Юный техник, 2009 № 07

Журнал «Юный техник»

Популярный детский и юношеский журнал.

 

ВЫСТАВКИ

Вернисаж умельцев

На стендах очередного, XII по счету Московского международного салона промышленной собственности «Архимед-2009» около 3000 изобретателей из разных стран представили свои разработки. Среди них было и немало весьма остроумных, в чем убедился наш специальный корреспондент Станислав ЗИГУНЕНКО.

Представим некоторые из них…

Дорога над домами

Некогда на российском флоте существовало правило: прежде всего слово давали самым младшим. И мы решили ему последовать. Самым же юным участником нынешней экспозиции был первоклассник из прогимназии № 1773 г. Москвы Артем Дубенсков.

— Свой проект я придумал, когда однажды вечером ждал папу с работы, — рассказал он. — А он все не едет и не едет, потому что застрял в пробке. И тогда я подумал: надо создать транспорт, которому пробки будут нипочем…

Суть идеи Артема заключается в следующем. Во многих крупных городах дома строят сериями. Например, тянется вдоль проспекта вереница практически одинаковых 16-этажек. И транспортные пути, например, монорельс можно пустить над их крышами.

Проиллюстрировал свою идею Артем с помощью макета, изображающего два небоскреба, между которыми протянута кольцевая резинка, к которой прикреплены два вагончика. Включил электромотор, закрутились шкивы, на которые натянута резинка, тронулись в путь вагончики…

На самом же деле вместо резинки можно будет протянуть, например, струны, подобные тем, которые изобретатель А. Юницкий предлагал еще 20 лет тому назад протягивать между опорами где-нибудь на Крайнем Севере, где обычную дорогу из-за вечной мерзлоты и снежных заносов строить и эксплуатировать затруднительно.

А вот если пускать вагончики по натянутым тросам, то такая канатная дорога окажется весьма неплохим выходом из положения. Но даже маститый изобретатель не смог додуматься, что подобный транспорт вполне может пригодиться в мегаполисе. А Артем Дубенсков догадался. Вот вам и первоклассник!

Домино «Бионика»

Настя Авдеева чуть постарше Артема. Она учится уже в третьем классе все той же прогимназии № 1773 и интересуется проблемами бионики.

Настя Авдеева демонстрирует домино «Бионика».

— Это такая наука, — пояснила она, — которая пытается использовать в науке и технике патенты природы. Например, когда ученые выяснили, что летучая мышь ориентируется в темноте с помощью ультразвука, то вскоре создали ультразвуковые сонары для подводных лодок. А чтобы люди чаще обращали внимание на изобретения природы и лучше их знали, Настя придумала особую игру — домино «Бионика».

— Как играют в обычное домино, всем известно, — продолжала она свой рассказ. — Игроки по очереди выкладывают на стол костяшки, причем к шестерке надо прикладывать шестерку, к пятерке — пятерку…

Примерно то же нужно делать и в моей игре. Только на лицевой стороне карточек изображены не цифры, а по два рисунка. Скажем, на одной половинке изображен «парашютик» отцветшего одуванчика, а на другой — рыцарь в латах. Это значит, что с данной карточкой с одной стороны может соседствовать изображение настоящего парашюта, а с другой…

— Например, рисунок черепахи или броненосца, — догадался я. — Эти животные тоже, словно рыцарь в латах, ходят.

— Правильно, — подтвердила Настя. И дальше рассказала, что самое трудное было подобрать соответствующие пары. А вы теперь попробуйте догадаться, какая связь между бобром и плотиной, осиным гнездом и бумагой, репейником и липучками на ботинках… И нарисуйте сами подобные карточки для игры.

Микрочистильщик

Так, пожалуй, можно назвать экоробот для уничтожения бактерий и вирусов, проект которого разработал молодой инженер из Республики Сербия Бориша Милекич.

— Этот робот предназначен для очистки систем климатизации в производственных и жилых помещениях, а также в больницах, гостиницах, аэропортах, спортзалах и других местах, где бывает много народа, — сказал он. — Практика показывает: несмотря на установленные фильтры, в вентиляционные каналы все же проникает самая мелкая пыль, а вместе с нею — мельчайшие вирусы и микробы.

