Огромное количество самых разных деталей в машиностроении получают сегодня прессованием. Процесс этот, кажется, проанализирован до тонкостей, однако и в наши дни находятся люди, которые вносят в эту технологию усовершенствования.
Один из них — 10-классник из лицея № 1 г. Тулы Михаил Хозяшев . Под руководством доктора технических наук, профессора кафедры механики пластического формоизменения ГОУ ВПО «Тульский государственный университет» А.К. Евдокимова , он провел серию исследований, показавших, как наилучшим образом получать цилиндрические детали из алюминиевых сплавов.
Вот что рассказал о сути проведенной работы сам разработчик.
Алюминий красив и легок, обладает хорошими антикоррозийными свойствами и довольно прочен. Так, прочностная эффективность алюминия, то есть отношение предела прочности к плотности металла, у конструкционной стали 10 равна 45,57, у стали 45–73,42, а у алюминиевого сплава Д16 — 161,87.
Однако алюминиевым сплавам свойственны и свои недостатки. Так, подавляющее большинство заготовок и деталей из алюминиевых сплавов получают холодным выдавливанием под прессом при помощи матрицы и пуансона. Но мгновенно прилагать большие усилия, то есть использовать ударную штамповку, к алюминию нельзя материал тут же трескается. А давить медленно — значит, расходовать большое количество энергии и иметь повышенный износ инструмента. Детали получаются дорогими.
Что делать? На этот извечный вопрос Михаил Хозяшев нашел свой вариант ответа. Он предложил способ дифференцированного выдавливания, при котором в начале процесса деформирование идет медленно, предотвращая образование трещин. А затем, в какой-то момент, скорость выдавливания резко возрастает.
Для решения поставленной задачи Михаилу прежде всего пришлось тщательно проработать всю литературу по данной проблеме в поисках наилучших вариантов решения проблемы.
Наиболее перспективным способом решения проблемы Михаилу показалось «компьютерное твердотельное моделирование штамповой оснастки в среде Solid Works 2006. Взяв эту зарубежную методику за основу, Михаил стал приводить ее к российским реалиям. У нас ведь и алюминиевые сплавы не такие, как за рубежом, и оборудование другое.
Впрочем, оказалось, что и наши соотечественники в свое время немало сделали для усовершенствования получения полых изделий из сплошных заготовок выдавливанием.
Осцилограмма изменений параметров обратного выдавливания.
Чертеж штамповой оснастки нового образца.
Так выглядит новый штамп на экране компьютера.
Впервые такой способ был заявлен в СССР С.Ш. Яшаяевым в 1962 году. Суть его, упрощенно говоря, заключается в следующем. Во-первых, как оказалось, для алюминия выгоднее использовать так называемый способ обратного выдавливания. То есть в данном случае должен двигаться не пуансон, как обычно, сверху вниз, а матрица снизу вверх.
Тогда на контактных границах инструмента с той частью заготовки, которая еще не деформировалась, и ее пластической областью особым образом создаются активные силы трения. Благодаря им, удельное усилие выдавливания снижается на 10–15 %. Так возник новый способ выдавливания, в котором активное трение осуществляется подвижным контейнером (способ Ю.П. Можейко и Н.К. Розенталя).
Позже было установлено, что, если контейнер перемещается быстрее выдавленного металла примерно в 1,3 раза, удельное усилие можно снизить на 30 %.
Проанализировал Михаил Хозяшев и другие способы этого класса, привлекая к этому современные методы компьютерного анализа. И выяснил, что, если к одной известной методике прибавить другую, да еще добавить кое-что от себя, можно добиться весьма неплохих результатов.
В чем именно заключается это «кое-что», Михаил в подробностях рассказывать не стал. А пока идет процесс патентования, человек, со школьной скамьи готовящийся шагнуть в среду изобретателей-профессионалов, смог рассказать лишь следующее.
В процессе экспериментов и анализа удалось точно установить, в какие именно моменты давление должно быть снижено до минимума или даже должен быть дан обратный ход, чтобы и качество заготовки не пострадало, и сам процесс стал более экономичным. Создан и экспериментальный штамп, который способен осуществить подобную схему сложных кинематических движений. Теперь все эти тонкости остается занести в память компьютера, отработать процесс до такой степени, чтобы участие человека в нем стало необязательным.
Вот над этим Михаил и думает работать в скором будущем, намереваясь после лицея поступить в Тульский политехнический университет, где ведет научную работу и преподает его наставник.
Публикацию подготовил Н. ВЛАДИМИРСКИЙ