В последней трети XX века в разных концах огромного Советского Союза — в казахских степях и на полях Подмосковья, на Кольском полуострове и в Крыму, в Прибалтике и в Закавказье, у Байкала и у Северного Ледовитого океана — выросли громадные железобетонные призмы, вызывающие ассоциации с какими-то фантастическими укреплениями. Понадобились же они вот для чего…

С появлением межконтинентальных баллистических ракет (МБР), способных долететь до любой точки земного шара за 30–40 минут, появилась необходимость узнавать об этих запусках как можно раньше. Подвесить над ракетными шахтами потенциального противника спутники-шпионы? Но, во-первых, такие спутники в случае начала военных действий были бы уничтожены в первую очередь. Во-вторых, большую часть МБР военные стали размещать на ракетовозах, в ракетных поездах и на атомных субмаринах, способных производить пуски из-под воды в любой точке акватории Мирового океана. Уследить за ними просто невозможно.

Планета же наша, как известно, круглая, а потому даже боевые головки МБР, летящие на большой высоте, выходят из-за горизонта, когда до цели им остается лететь не более 5000 км — то есть минут 15–20. И за это короткое время нужно успеть понять, что именно летит, и постараться сбить как можно больше боеголовок противника.

Вот тогда и было принято решение о создании сети загоризонтных радаров дальнего действия. Об этих секретных системах долгое время писать было нельзя, но со временем информация стала доступна.

Чтобы заглянуть за горизонт, ученые и конструкторы воспользовались природным зеркалом — ионосферой. Оно расположено на высоте около 100 км и обладает способностью отражать радиоволны на частотах от 5 до 28 МГц. В этом диапазоне и работают загоризонтные радары.

При этом, как известно, схема работы локатора такова. Он посылает в пространство направленный радиолуч. Часть излучения отражается ионосферой и попадает на цель. Отразившись от нее, радиоволна возвращается назад и улавливается приемной антенной. Очевидно, что лишь очень-очень небольшая часть посланного импульса, пройдя 5000 км, отразившись от полуметрового объекта сложной формы и пройдя еще 5000 км в обратном направлении, попадет на приемную антенну. Значит, передатчик должен быть мощным, а приемник — очень чувствительным. Но как этого добиться? Только ростом размеров антенн!

Хорошо, а отслеживать цели как? Поворачивая антенну? Вариант, подходящий для радиотелескопов и дальней космической связи, в боевых системах неприменим: 65-метровую поворачивающуюся «тарелку», подобную той, что используется для космической связи в районе подмосковных Медвежьих Озер, или 75-метровую в Евпатории вывести из строя проще простого! Кроме того, места для радиотелескопов и радаров ПРО выбираются по совершенно разным критериям. Например, если в первом случае можно поискать, где ветра послабее и снега поменьше, то во втором на выбор влияет уже в первую очередь военная необходимость…

В итоге радиоконструкторам удалось создать неподвижные антенны, луч которых все же позволяет отслеживать быстролетящие объекты. Это ФАР — фазированные антенные решетки. Они состоят из большого количества ненаправленных передающих (или приемных) антенн, сигнал на которые подается (или с них снимается) в определенной временной последовательности. В результате суммарный волновой фронт может быть мгновенно развернут относительно плоскости антенной решетки.

При достаточно большом количестве единичных элементов ФАР способна отслеживать множество объектов, идущих с различными скоростями в разных местах поля обзора, различать отдельные цели в плотной группе… Достоинства ФАР так велики, что практически все современные радиолокационные станции — стационарные и подвижные, корабельные и самолетные — используют именно такие антенны.

Однако есть у антенных решеток и недостатки. Главный «минус» ФАР — малый коэффициент усиления, поскольку излучение от ячеек решетки идет во все стороны, а не концентрируется в нужной. В результате для той же дальности приходится увеличивать мощность передачи и чувствительность приема. Поэтому нынешние противоракетные локаторы, повторим, чудовищно мощны и огромны.

Тем не менее, сегодня на вооружении Войск ракетно-космической обороны Российской Федерации стоят несколько типов РЛС, способных обнаруживать и отслеживать баллистические ракеты противника, наводить на них наши противоракеты. Кроме того, их можно использовать (и используют) для слежения за космическими объектами.

У Мурманска, Мукачева, Севастополя, Иркутска и на противоракетном полигоне у озера Балхаш долгое время работают наиболее старые станции «Днепр». Дополнить или заменить их должны новые «Дарьял-УМ».

Недавно на самом важном — северном направлении, в Печоре, построена первая станция типа «Дарьял». Вторая такая же (в Габале) прикрыла южное направление.

Совсем недавно появились первые сообщения и о новой радиолокационной станции системы предупреждения о ракетном нападении «Воронеж-М», строительство которой в 2006 году было закончено в Ленинградской области, в районе поселка Лехтуси.

Антенна РЛС « Воронеж » в Лехтуси имеет размеры с многоэтажный дом.

Эта РЛС уникальна уж тем, что на ее создание затрачено всего лишь два года, в то время как РЛС прошлого поколения строились от 5 до 9 лет. Такое стало возможным благодаря новой технологии конструирования и сооружения подобных станций, пояснил главный конструктор «Воронежа» Валерий Карасев из Радиотехнического института имени академика А.Л. Минца.

«Современная аппаратура настолько компактна, что ее легко можно разместить в небольших быстровозводимых модулях или контейнерах, — рассказал Валерий Иванович. — Таким образом «Воронеж-М» представляет собой антенну и несколько контейнеров с электронным оборудованием, которые собираются на предприятии и уже в готовом виде доставляются для монтажа на стройплощадку».

Схема действия загоризонтной РЛС.

Эта особенность радиолокационных систем нового поколения дает возможность не только значительно сократить расходы на их создание, но и более чем на 40 % снизить затраты на содержание.

Немаловажен и тот факт, что обработка полученных сигналов на станции производится в цифровом виде. Аппаратура не только миниатюрная, так она еще и более точная, нежели использовавшаяся ранее аналоговая. Но своим техническим характеристикам «Воронеж» превосходит станции «Днепр» и «Дарьял», которые были созданы в советское время, и способна контролировать территорию от Шпицбергена на севере до Марокко на юге. Причем она видит не только ракеты, но и самолеты или вертолеты.

Обслуживают станцию всего 15 человек, в то время как для «Дарьяла» требовалось 2000 сотрудников. Кроме того, «Воронеж» потребляет гораздо меньше энергии — 0,7 мегаватт («Дарьял» — 50 мегаватт).

В. ЧЕТВЕРГОВ