Хорошо бы, конечно, вентиляционные каналы время от времени чистить, только вот как это сделать? Ведь многие из них настолько узки, что разве что кошка может по ним пролезть. И тогда Милекич предложил конструкцию самоходного робота-пылесоса, оснащенного всем необходимым оборудованием для очистки вентиляционных каналов.

Движется этот робот на четырех колесах и управляется автономно оператором. А чтобы тот видел, где скопилось больше пыли, робот оборудован двумя телекамерами, а также осветительным оборудованием.

Изобретатель получил на свою разработку патент. Еще она была удостоена ряда наград на различных выставках, а также премии Министерства науки и технологического развития Сербии в 2008 году.

Раз уж выставка зовется «Архимед», то на ней обязательно должно присутствовать нечто, напоминающее о древнегреческом мудреце. Именно так решили юные техники из лицея № 1575 г. Москвы Никита Шапошников и Александр Пятко . Они представили комплекс самоделок, иллюстрирующих принцип действия изобретений Архимеда. Это прежде всего знаменитый архимедов винт, использовавшийся для подъема воды, катапульта, полиспаст, рычаг…

Вездеход, которого еще нет…

Проект этой необычной машины — двухзвенного вездехода — создал ассистент кафедры дизайна МАМИ Илья Лепешкин.

— На Земле еще достаточно мест, где царит бездорожье, — рассказал он. — Вот я и подумал: а почему по бездорожью нельзя ездить с таким же комфортом, как и по шоссе? Современная технология вполне позволяет сделать это.

Начал Илья с выбора шасси. Перебрал несколько вариантов и понял, что надежнее и проходимее гусениц пока никто ничего не придумал. А если сделать их не металлическими, а резиновыми, то можно не беспокоиться и о том, что гусеничная машина нанесет своими траками большие повреждения тундре или, скажем, асфальтированному шоссе.

При этом, чтобы уменьшить нагрузку на почву, Илья решил сделать свой вездеход двухзвенным. Первый модуль — так сказать производственный, второй — бытовой.

— У нас часто можно услышать: дескать, в тесноте, да не в обиде, — продолжил пояснения Илья. — А почему, собственно, экипаж вездехода должен быть стеснен? Ведь в машине им придется провести не день и не два…

Иной раз на целые месяцы она становится их передвижным домом. Так почему бы и не обеспечить людям должный комфорт?

Поэтому в первом модуле Лепешкин предусмотрел комфортабельные кресла для четырех членов экипажа, а во втором — спальные места на откидных полках, а также стол, плиту, холодильник и все необходимое для работы и жизни.

Такой вездеход вполне может пригодиться пограничникам, геологам, нефтяникам, полярникам, ремонтникам ЛЭП и людям многих других специальностей, которым по долгу службы приходится преодолевать сотни километров бездорожья, подолгу находиться, что называется, в чистом поле.

Остров в океане

Даже самым большим кораблям время от времени приходится заходить на базы, чтобы пополнить запасы топлива, пресной воды и продовольствия. Чтобы не платить втридорога за устройство береговой базы где-нибудь вдали от родных берегов, студенты и сотрудники Государственного университета по землеустройству разработали концепцию и построили макет своего рода плавучего острова, пристав к которому корабль может получить все необходимое. «Изюминка» проекта — энергию для опреснения морской воды, бортовых оранжерей и прочего оборудования плавучая база получает за счет солнечных энергоустановок и турбин, использующих силу морских волн.

Плавучая база обеспечит корабли всем необходимым.

Гибрид вертолета с… подлодкой

Еще Жюль Верн мечтал о создании транспортного средства, которое могло бы. с одинаковым успехом ездить по суше, летать по воздуху, плавать под водой.

Московский изобретатель Олег Комарницкий за лаврами фантаста не гонится. Но соединить в одной конструкции достоинства вертолета и подлодки он считает вполне возможным. Натолкнула на такую идею авиатора Комарницкого публикация, из которой он узнал, что субмарины становятся весьма плохо управляемыми на малом ходу. А если подлодка застопорит двигатели, то станет вообще беспомощной.

Вот тогда Комарницкого, занимавшегося вместе с коллегами из МАИ радиоуправляемыми беспилотными вертолетами, что называется, осенило.

