Вы видели, наверное не раз, как на лбу киногероя появляется красная точка лазерного прицела и выстрел снайпера с крыши противоположного дома попадает точно в цель. Такие сцены далеки от действительности, но капля истины все же в них есть. Разберемся в этом не торопясь.
Появление лазерного прицела
Свет распространяется прямолинейно, и пуля начальную часть своей траектории пролетает почти прямолинейно. Это навело изобретателей на мысль соединить ствол пистолета с лазером таким образом, чтобы оси луча и ствола были параллельны, а световое пятно лазера указывало на место попадания пули.
В конце 1980-х годов в США сделали первый пистолет с лазерным прицелом. Но на первых порах лазер был велик, конструкция получилась громоздкой и успеха не имела. Но через три года появился крохотный твердотельный лазер (тот самый, что применяется сегодня в лазерных указках), и лазерный прицел стало возможно поставить на любой пистолет.
Когда такой прицел хорош
Статистика показывает, что большинство поединков с участием пистолета проходит на дистанциях 5 — 10 м. В этих условиях яркая точка достаточно точно указывает место возможного попадания. «Возможного» потому, что спуск нужно нажать плавно, а рука не должна дрогнуть при выстреле. В бою соблюсти эти правила трудно.
Профессионалы из полиции и секретных служб зачастую находят лазерный прицел излишним. Лишь только полиция Гонконга поголовно снабжена пистолетами с такими прицелами. Сколь же часто в «поединках» ими используются лазеры — неизвестно.
Когда он не нужен
На винтовках лазерные прицелы применяют нечасто. Все дело здесь в чистой физике. Если на свет сила тяготения почти не действует и он распространяется прямолинейно, то на пулю она действует достаточно заметно. Поэтому пуля движется по инерции в направлении выстрела и одновременно падает.
Допустим, мы произвели выстрел горизонтально, прямой наводкой. Для простоты забудем на время о сопротивлении воздуха и вообразим, что пуля летит в пустоте. Время ее полета t получим путем деления расстояния L на скорость V вылета пули из дула пистолета. t = L/V
К этой скорости добавится скорость, приобретенная за счет падения. Смещение пули h можно подсчитать по формуле равноускоренного движения. h = g∙t 2 ∙/2.
Сделав подстановку, получаем h = g∙L 2 /V 2 /2.
Из этой формулы видно, что смещение h сильно зависит от расстояния и начальной скорости пули (соответствующие величины возведены в квадрат!).
Рассмотрим численные примеры. Пуля, выпущенная из короткоствольного пистолета со скоростью 300 м/с, пролетев 6 м (наиболее вероятное расстояние боевого столкновения), сместится вниз всего на 5 мм и практически точно попадет в лазерный «зайчик». Но уже при стрельбе на 100 м пуля окажется на 0,5 м ниже зайчика! Чтобы попасть в цель, это смещение надо «угадать» или мысленно рассчитать. Вот почему не все профессионалы рвутся доверять свою жизнь такому оружию. Однако есть среди них и такие, кто вполне сроднился с лазерным прицелом и старается вступать в бой только с ним.
Для снайперской винтовки такой простейший прицел и вовсе бесполезен. Так, одна из лучших снайперских винтовок австрийской фирмы «Стайер» посылает оперенную подкалиберную пулю, точнее вольфрамовую стрелу, со скоростью 1400 м/с. На расстоянии 2000 м она пробивает 40-мм стальную броню, после чего высвобождается энергия кристаллической решетки вольфрама и происходит сильнейший взрыв. Если на такую винтовку поставить «лазерную указку», луч которой параллелен оси ствола, то мы увидим, что пуля за секунду полета успеет снизиться как минимум на 10,5 м! Ясно, что такое «целеуказание» бесполезно, а потому и не применяется. Правда, есть сообщения о лазерных прицелах-целеуказателях более сложных. Они учитывают наклон ствола к горизонту, определяют расстояние до цели и точно выставляют положение лазерного пятна на ней. Однако такие конструкции пока не вышли из стадии экспериментов.
Потомок рогатки
Самый потрясающий результат был получен при установке лазера на… рогатку. Из нее с 10 м удается попасть в карандаш и расколоть его. Разумеется, просто приладить к рогатке лазер было бы бесполезно. Ведь неизвестно, как и в какую сторону рука потянет резинку. Направление силы натяжения ни при каких обстоятельствах не будет параллельно лучу.
Лазерная рогатка напоминает обычную чисто внешне, да и то весьма отдаленно. По сути же своей это двухосный шарнир Кардана, к которому прикрепили резинку и лазер. И теперь, куда бы рука ни потянула резинку, шарнир разворачивается по двум осям и угол между силой натяжения и лучом остается неизменным, и лазер точно указывает место попадания пули.
Лазерная рогатка — едва ли не самое совершенное оружие рукопашного боя.
Сделать такое орудие достаточно сложно. Подробное описание лазерной рогатки и чертежи мы дадим на страницах нашего приложения «Левша».
Для лабораторных работ рогатка не вполне приемлема и к тому же опасна. Нам вполне достаточно пружинного пистолета, стреляющего стрелами с присоской на конце. На верхней части его ствола установим лазерную указку в оправе — отрезке металлической трубки диаметром около 20 мм. В ней сделаны шесть отверстий с резьбой М3 для установки в них регулировочных винтов. Лазер указки устанавливается в оправе при помощи двух мягких резиновых шайб, вырезанных из ластика. Сама оправа укреплена скотчем на планке-держателе, соединенной с корпусом пистолета винтами-саморезами.
Установив лазер на корпус пистолета, приступаем к регулировке положения луча относительно оси канала ствола. Фактическое положение оси канала ствола такого пистолета определяется пазом, по которому ходит толкатель стрелы.
Приложите к нему линейку и зафиксируйте ее скотчем. Затем, завинчивая или отвинчивая винты, добейтесь, чтобы луч лазера был параллелен кромке линейки. Располагая таким оружием, можно поставить лабораторную работу по определению скорости полета стрелы при горизонтальном выстреле.
Для этого закрепим пистолет в тисках, установленных на скамейке, и развернем его строго горизонтально, ориентируясь по лучу лазера. Затем измерим рулеткой расстояние и произведем выстрел по мишени. Стрела присосется к ней. После этого обведем присоску карандашом и замерим, насколько центр получившегося кружка оказался ниже центра лазерного пятна. Далее найдем скорость из уже известной нам формулы h = g∙L 2 /V 2 /2.
В этих экспериментах мы обнаружим, что одна и та же стрела будет иметь на больших расстояниях скорость меньше, чем на маленьких. Это связано с влиянием сопротивления воздуха.
Интересные результаты можно получить с определенными стрелами. А также со стрелами, снабженными бумажными крыльями. На такие стрелы, кроме силы тяжести, действует еще и подъемная сила, которая на небольшом участке делает полет почти прямолинейным.
Пружинный пистолет с лазерным прицелом позволяет понять законы стрельбы.
А. ИЛЬИН
Рисунки автора