Центральный аэрогидродинамический институт (ЦАГИ), расположенный в подмосковном Жуковском, является одним из ведущих мировых центров авиационной науки. Здесь сделано немало удивительных открытий и изобретений. Сегодня мы поговорим о некоторых из них.
Известно, что перед тем, как в воздух поднимется настоящий самолет, его модели неоднократно продувают в аэродинамических трубах. Их в ЦАГИ немало, и многие имеют свою собственную славную историю.
«На нашей трубе в свое время работал сам Мстислав Всеволодович Келдыш, тогда еще будущий президент Академии наук СССР, — рассказала нам директор Жуковского авиатехнологического колледжа И.С. Фалеева. — Он изучал с ее помощью флаттер и шимми…»
Явления эти крайне неприятные и заключаются вот в чем. При флаттере у самолета на некоторых режимах полета вдруг начинаются непредвиденные колебания плоскостей и хвостового оперения. Дело иной раз доходило даже до того, что части плоскостей и оперения попросту отваливались в полете… Явление же шимми, названное так по имени модного в 20-е годы заокеанского танца, заключалось в том, что переднее колесо самолета при пробежке после посадки вдруг начинало само по себе вилять из стороны в сторону. Самолет съезжал с полосы и мог разбиться…
Продувки в трубе помогли нашему ученому разобраться в причинах этих явлений, описать их математически, а потом и принять меры, чтобы они никогда больше не повторялись на практике.
Но вот когда в трубе продувают ту или иную модель, очень важно знать, видеть, как именно воздушные потоки обтекают ту или иную часть. А для этого невидимые воздушные потоки нужно сделать видимыми.
Делают это разными способами. Например, в воздушную струю добавляют дым, и становится видно, как его струйки обтекают модель, можно вести соответствующую киносъемку. Еще порой на всю поверхность модели наклеивают многочисленные шелковинки. На ветру нитки, трепеща, отклоняются в ту или иную сторону, и по этим отклонениям судят о поведении воздушного потока.
Однако у обоих способов есть один недостаток — на самой модели после остановки трубы не остается никаких явно выраженных следов обтекания. И тогда наши аэродинамики придумали такую хитрость. На поверхность модели стали наносить краской яркие контрастные точки — например, белые точки по черному полю или, наоборот, черные точки на белом.
Причем консистенцию краски и время ее нанесения подбирали таким образом, чтобы при включении трубы воздушные потоки размазывали капли краски по поверхности модели, фиксируя таким образом направление и силу воздушных струй. Ведь чем сильнее струя, тем больше она смазывает краску.
Следующий шаг заключался в разработке краски, которая бы постоянно реагировала на изменение давления. «Такие краски называются ЛИД — люминесцентные преобразователи давления, — рассказал нам начальник отдела новых авиационных технологий, кандидат технических наук Леонид Теперин. — ЛПД позволяет видеть значение давления на поверхности, поскольку краска меняет свой цвет под действием воздушной струи. Этот способ сейчас запатентован и широко используется практически во всех авиационных центрах мира».
Сейчас исследователи ЦАГИ призвали на помощь и последние достижения нанотехнологии. Особые крупинки, которые на Западе называют «умной пылью», добавляют в краску, которой красят как модель, так и самый настоящий самолет. И в каждом испытании, в каждом полете эти крупинки, в зависимости от воздушного давления, температуры, деформации той или иной части конструкции, выдают электромагнитные сигналы, которые фиксирует специальная аппаратура.
Таким образом можно получать огромное количество информации, в том числе и такой, какая не может быть получена иным способом.
«Более того, в ЦАГИ разработана краска, которая может сделать летательный аппарат практически невидимым для радара, — продолжал рассказ Теперин. — До сих пор малую радиозаметность летательным аппаратам пытались придать с помощью экзотических форм, которые весьма плохо влияют на управляемость и летные качества аппарата. Другой путь решения проблемы — создание многослойных покрытий, которые имеют определенную наноначинку, эффективно поглощающую излучение радара»…
В. ЧЕРНОВ , С. НИКОЛАЕВ