— Вертолет может неподвижно зависнуть в воздухе и при этом менять как высоту, так и направление своего движения. В этой схеме есть нечто, что может пригодиться и подводникам, — рассудил он. — Тем более что в законах гидро- и аэродинамики есть немало общего…

Перейдя от слов к делу, О. Комарницкий создал гибрид геликоптера с субмариной. Ход мысли Комарницкого был примерно таков. Хвостовой винт подлодки, как обычно, обеспечивает поступательное движение. А расположенный на месте ходовой рубки вертолетный ротор имеет двоякую функцию. Во время поступательного движения его лопасти не вращаются, а исполняют в статическом состоянии роль рулей глубины. Когда же подлодка останавливается, ротор этот можно привести во вращение, и тогда он превращается в подруливающее устройство, позволяющее маневрировать на малом ходу.

В итоге получился уникальный, не имеющий аналогов в мировой практике аппарат — подводный вертолет…

Гибрид вертолета с подлодкой.

 

ИНФОРМАЦИЯ

РАСПОЗНАТЬ КАЧЕСТВО ПО ЗАПАХУ позволяет устройство, созданное учеными Воронежской государственной технологической академии во главе с доктором химических наук Т.А. Кучменко. Важнейшая его часть — несколько сенсоров, в которых находятся тончайшие кварцевые пластины, покрытые специальным веществом. Его состав ученые подбирают так, чтобы он распознавал те молекулы, из которых состоит данный аромат.

Как удалось выяснить ученым, аромат синтетических ароматизаторов принципиально отличается от природных эталонов. Прибор эту разницу «чувствует» и позволяет выяснить, какие именно — природные или синтетические — ароматы источают йогурты, творожки и другие молочные продукты для детского питания.

Более того, с помощью аналогичного прибора, также разработанного воронежскими учеными, можно определять степень свежести молочных продуктов. При хранении происходит целый ряд химических превращений, и это неизбежно отражается не только на составе продукта, но и на его запахе.

Прибор для контроля качества молочных продуктов предназначен для массового выпуска и будет стоить не дорого. Так что каждый потребитель сможет узнать, покупает ли он качественный продукт или нет.

ПРОГНОЗЫ ТАЙФУНОВ. Новую эффективную методику прогнозирования тихоокеанских тайфунов разработал ученый из Приморского края, профессор Валерий Тунеголовец. Она показала результаты на уровне мировых стандартов.

Доктор географических наук вот уже около 25 лет занимается вопросом прогнозирования тропических и южных циклонов. По его словам, метод позволяет провести расчет положения и интенсивности тропических циклонов северо-западной части Тихого океана с заблаговременностью до 72 часов, а южных циклонов — с заблаговременностью до 48 часов.

Прогноз поведения циклонов и тайфунов имеет огромное значение для российского Дальнего Востока. По данным метеонаблюдений, акватория Японского моря и прилегающие территории с 1951 по 2008 год подвергалась воздействию тропических циклонов 141 раз. Общее же число тропических циклонов, зародившихся в Тихом океане в районе Филиппинских островов, за этот период составляет свыше 1500. Таким образом, около 10 процентов всех тайфунов выходят на Приморье и способны причинить колоссальный ущерб.

ЭЛЕКТРОННЫЙ НОС СО СТАНЦИИ «МИР» решили установить в стокгольмском метро. Этот прибор, чутко реагирующий на посторонние запахи и прежде всего на дым, настолько понравился специалистам Европейского космического агентства, что они рекомендовали его в качестве идеального детектора для системы противопожарной безопасности в метрополитене.

«Электронный нос» был разработан в 90-е годы XX века и по своему устройству копирует нашу систему обоняния. Сенсоры выполняют функцию обонятельных луковиц, улавливающих запахи. Полученные данные в виде электрических сигналов передаются в микропроцессор, который и принимает решение: поднимать пожарную тревогу или нет.

 

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Вихри на крыльях

На воде за каждым движущимся судном отчетливо видна пенная струя — так называемый кильватерный след. Оставляют за собой подобный след и самолеты. И это очень мешает авиаторам.

Так называемая спутная струя, которая тянется за каждым летящим самолетом, невидима. Но от этого ее воздействие еще коварнее. Ведь струя возмущенного, перебаламученного воздуха тянется за самолетом на многие километры. И если в нее попадет другой летательный аппарат, это чревато катастрофой. Так, согласно одной из версий, именно спутная струя стала причиной гибели самолета, в котором летели космонавт Ю. Гагарин и его инструктор В. Серегин.

