В этом выпуске Патентного бюро мы расскажем о кислородном приборе для работы под водой Натальи Радецкой из Москвы и о способе борьбы с лесными пожарами Александра Шестакова из г. Заринска Алтайского края.
АВТОРСКОЕ СВИДЕТЕЛЬСТВО № 1097
ГДЕ БРАТЬ КИСЛОРОД ВОДОЛАЗУ?
Человеку, как известно, достаточно 100 граммов кислорода в час. Они содержатся в 360 л воздуха при атмосферном давлении. Если сжать воздух до давления 200 атмосфер, то весь этот немалый объем уменьшится до 1,8 л. Такими баллонами пользуются обычно любители подводного плавания. Боевые пловцы применяют специальные приборы, где кислород получается в результате химических реакций выдыхаемого человеком углекислого газа и особого вещества, например, гидрида лития.
Но не странно ли, размышляет восьмиклассница Наташа Радецкая из Москвы, мы применяем всевозможные ухищрения, а кислорода достаточно и в самой воде. Ведь каждый ее литр содержит почти 900 г кислорода! Правда, он химически связан с атомами водорода, но не беда! Если пропускать через воду постоянный ток, то на аноде будет выделяться кислород.
Вот и предлагает Наталья на этом принципе сделать небольшой аппарат, вырабатывающий для водолаза кислород прямо из воды. А энергию он получит от аккумулятора.
Идея кажется многообещающей. Однако прежде чем браться за ее осуществление, заглянем в справочники и сделаем несложные расчеты.
В промышленных установках для электролиза воды, согласно справочникам, расходуется 12 кВт/ч электроэнергии на каждый кубометр получаемого кислорода. Это значит, что для получения 100 г кислорода требуется около 0,9 кВт/ч. Откуда их взять под водой?
Обычные свинцовые аккумуляторы дают не более 0,036 кВт/ч на кг своего веса. Получается, что на час работы нужна батарея весом в 25 кг. Многовато! С таким грузом нырнешь — и не вынырнешь.
Можно применить аккумуляторы серебряно-цинковые, при этом вес батареи снизится до 5–6 кг. Но и это немало. Получается, что судьба изобретения всецело зависит от веса аккумуляторов, а они сегодня весьма тяжелы.
Кислородный прибор Натальи Радецкой . В красной коробочке на груди водолаза происходит электролиз воды. Кислород по шлангу направляется для дыхания, а ненужный для дыхания водород выбрасывается наружу. Электричество поступает от батареи на спине водолаза.
Однако… Откроем маленький секрет: в справочниках приводится величина расхода энергии не только на получение чистого газа, но еще и на дистилляцию воды, в которой содержатся различные соли. Это увеличивает расход энергии на 40–50 %.
Зная об этом, в электролизер своего кислородного прибора Наталья предлагает наливать на берегу уже дистиллированную воду. Аккумуляторы же будут соединяться с электролизером напрямую. Поэтому, как полагает Наташа, затраты энергии на получение кислорода в ее приборе могут быть почти вдвое ниже, чем в промышленности, а потому и вес батареи снизится до вполне приемлемых величин. Более того, кислородный прибор можно заключить в корпус из пенопласта, это сделает его под водой еще легче.
Учтем, что и сами аккумуляторы развиваются. Уже есть опытные образцы, вес которых в 1,5–2 раза меньше, чем у традиционных. Все это дает нам основание полагать, что электрохимическое устройство, получающее кислород для дыхания пловца из воды, вполне реально. Поэтому Экспертный совет и принял решение выдать на него Наталье Радецкой авторское свидетельство ПБ.
АВТОРСКОЕ СВИДЕТЕЛЬСТВО № 1098
ДЛЯ СПАСЕНИЯ ЛЕСОВ
Лесные пожары порой принимают такие масштабы, что к борьбе с ними широко привлекается авиация. Специальные самолеты и вертолеты садятся на реке или на озере, быстро заправляются водой и выливают ее на горящий лес.
Если пожар происходит недалеко от водоема, то одна машина, совершая десятки рейсов, способна доставить сотни тонн воды за час. Но все-таки порой и этого мало: огонь захватывает новые территории, доставка воды затрудняется, и пожары бушуют месяцами.
Александр Шестаков из г. Заринска Алтайского края разработал под руководством своего учителя Сергея Павловича Лунина оригинальную систему тушения лесных пожаров для тех случаев, когда они происходят недалеко от реки, и назвал ее «противопожарным комплексом».
По существу, это система из множества вертолетов и дирижаблей, соединенных в единое целое при помощи легких мостовых ферм. По этим фермам проложены трубы для подачи воды. В начале такого водовода в реку или озеро вертолет опускает мощную насосную станцию, а основную заботу по удержанию в воздухе ферм и труб водовода берут на себя дирижабли. Такая система, как полагают ее авторы, сможет быстро подать к очагу пожара огромное количество воды. После этого мостовые фермы складываются гармошкой и отправляются на хранение либо перебрасываются на новое место.
В принципе противопожарный комплекс Александра мог бы оказаться полезен, но есть много причин, затрудняющих его создание.
Прежде всего, нет достаточного количества дирижаблей — сегодня нигде в мире их серийно не строят. Хотя у дирижабля очень много достоинств, для действий в районе пожара это далеко не лучший летательный аппарат. Даже если наполнить его гелием, то и в этом случае поднимаемые воздушными потоками горящие угли и искры способны повредить его оболочку.
Далее, дирижабль имеет большую площадь поверхности, и, чтобы удержать его на месте, потребуются большие затраты энергии.
Есть и еще одна трудность. Под действием ветра даже в обычных сталебетонных мостах большой протяженности возникают опасные колебания. Следует опасаться, что многокилометровая система из шарнирно соединенных ферм, окажется подвержена им в очень большой степени — в ней могут возникнуть стоячие волны, которые легко разрушат ее.
Однако все эти сомнения и возражения означают лишь то, что задолго до начала постройки противопожарный комплекс должен быть исследован и промоделирован по всем правилам науки. Тогда будут выявлены его сильные и слабые места, найдены меры, исключающие опасные ситуации в его работе.
Мы желаем юному изобретателю поступить в институт и надеемся, что эта статья и Авторское свидетельство Экспертного совета нашего журнала окажутся ему полезны.