Почти в каждом физическом кабинете есть набор для изучения поляризации света. В него входит несколько непонятных предметов, но два из них прямо-таки удивительны. Это два зеленоватых стеклышка в темной оправе (см. рис. 1 на следующей странице). Сложите их вместе и поверните. Поле зрения потемнеет, а потом станет почти совсем непроницаемо для света. Продолжайте вращать, и оно вновь станет светлым и ясным.

Эти странные стеклышки называются поляроидами. Дело в том, что световые волны колеблются в самых различных плоскостях. Поляроид же пропускает те из них, колебания которых лежат только в одной плоскости. Такой свет называется поляризованным.

Если поляроиды повернуты так, что их плоскости совпадают, то свет проходит беспрепятственно. Если же они взаимно перпендикулярны, то световой луч ослабляется почти в тысячу раз.

Но интересные эффекты можно наблюдать и держа в руках всего лишь один поляроид. Подойдите к застекленной витрине. Очень часто в ней отражается улица и то, что находится за стеклом, видно плохо. Немного поверните поляроид, и отражение если не все полностью, то в значительной мере исчезнет.

Каждому рыболову интересно узнать, есть ли в реке рыба. Но вода хоть и прозрачна, а дно увидеть нельзя. Мешает все то же отражение, на сей раз от волн. Посмотрите на воду через поляроид, и дно станет видно значительно лучше. Дело в том, что свет поляризуется, отражаясь от поверхности стекла или воды. Поворачивая поляроид, мы отфильтровываем этот мешающий нам свет. Этим свойством пользуются фотографы-профессионалы, ставящие на объективы своих аппаратов поляризационные фильтры.

Одиночный поляроид может заменить вам даже часы и компас. Посмотрите на небо в пасмурную погоду. В том месте, где должно быть солнце, вы увидите маленькую синюю восьмерку, окруженную желтой каймой (рис. 2). Причина этого явления нам неизвестна, так что мы охотно опубликуем ваши объяснения.

Поляроиды из набора снабжены специальными оправами для установки в универсальный проектор, и с ними можно проделать ряд красивых и занимательных опытов.

Поставим поляроиды на проектор и развернем так, чтобы свет через них не проходил. После этого в промежуток между ними внесите кусок обычного стекла, на экране появится его светлое, слегка окрашенное изображение. Объясняется это тем, что свет, пройдя через стекло, изменил наклон плоскости поляризации, и это позволяло ему пройти через скрещенные поляроиды.

Казалось бы, повернув второй поляроид, мы снова добьемся полного затемнения. Но нет, с обычным стеклом этого не получится. Вот если взять кусок специального оптического стекла, то после поворота второго поляроида оно уже видно не будет. Особенно яркая радужная картина получается, если поместить между поляроидами кусок смятого целлофана.

Обе картины объясняются двойным преломлением лучей. Очень многие твердые вещества способны один и тот же луч света разделить на две части, идущие немного в разных направлениях (рис. 3).

Фазы световых волн и плоскости поляризации в этих лучах оказываются немного сдвинуты относительно друг друга, но частоты полностью совпадают. Благодаря этому в них происходит интерференция, приводящая к яркой игре красок.

Способность к двойному преломлению лучей обычного оконного стекла без поляроидов никому не заметна и не мешает. Но из такого стекла невозможно изготовить хорошую линзу. (Вместо изображения одной точки может получиться две.)

Возникает же эта способность в стекле при его быстром неравномерном охлаждении в процессе изготовления. Отдельные его участки оказываются неравномерно растянуты в различных направлениях и по-разному преломляют свет. Поэтому лучшие сорта оптического стекла после отливки длительно, порою до полугода, охлаждают. Вот почему за некоторые фотообъективы приходится платить большие деньги.

Но двойное преломление лучей бывает и полезно.

Возьмите кусок полиэтилена, надрежьте его и, поместив между затемненными поляроидами, потяните. В районе надреза появятся радужные линии (рис. 4).

При усилении натяжения полиэтилен начнет рваться, а радужные разводы усилятся. Все эти линии есть не что иное, как линии распределения сил (процесс можно отчетливо видеть на экране).

Мост или крыло самолета всегда начинают разрушаться в каком-то одном месте, где происходит опасная концентрация сил. Стараясь заранее определить и усилить опасное место, проектировщики делают модель из прозрачного материала, помещают ее между двух поляроидов и подвергают нагрузке. Возникающий узор раскрывает картину распределения сил, а измерение яркости отдельных участков ее позволяет найти величину этих сил. Работа эта кропотлива, но ее результаты очень важны.

Точно определить содержание сахара во фруктовом соке нелегко. Выручит все та же поляризация. Поместите между поляроидами прозрачную кювету с плоскими стенками, создайте темное поле и налейте в нее раствор сахара. Кювета тотчас же станет видна. Прошедший через раствор сахара свет немного повернул плоскость поляризации. Если второй поляроид повернуть, поле снова сделается темным. Концентрация сахара оказывается пропорциональна повороту анализатора.

Кстати, раз уж здесь зашла речь о сахаре… В XIX веке он стоил очень дорого. Ученые приложили немало сил, пытаясь синтезировать его из угля или нефти, но — к счастью! — успеха не добились: процесс получался сложным и дорогим. Правда, оказалось, что если слить два сильнейших яда — раствор синильной кислоты и формалина, — то в колбе со временем появляется сахар. Его химическая формула полностью совпадает с формулой лучшего тростникового сахара. Вот только плоскость поляризации он вращает не так, как обычный сахар, а в противоположную сторону. Оказалось, что его молекула по форме зеркальна молекуле обычного сахара. Этот «зеркальный» сахар был сладок, но организмом не усваивался.

Способность вращать плоскость поляризации имеют очень многие вещества. Еще знаменитый физик Майкл Фарадей обнаружил, что магнитное поле способно вращать плоскость поляризации света, проходящего через вещество. Вот один из его экспериментов.

В катушку с большим числом витков помещалась кювета с жидкостью. Вдоль нее пропускался луч поляризованного света. При включении тока положение плоскости поляризации света значительно изменялось.

В своих опытах Фарадей использовал катушку длиной около 0,5 м и внутренним диаметром 40 мм. Она содержала 150 витков изолированной проволоки диаметром 5 мм и работала от батареи напряжением 48 В. Изготовить такую катушку несложно, а питаться она может от выпрямителя. Но можно использовать катушку от набора по электромагнетизму и конденсатор емкостью 100 мкФ. Внутрь катушки следует поместить кювету с плоскими стенками, склеенную из оргстекла. Опыты следует проводить только в присутствии учителя!

А. ВАРГИН

Рисунки автора