Особенно опасно влияние спутной струи при взлете и посадке самолетов. Именно здесь, вблизи аэродромов, согласно статистике, и происходит большинство аварий. А потому, согласно существующим нормам безопасности, между взлетающими и садящимися самолетами должно поддерживаться расстояние в 8 — 12 км, чтобы воздух успел успокоиться. Более того, если на одну из близко расположенных посадочных полос сел самолет, вторую некоторое время держат закрытой.

Дело здесь не только в расстоянии между полосами, но и во влиянии бокового ветра, переносящего вихри с одной ВПП на другую. И чем больше и тяжелее был предыдущий самолет, тем дольше приходится ждать, пока атмосфера успокоится.

Из-за этого средний аэропорт недополучает прибыли 10–20 млн. евро ежегодно. В крупном же аэропорту, таком, как лондонский Хитроу, например, сокращение дистанции между самолетами хотя бы на 1 км даст прибавку от 59 до 84 взлетов-посадок в сутки, что составит почти 26 000 рейсов в год. А это может принести дополнительно сотни миллионов фунтов стерлингов…

Однако деньги деньгами, но безопасность пассажиров превыше всего. Как же уменьшить дистанцию между самолетами, не увеличивая риск для пассажиров?

Именно эту задачу вот уже который год решают лучшие умы авиационной индустрии. Согласно координируемой Евроконтролем программе CREDOS — Crosswindreduced separations for departure operations — работы идут сразу в нескольких направлениях.

Во-первых, специалисты стараются сделать так, чтобы сами самолеты меньше беспокоили атмосферу. Именно с этой целью на концах плоскостей многих самолетов появились отогнутые вверх крылышки, которые заметно снижают вихреобразование. Кроме того, если при взлете и посадке открывать закрылки, расположенные по всей длине крыла, на разные углы, это тоже способствует оптимизации распределения вихрей по крылу.

Можно также учесть, что, чем меньше самолет, тем меньшие вихри он генерирует. Значит, при наличии бокового ветра можно пускать самолеты на посадку попарно, так чтобы на наветренную полосу садилась более легкая машина, а на подветренную — тяжелая, которая меньше чувствует турбулентность.

Другая идея заключается в учете самого бокового ветра. Чем он сильнее, тем быстрее исчезает спутный след, и логично предположить, что, если удастся определить, какое конкретно время при данной силе и направлении ветра потребуется на снос вихрей с полосы, то можно уменьшить интервалы между рейсами.

Далее нужно провести работы по исследованию самих вихрей, их поведения и структуры. Но вихревое движение, к сожалению, пока остается в науке своеобразным белым пятном из-за трудностей его моделирования. А ведь требуется еще и рассчитать влияние на эти вихри ветра, атмосферной турбулентности и нагрева взлетной полосы, научиться предсказывать их поведение при тех или иных метеорологических условиях…

Предварительные работы, рассчитанные на 3 года, направлены на наблюдение и моделирование перемещения спутного следа. На следующем этапе наблюдения будут перенесены непосредственно в аэропорты. В качестве первоочередных выбраны английский Хитроу, немецкий Франкфурт и французский имени Шарля де Голля. Там будут анализировать зависимость перемещения вихрей от особенностей топографии и погодных условий.

В лаборатории, чтобы наглядно видеть воздушные струи, добавляют в них цветной дым. В аэропорту единственным эффективным средством для наблюдения за спутным следом взлетающих самолетов является импульсный лидар — специализированный лазер-дальномер. Это устройство позволяет следить за движением пыли, которая всегда есть в воздухе. А на мониторе суперкомпьютера можно будет увидеть картину распределения вихрей.

По зарубежным источникам публикацию подготовил Г. МАЛЬЦЕВ

Кстати…

ПОЛЕТЫ В… ВОДЕ

В гидробассейне технического университета, что расположен в немецком городе Ахене, можно увидеть странную картину — на буксире под водой раз за разом тянут модель… самолета!

Суть этого занятия, как пояснил один из экспериментаторов, инженер Роберт Шёль, состоит в том, чтобы получше проанализировать поведение самолета в воздушной среде. А поскольку законы аэро- и гидродинамики во многом схожи, удобнее проводить эксперименты не в огромной аэродинамической трубе, а в 60-метровом бассейне.

