазера и сверхточных часов.
Тем не менее, такое устройство напомнило мне своим весом и габаритами фотоаппараты с треножниками конца XIX века. Носить их под силу лишь атлету. Иное дело сейчас — не всякий фотоаппарат даже разглядишь, настолько эта техника стала легкой и компактной. Примерно такой же путь совершенствования прошли и гравиметры — некоторые из них имеют сегодня размеры с пачку сигарет.
Демонстрационные гравиметры специально сделаны довольно большими, чтобы можно было в деталях рассмотреть их устройство.
Противоборствуя помехам
Однако мы забежали вперед. С помощью первых гравиметров исследователям удалось лишь уточнить форму Земли. Да и то не очень точно. Чтобы провести дальнейшие исследования, ученым необходимо было резко повысить точность измерений. К слову, сейчас они ведутся с точностью 10-8—10-9, по крайней мере, не хуже, чем 10-6.
Понять сложность задачи можно на примере. Идет по морю корабль. Глубина под ним примерно километр. Но капитан хочет знать глубину с точностью до миллиметра. И прибегает, скажем, к помощи эхолота. Но прибор сам имеет какую-то погрешность, да еще корабль бросают то вверх, то вниз гигантские волны. В общем, помехи в работе Железняка и его коллег исключительно велики.
Во-первых, Земля, как сказано, не круглая, да к тому же неровная — там горы, здесь — низменности. При этом две трети земного шара залиты водой, а рельеф океанского дна долгое время был тайной за семью печатями.
Во-вторых, та же Луна гоняет по поверхности нашей планеты волны приливов. Причем не только по воде, но и по суше. Мало кто знает, что земная кора под влиянием притяжения естественного спутника нашей планеты ежесуточно поднимается и опускается с амплитудой примерно в полметра.
Примерно так выглядит лаборатория гравиметрии.
В-третьих, сама по себе земная твердь только так называется. На самом деле она все время «дышит» — в ее недрах постоянно происходят разного рода сейсмические процессы, влияющие среди прочего и на геометрию планеты.
В-четвертых, приборы, работающие с миллионной точностью, могут сбиваться, что называется, даже от пристального взгляда. А уж колебания температуры, атмосферного давления и прочих параметров они чувствуют куда острее любого ревматика или гипертоника.
И это еще далеко не полный перечень помех. Не будем его продолжать, а лучше поговорим о том, как специалисты смогли их одолеть.
Упрощенная схема современного гравиметра.
Здесь уместна аналогия с историей часов. Помните, когда человечество перешло от солнечных, водяных и песочных часов к механическим, первые «ходики» размещались в городских башнях — настолько громоздки они были. Со временем часы с маятником мастера смогли уменьшить до таких размеров, что они стали помещаться в обычном доме; бабушкины часы с кукушкой — наглядный тому пример. Но сейчас ими редко кто пользуется; в ходу больше даже не карманные, а наручные часы — механические, кварцевые или электронные.
Примерно такой же путь совершенствования прошли и магнитометры. Трубу со свободно падающим шариком в конструкции гравиметра заменил сначала качающийся маятник, период колебаний которого зависит от силы земного тяготения, а затем и шарик, подвешенный на пружинке тоже своего рода балансир.
Один из первых гравиметров именно так и выглядел — вертикальная трубка, в которую бросали шарик, и засекали время, которое ему требовалось для того, чтобы пролететь от верхнего конца к нижнему.
Однако если просто подвесить шарик весом в 1 грамм на тоненькой пружинке, он будет колебаться в первую очередь отнюдь не от изменения силы тяжести, а от одной (или совокупности) тех помех, о которых шла речь выше. Так что пришлось нашим ученым и конструкторам придумывать всевозможные ухищрения, чтобы от них «отстроиться».
Для того чтобы шарик не чувствовал: вибраций, его закрепляют на растяжках из кварцевых нитей, помешают в специальную жидкость, от одного названия которой у вас может закружиться голова, но которая обладает множеством достоинств — она не меняет своего состава на протяжении многих лет, практически не меняет свою плотность при изменении температуры, является идеально прозрачной, так что не мешает наблюдениям и т. д.
