Недавно мировую печать обошло сенсационное заявление канадских ученых: создан квантовый компьютер мощностью 16 кубит. Кроме того, канадцы обещали к концу 2007 года предъявить миру компьютер мощностью 32 кубита, а в следующем — 100 кубит. Что же такое квантовый компьютер? Каковы его возможности? Почему его мощность измеряется в загадочных кубитах?
Задачи не «по зубам»
В 1958 году известный американский физик, лауреат Нобелевской премии Ричард Фейнман заинтересовался проблемой — можно ли моделировать квантовые системы на обычном компьютере? Выяснилось, что нельзя.
Дело в том, что уже при решении задачи, в которой элементарные частицы имеют, например, 1000 электронных спинов, в компьютерной памяти должно быть достаточно ячеек, чтобы хранить 21000 переменных. А гигабайт — это всего лишь 230.
Так что с задачей, в принципе, не могли справиться не только тогдашние маломощные электронно-вычислительные машины (ЭВМ). Даже современные компьютеры квантовые задачи решают с весьма грубыми приближениями.
Так выглядит прототип процессора квантового компьютера Orion , созданный канадцами.
Говорят, что квантовый компьютер — это своего рода реактивный двигатель вычислительной техники.
Сегодня уже ясно: количество задач, которые «не по зубам» самым мощным суперкомпьютерам, достаточно велико. Например, если заставить ЭВМ разлагать на простые множители тысячезначное число, то и машине, способной выполнять 1012 операций в секунду, понадобятся многие миллиарды лет! Не случайно такой класс задач ученые называют «нетрактуемыми», то есть нерешаемыми.
Этим, кстати, пользуются криптографы, создавшие метод шифрования и секретные коды, основанные как раз на разложении больших чисел на простые множители. Так что специалистам нужны не просто сверх, а сверх-сверх-сверхмощные компьютеры.
Слесарю — слесарево
В общем, когда стало понятно, что с помощью обычной ЭВМ квантовые проблемы не осилить, Фейнман задумался: может, попробовать создать компьютер, работающий по квантовым законам? Дескать, надо действовать по принципу «пусть пироги печет пирожник». Подобную мысль несколько позднее высказал и российский математик Юрий Манин.
В 1994 году американскому теоретику Питеру Шору удалось описать алгоритм работы гипотетического квантового компьютера, который мог бы решить задачу разложения больших чисел на простые множители, проделав при этом «всего» 10003, то есть миллиард операций. А Сет Лойд из Массачусетского технологического института придумал и возможную схему такого устройства.
Впрочем, не только Шор и Лойд, но и специалисты из других стран взялись за теоретические описания и создание подобных вычислительных систем. Сейчас предложены десятки разных вариантов; упомянем некоторые из них.
ЯМР-компьютер
Первый квантовый компьютер ученые создали, сами того не подозревая, указывает в одной из своих работ академик К.А. Валиев. Его «опытным образцом» стал импульсный ядерный магнитно-резонансный (ЯМР) спектрометр, о котором «ЮТ» не раз писал.
Дело в том, что в этом устройстве уже используются Q-биты (кубиты) — единицы измерения квантовой информации. Они представляют собой спины ядер, входящих в состав атомов, которые, в свою очередь, образуют исследуемую в ЯМР-спектрометре молекулу. Каждое ядро имеет свою частоту резонанса в магнитном поле, поясняет К.А. Валиев.
При воздействии импульсом на резонансной частоте одного из ядер оно начинает отзываться, словно рояльная струна, остальные же ядра «молчат». Для того, чтобы заставить отозваться второй атом, нужно дать импульс на другой частоте.
Иными словами, процессом вычислений можно управлять импульсами переменного магнитного поля. При этом в молекуле есть прямая связь между спинами, и потому она является идеальной заготовкой для квантового компьютера, а сам спектрометр — почти готовый процессор. Однако в настоящее время удается работать с системами, в которых не более 5–7 спинов, а их нужно не менее 100.
Общий вид квантового компьютера Orion .
Укрощение ионов
Другой подход основан на использовании электромагнитных ловушек, в которых содержатся «подвешенные» в вакууме ионы. Первые ионные ловушки создали еще полвека назад, когда понадобился эталон времени для атомных часов; в таких часах колеблющиеся ионы играют роль маятников. Но для квантового компьютера одного иона недостаточно. Нужна, как минимум, сотня. Создание таких «многоместных» ловушек — задача непростая, но специалисты ее успешно решают.
Больше других преуспели в этом направлении ученые Инсбрукского университета в Австрии и сотрудники Лос-Аламосской лаборатории в США.
Принципиальная схема «ловушек» для кубитов.
Для квантового компьютера, напомним еще раз, нужна хотя бы сотня частиц. А в вытянутой цепочке, как показала практика, пока можно удержать максимум 30 ионов. При большем количестве одномерный кристалл теряет устойчивость — образуется «зигзаг», неустойчивая структура. Решить эту проблему ученые планируют, объединив несколько ловушек — скажем, по 10 частиц в каждой — в одну систему.
В дело — твердое тело
Третий подход — создать квантовый компьютер на твердом теле. Исследователи Физико-технологического института РАН (ФТИАНа) под руководством академика К.А. Валиева намерены создать квантовый компьютер на основе кремниевых микрочипов, подобных тем, которые использует традиционная микроэлектроника.
Через каждые 100 ангстрем в кристалл кремния внедряют атомы фосфора; этой операцией технологи прекрасно владеют уже сегодня. На таком расстоянии облака внешних электронов атомов фосфора пересекаются, и один атом может управлять электронами другого.
Над этими атомами располагают 50-ангстремные микроэлектроды. Изменяя напряжение на электроде, можно менять и резонансную частоту спина ядра атома фосфора. Получается структура, очень похожая на современный полевой транзистор: как бы те же затворы, только вместо тока — состояния атома. Причем наши физики предлагают работать не с одним, а сразу с серией атомов, действующих параллельно. Тогда на выходе сформируется сравнительно мощный сигнал, который легче регистрировать.
Обозримые горизонты
Пока же суд да дело, канадская фирма D-Wave Systems, объявившая о создании квантового компьютера Orion мощностью в 16 кубит, использовала в своем устройстве кольца из сверхпроводника с одним или двумя разрывами толщиной в нанометры. Эти разрывы заполняются диэлектриком. «В каждом кольце реализуется необычное квантовое состояние, когда токи текут одновременно и по, и против часовой стрелки», — сообщают создатели «Ориона».
Охлаждаемый до температуры кипения жидкого гелия (-273,145 °C) процессор выполнен из ниобия (металла-сверхпроводника) с использованием традиционной микроэлектронной технологии.
«Наш квантовый компьютер не будет узкоспециализированным вычислителем, ориентированным, к примеру, исключительно на криптографию, — подчеркнул Херб Мартин, заместитель главного исполнительного директора компании. — Это устройство широкого профиля пригодится в различных областях — от чистой математики до генной инженерии и создания лекарств»…
Впрочем, по мнению многих специалистов, 16 кубит — очень мало; вычислительные способности такого компьютера на уровне простого калькулятора. А вот 100 кубит уже достаточно, чтобы квантовый компьютер стал мощнее любой суперЭВМ.
Однако в ближайшем будущем квантовые компьютеры все же вряд ли вытеснят обычные. Работы хватит и тем и другим. «Мое видение будущего таково: в обычном компьютере появится специальный квантовый процессор, который будет использоваться для решения сверхсложных задач, — сказал академик Валиев. — А для всех остальных случаев достаточно традиционной электроники»…
Публикацию подготовил А. ПЕТРОВ