Для лучшей визуализации потоков исследователи добавили в воду крохотные нейлоновые шарики. Нейлон по плотности близок к воде, и крохотные шарики диаметром всего в 50 мкм не искажают общей картины, зато позволяют хорошо видеть все завихрения в свете лазерных вспышек. После эксперимента полученные данные обрабатываются компьютером, который и выдает необходимые рекомендации для последующих испытаний.

 

НАД ЧЕМ РАБОТАЮТ УЧЕНЫЕ

Укрощение лунной пыли

Недалек тот день, когда человек снова ступит на поверхность Луны, И уже сейчас специалисты готовятся к решению проблем, которые встретятся космонавтам. Одна из них известна. Это — лунная пыль. Она поистине вездесуща. Принесенная на скафандрах в кабину, пыль вызывает першение и жжение в горле, аллергию, может стать причиной и более серьезных заболеваний. Как с ней бороться?

Электрическая Луна

Еще в 60-е годы XX века, во время полетов к Луне американских космических аппаратов «Сервейор», которые исследовали поверхность Луны, выбирая место для посадок пилотируемых кораблей «Аполлон», ученые обратили внимание на один странный феномен. На фотографиях, переданных из космоса, иногда были заметны пылевые облака, застывшие примерно в метре от лунного грунта.

Позднее свидетелями того же феномена стали астронавты, побывавшие на Луне. Что же заставило подняться клубы пыли? Ведь на Луне нет атмосферы и потому не может быть ветра.

Вскоре возникла догадка, что причина кроется в электростатике. Частицы пыли электризуются на поверхности Луны, а поскольку одинаковые заряды отталкиваются, то пылинки взлетают. Недавно группа физиков из Колорадского университета во главе с Амандой Сикафус подтвердила эту гипотезу в лабораторных условиях. Ученые поместили смесь мельчайших пылинок в небольшую вакуумную камеру. Все было спокойно, пока камеру не облучили жесткими ультрафиолетовыми лучами, и пылинки поднялись вверх. На Земле эти лучи задерживает атмосфера. На Луне же они легко проникают к самой поверхности. Под их действием меняется заряд пылинок. Крупицы цинка, меди или графита — все их можно найти на Луне — теряют в среднем около 50 000 электронов.

Этот результат вполне отвечает теоретическому выводу. Согласно ему, пылинки и твердый грунт под действием ультрафиолетовых лучей приобретают положительный заряд. Между ними возникает отталкивающая сила. Если она превышает силу тяжести, пылинка взлетает. Со временем частички пыли теряют заряд и, став нейтральными, опускаются на поверхность Луны. Подобный пылевой дождь постоянно идет на Луне.

Это открытие имеет практическое значение. Например, в будущем, во время экспедиций на Селену, а также на Марс, астероиды или спутники планет, придется подумать о защите от пыли объективов видеокамер, фотоаппаратов и других приборов.

Готовится генеральная уборка

И все-таки, как уже говорилось, главная проблема не в этом. Лунная пыль ухитряется забиваться повсюду. И специалистам, участвовавшим в обеспечении экспедиции «Аполлон», пришлось даже изобретать специальный малогабаритный пылесос для чистки лунных скафандров.

Более того, ныне НАСА вынуждено организовать специальный отдел, который уже сегодня, до нового полета людей на Луну (а он, напомним, по плану может состояться в 2020 году), должен найти способ провести «генеральную уборку» на Луне.

Занимаются этой проблемой прежде всего Эрик Кардифф и его ассистент Брендон Холл. «Стартовые платформы и места посадки спускаемых аппаратов должны быть чистыми, — рассуждает Кардифф. — В противном случае взлетающие и приземляющиеся капсулы будут поднимать клубы пыли. А из-за того, что на Луне нет атмосферы, эта пыль будет оседать неделями и даже месяцами. Кроме того, мелкие частицы могут повредить ядерный реактор, который мы хотим доставить на Луну для получения там электроэнергии».

Осознав серьезность проблемы, Кардифф и его коллеги из Центра космических полетов НАСА имени Годдарда в штате Мэриленд стали думать, как ее решить. В конце концов, они сконструировали транспортное средство, которое должно будет уничтожать лунную пыль.

