В этом выпуске мы расскажем о проекте тоннельной транспортной системы большого города Романа Короткова из г. Кольчугина Владимирской области и о водородном самолете А.Амерханова и Ю.Богословского из Элисты.

Почетный диплом

ТОННЕЛЬ СПАСАЕТ ГОРОД

В американской энциклопедии автомобиль определяется как «средство реализации права на свободу перемещения». Когда-то так оно и было. Но сегодня число автомобилей на земле перевалило за миллиард и о свободе перемещения можно часами размышлять, сидя в пробке, которые в больших городах случаются по нескольку раз в неделю…

Добавим к этому, что автомобили негде ставить, сложно обслуживать и чинить. А еще — аварии. Там, где развит автотранспорт, число убитых и раненых на дорогах равно потерям в крупной войне.

Всех этих проблем, как полагает Роман Коротков из Кольчугина, можно избежать, если использовать для передвижения новый вид общественного транспорта — пневмотрубопроводный.

Пневмокапсула Р. Короткова

Представьте себе трубу, по которой движется легкая капсула на двух человек. Ее вес вместе с пассажирами не более 250 кг… Человек подходит к остановке и выбывает капсулу, как лифт в доме, садится и набирает код станции, компьютер выбирает оптимальный маршрут, и дальше поток воздуха несет капсулу по нужному маршруту без пробок, аварий и пересадок.

Надо сказать, что пневмотранспортные системы предлагались еще в XIX веке. В 1862 г. в Лондоне была построена «пневматичка» — шестисотметровая труба диаметром в один метр. В ней ходил поршень, плотно прилегавший к стенкам, а перед ним — состав вагончиков с пассажирами.

Появление таких дорог побудило даже французского художника-фантаста Альбера Робида изобразить мир будущего, в котором пневмотоннели опутывали предместья Парижа, пересылали людей через Гибралтар и даже Атлантику. Но из-за дороговизны пневмотоннели так и не получили распространения.

А. Робида. Пневмотоннели в предместьях Парижа.

Были и другие проекты. Так, в Голландии в 1970-е годы был разработан проект системы с двухместными электровагонами-капсулами, управляемыми компьютером. Первоначально предполагалось снабдить капсулы резиновыми колесами. Этим достигался достаточно тихий малошумный ход, но затруднялось получение больших скоростей и возрастал расход энергии.

В конце 1980-х годов в Германии для аналогичных транспортных систем стали разрабатывать вагоны-капсулы без колес, на магнитной подвеске. Тянуть их будет расположенный здесь же на капсуле линейный электродвигатель. Таким образом, пассажиры будут ехать в «экипаже» без колес и каких-либо других движущихся частей с огромной скоростью и бесшумно.

Капсула, предложенная Романом Коротковым, сочетает идеи двух веков: ее двигают одновременно и давление воздуха, и линейный электродвигатель. Решит это проблему дорожных пробок? Сомневаемся. Но за оригинальность мышления Патентное бюро «ЮТ» награждает его Почетным дипломом.

Разберемся не торопясь

РАКЕТУ С ВОДОРОДНО-КИСЛОРОДНЫМ РАКЕТНЫМ ДВИГАТЕЛЕМ…

…предлагают Алексей Амерханов и Юрий Богословский из Элисты. Применение водородно-кислородного топлива позволяет значительно уменьшить вес и увеличить скорость ракеты. Но как хранить эти вещества на борту ракеты?

«Кислород и водород нужно хранить в связанном виде в металлах, которые способны накапливать газы в большом количестве, — пишут ребята. — Так, магний может накопить 500, а литий — 1000 л газа на кг. Стоит металлы, впитавшие в себя газы, подогреть, и они их отдадут». Как считают авторы, этого будет достаточно для работы двигателя ракеты или самолета.

К сожалению, их выводы основаны на неверных исходных данных. Магний и литий могут накапливать водород в своей кристаллической решетке, но в гораздо меньшем количестве. Так, например, магний способен накопить не 500 л водорода на 1 кг, а только 50.

По существу, с применением магния получился бы «бак», который на каждый килограмм сохранял бы всего 100 г водорода. Бак с жидким водородом, применяемый на современных ракетах, гораздо выгоднее. Он содержит на каждый кг до 9 кг водорода. Кислород ни магний, ни литий накапливать не могут. Но если бы эти металлы смогли накопить 500 — 1000 л кислорода на 1 кг, он превратился бы в отличное топливо, а предполагаемая ракета выглядела бы совсем иначе.

Надеемся, что новые предложения ребят будут гораздо удачнее!