Кроме того, всю эту систему помещают в герметичный корпус, термостатируют, размещают на специальной гироплатформе, призванной сохранять стабильность при возможных сотрясениях. Добавьте сюда еще приспособления для снятия информации, преобразования ее в форму, удобную для компьютера, устройства для юстировки — настройки системы — и вы поймете, почему работы по созданию и усовершенствованию гравиметров велись не год и не два…
В целях практической необходимости
Теперь давайте поговорим о том, для чего все это надо. В конце концов, уточнение формы Земли — не такая уж насущная проблема, чтобы заниматься ею многие десятилетия…
В лаборатории, где мы разговаривали с Л.K. Железняком, висит на стене огромная карта земного шара. На ней показаны не только возвышенности и низменности, имеющиеся на суше, но и все подробности рельефа морского дна. Имеется тут и еще одна карта, густо испещренная сетью загадочных точек.
Причем одну из этих точек мне довелось увидеть собственными глазами — прямо на полу лаборатории красовался медный кружок с выбитыми на нем цифрами. Оказалось, что таким образом обозначено место, где местная величина гравитации измерена с особой тщательностью.
К этим точкам, подобно геодезистам, гравиметристы и «привязывают» свои текущие измерения. А для того чтобы их сделать, по всему миру отправляются специальные экспедиции с установленными на самолетах, кораблях, автомобилях и прочих средствах транспорта гравиметрами.
Не один десяток лет отдал таким экспедициям и Леонид Кириллович. Причем ему довелось в основном плавать, потому что его узкая специализация — морские гравиметры. Те самые, что работают в наиболее сложных условиях — ведь штиль на море бывает не так уж часто.
«Поначалу и я сам, и наши приборы страдали морской болезнью?», — вспоминает ученый. Однако со временем обрел устойчивость не только вестибулярный аппарат самого исследователя; созданные им и его коллегами приборы стали давать правильные показания даже в штормовую погоду.
Нужно же это вот для чего. Задумывались ли вы когда-нибудь, как подводные лодки находят дорогу в океане? Ведь движутся они на большой глубине, в кромешной тьме, где даже морских звезд, не говоря уж небесных, не видно. Причем зачастую пути их проходят подо льдами, вынырнуть из-под которых — большая проблема. Да и по военным соображениям делать этого не стоит — спутник-шпион или иной охотник за подводными лодками тут же засечет ее появление… В высоких же широтах магнитный компас попросту бесполезен. Куда, по-вашему, должна указывать его стрелка в районе полюса?
Вот и ориентируются подводные штурманы по изменениям гравитационного поля Земли. Но чтобы они смогли это делать, гравиметристы должны были составить подробнейшие карты гравитационного поля планеты, «проутюжив» все моря-океаны со своими приборами. Так что пришлось Железняку с коллегами совершить не один десяток морских путешествий, добираясь далее до Австралии и Антарктиды.
Еще точные данные о земном тяготении в данной точке и в данный момент нужны при запуске баллистических ракет. А их, как известно, запускают как с подводных лодок, так и с надводных кораблей, причем в любую погоду — коль на то есть необходимость. И здесь свою службу несут гравиметры, созданные нашими специалистами.
Используют данные гравиметрии и в мирных целях. Например, гравиметр, поставленный на самолет, позволяет точно оконтурить границы нефтегазового месторождения. Ведь пустоты в земле, где хранятся подземные клады, имеют меньшую плотность, чем окружающая порода, а значит, и гравиметр покажет меньшую величину. Так же могут быть обнаружены и рудные залежи.
Не забыты и чисто научные задачи. Гравиметры, как уже говорилось, не только помогли ученым выявить истинную форму Земли, но и позволяют понять, где именно пролегают границы литосферных плит. А это весьма важно, в частности, для прогнозирования сейсмичности того или иного района. Так что «шарик на пружинке» еще не сказал своего последнего слова в науке.
Станислав ЗИГУНЕНКО