Dust Mitigation Vehicle (DMV) — «транспортное средство для снижения запыленности» — сможет расплавлять пыль с помощью солнечного света.

Так выглядит крупинка лунной пыли под микроскопом.

Солнечные лучи будут собираться в пучок с помощью линзы, в фокусе которой пыль будет плавиться, объясняет Кардифф. Покрытием из расплавленной пыли исследователи намерены «замостить» площадки для посадки лунных модулей, дорожки между пунктом посадки модулей и будущей станцией, а также подготовить основания, на которых будут поставлены купола самой станции.

В ходе этих работ устройство будет дистанционно управляться с Земли. Сейчас уже построен опытный экземпляр агрегата, который обрабатывает 13 кв. см поверхности в минуту. Конечно, это очень медленно. Однако не будем забывать, что солнечный свет на лунной поверхности более интенсивен, чем на Земле, — его не ослабляет атмосфера. Кроме того, за оставшиеся до новых лунных стартов 10 лет специалисты надеются существенно улучшить свой агрегат.

Для этого, кстати, им пришлось решить еще одну проблему. «Количество лунного грунта — реголита — на нашей планете довольно ограниченно, — рассказал Кардифф. — Нам же для экспериментов нужны, по крайней мере, центнеры лунной пыли. Так что пришлось синтезировать ее искусственно, используя в качестве эталона те образцы, которые некогда были привезены с Луны».

В. ЧЕТВЕРГОВ

 

ЗА СТРАНИЦАМИ УЧЕБНИКА

Графит и его сородичи

Углерод в природе, как известно, встречается в трех видах — уголь, графит и алмаз. Однако ученые в последнее время смогли получить на основе графита новые материалы.

Стратегический графит

Простой карандаш держал в руках каждый. Однако мало кто знает, что в XVI веке попытка контрабандой вывезти графитовый карандаш за пределы Англии могла стоить головы. Единственное на Британских островах месторождение графита было близко к истощению, и последовал строжайший королевский указ: добычу графита сократить до минимума. В итоге карандаши стали цениться чуть ли не на вес золота. Потом графитовые стержни научились делать не из цельного графита, а из смеси графитовой пыли с глиной, и карандаши резко подешевели.

Во второй раз графит стал стратегическим сырьем уже после Второй мировой войны. Графитовые блоки использовались при создании первых атомных котлов, а потому попали, наряду с ураном, в число важнейших полезных ископаемых.

В 60-е годы XX века графит вновь оказался под особой опекой. Дело в том, что в то время в СССР разрабатывался проект под кодовым названием «Бор». Его основу составлял небольшой, всего 6 м в длину, космический аппарат, имеющий размах крыльев не более полутора метров, с фюзеляжем клиновидной формы. На первый взгляд, он совсем не напоминал грозный космический истребитель. У него даже прозвище было совсем не военное — «лапоть». Но он здорово попортил нервы американским разработчикам программы «звездных войн».

Оснащенный ядерной боеголовкой, такой космолет мог быть выведен на околоземную орбиту с помощью ракетоносителя или стратегического бомбардировщика, который, разогнавшись, как из катапульты, выстреливал его в космос, откуда самолет-спутник по сигналу с наземного пульта управления мог произвести атаку.

Сбить его было бы очень трудно — за время с момента старта до поражения цели системы защиты не успели бы среагировать.

В ходе программы испытаний было произведено несколько пробных пусков от «Бора-1» до «Бора-5»…

Первые «Боры» вернулись с орбиты оплавленными, но затем советским специалистам удалось отладить теплозащиту на основе графита, и дорога на орбиту для космолета была открыта.

Так выглядел космолет «Бор».

Впрочем, до «звездных войн» дело, к счастью, не дошло. Но это не значит, что ныне интерес к графиту потерян. Им сегодня серьезно занимаются в Государственном НИИ конструкционных материалов. Гордость института — небольшой ромбовидный блок. По словам заместителя директора института, доктора технических наук Н.Ю. Бейлиной, этот блок из искусственного графита не что иное, как чрезвычайно ответственная деталь атомного реактора.

Искусственный графит делают из нефтяного кокса и продукта переработки каменного угля — пека при температуре до 2800 градусов. Получается прочный, плотный материал, изъяном которого до недавних пор считалась хрупкость. Однако теперь научились создавать и гибкие композиты, например, графитофторопласт.

Композитное полотно на основе углеволокна применяют в ракетно-космической технике, из него также делают чрезвычайно легкие, прочные планеры и корпуса парусных яхт. Изготовляют из материалов на основе углерода и эндопротезы, используемые при переломах. Такие протезы хорошо совмещаются с человеческим организмом. Суставы плеча, бедра, позвонки, сердечные клапаны, даже элементы глазных протезов тоже делают на основе углеродного композита.

И это еще не все.

Графен — «сын» графита

Недавно ученые выяснили, что если удалить из графена — слоя графита толщиной в 1–2 атома все примеси, то подвижность электронов в нем побьет все рекорды: она будет в 100 раз больше, чем в кремнии, в 20 раз больше, чем в арсениде галлия GaAs), и даже выше, чем в абсолютном рекордсмене среди всех полупроводников — антимониде индия (InSb). А это значит, что из графена можно делать сверхбыстрые процессоры и другую электронику, работающую даже в терагерцовом диапазоне частот — малодоступной пока области электромагнитных волн, которая таит в себе немало открытий и важных практических приложений.

Расчеты смогли подтвердить на практике исследователи из Рутгерского университета (США). Ученые под руководством профессора Мэниша Чховеллы разработали относительно простой и дешевый способ изготовления из графена тончайших прозрачных пленок. Они уверяют, что могут осадить графен практически на любую подложку, включая гибкую полимерную, причем в виде лент практически неограниченных размеров.

Делается это так. Сначала специалисты смешивают с водой графитовые чешуйки. Затем в полученную суспензию добавляют серную или азотную кислоту. Атомы кислорода, встраиваясь между отдельными графеновыми слоями, окисляют их, способствуя разделению. В результате в воде образуются графеновые листочки. Эту взвесь фильтруют через мембрану с порами диаметром 25 нм. Вода проходит сквозь поры, а графеновые чешуйки задерживаются. Затем мембрану перекладывают на подложку вниз стороной, покрытой графеновыми чешуйками, и растворяют в ацетоне. Оставшуюся пленку выдерживают в гидрозине для преобразования графенового оксида в графен. Толщину пленки легко регулировать, изменяя объем используемой суспензии: так, при объеме 20 мл образуется пленка толщиной 1–2 нм, при 80 мл — 3–5 нм.

Проводящий прозрачный материал в ближайшие годы найдет применение в солнечных батареях, проекторах, сенсорных экранах и дисплеях. На графене, путем пере мещения пленки на кремниевую подложку и осаждения на нее золотых электродов, получены и транзисторы. Кроме того, графеновый слой толщиной в один атом необычайно чувствителен к каждому осажденному на нем атому другого вещества. Это позволяет делать газовые сенсоры и миниатюрные химические датчики высочайшего качества.

Знакомьтесь: графан

И наконец, самые последние известия. В начале нынешнего года физикам из Университета Манчестера, при поддержке коллег из Голландии и России, удалось впервые синтезировать еще один удивительный материал — графан. Так называется пленка графена, к каждому атому углерода которой присоединен атом водорода.

Этот материал не раз пытались синтезировать, но без особого успеха. Дело в том, что для присоединения водорода к графену необходимо сначала разбить его молекулу на атомы. А для этого обычно требуется высокая температура, которая графен разрушает. В Манчестере нашли способ обойти эту проблему, применив для разрушения молекул водорода электрический разряд.

Исследование электрических и структурных свойств графана показало, что в нем, в согласии с предсказаниями теоретиков, к каждому атому углерода присоединен один атом водорода. При этом гексагональная структура графена не нарушена, но атомы углерода немного развернуты и сближены друг с другом. Эти изменения превращают графан в хороший диэлектрик. При нагреве графана водород улетучивается, и первоначальная структура графена полностью восстанавливается.

Компьютерная реконструкция атомной структуры графена (слева) и графана (справа).

Компьютерное изображение графеновой мембраны.

Благодаря своим свойствам и малой массе, графан способен решить проблему хранения водорода — главную проблему, стоящую на пути зарождающейся водородной энергетики. Ведь одно дело возить водород в громоздких, взрывоопасных баллонах, и совсем другое — в компактном блоке, заполненном графановым порошком. Но самым интересным представляется использование углерода в графеновой микроэлектронике для получения сверхминиатюрных электронных схем.

Пока далеко не все свойства графита и его сородичей открыты. Однако даже то, что уже известно ученым, позволяет говорить об углероде как об одном из самых перспективных материалов XXI века.

Публикацию подготовили В. ВЛАДИМИРОВ и С. НИКОЛАЕВ

 

РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…

Острова из… пластмассы

Недавно слышал о так называемых мусорных островах. Что это такое? Из мусора будут создавать новые островки суши в океанах?

Олег Свиридов ,

г. Новосибирск

Пока этих островов нет на картах. Но дело, похоже, идет к тому…

А начало было положено 110 лет тому назад, когда в 1899 году немецкий химик Ганс фон Пехманн случайно обнаружил на дне одной из своих пробирок воскообразный осадок. Он не смог оценить важность своего открытия. Между тем, открыл же он не что иное, как полиэтилен — один из самых широко используемых и… ругаемых сейчас синтетических материалов.

Ни самому фон Пехманну, ни его коллегам не удалось получить из того осадка что-либо полезное, а потому о полиэтилене забыли на треть века и вспомнили лишь в 1933 году, когда английские химики Эрик Фосетт и Реджинальд Гибсон, работавшие в ICI — Имперском химическом тресте, крупнейшем в Великобритании и Западной Европе химическом концерне, — заново открыли это вещество.

Они экспериментировали с газами под высоким давлением, и Гибсон записал в журнале наблюдений: «На дне и стенках пробирки найден парафиновый осадок…» На этот раз исследователи поинтересовались составом осадка и спустя два года разработали способ изготовления полиэтилена в промышленных масштабах и стали использовать его для изоляции телефонных проводов.

Однако по-настоящему массовое использование полиэтилена началось в 50-е годы прошлого века с развитием супермаркетов — огромных магазинов, которым требовалось много контейнеров и тары для покупок. Полиэтиленовая пленка оказалась весьма подходящей для этого, особенно при упаковке пищевых продуктов.

В 1957 году во всем мире было произведено 5 млн. т пластика, а полвека спустя эта цифра достигла уже 225 млн. т в год. Но вместе с произведенным полиэтиленом растут и горы его отходов. Причем главным врагом экологии ныне признаны полиэтиленовые пакеты — те самые, которыми мы пользуемся каждый день.

В развитых странах на каждого взрослого приходится свыше 400 полиэтиленовых пакетов в год. Каждую минуту на планете используется 1 млн. полиэтиленовых пакетов, в год же выходит больше, чем 0,5 трлн. штук. Причем в среднем, подсчитали статистики, их используют всего… 20 минут, после чего выбрасывают. А вот для полного распада полиэтилену нужно ни много ни мало 1000 лет! И в течение всего этого времени полиэтиленовые изделия будут замусоривать нашу планету, если мы не примем каких-то мер.

Пакеты, выброшенные в мусорный контейнер в вашем дворе, рано или поздно оказываются в воде — смываются вешними водами в моря-океаны. Кроме того, виновниками пластмассового загрязнения называют туризм, рыболовство и морские суда. Причем 80 % попадает в океан с суши, оставшиеся 20 % — с кораблей.

А в итоге, к примеру, Средиземное море впору переименовывать в Пластмассовое. К такому неутешительному выводу пришли экологи. «Это самое грязное море на планете, — отмечают они. — Всего в Мировом океане около 6,5 млн. т отходов, в основном пластмассы. И самая высокая концентрация — около 2000 единиц мусора на квадратный километр — в Средиземном море». Причем волны выносят на берег лишь 15 % отходов.

Еще около 70 % мусора лежит на дне, а оставшиеся 15 % так и плавают в воде. Глобальное потепление принесет в Средиземноморье циклоны. А значит, мусор будет подниматься на поверхность и ухудшать положение.

Рекордное загрязнение Средиземного моря, понятно, связано с тем, что на его берегах расположились промышленно развитые страны, а также с высоким уровнем развития туризма и оживленным судоходством. Однако недавно были проведены исследования и в Северном Ледовитом океане. Немецкие ученые параллельно вели исследования с борта надводного научного судна «Полярная звезда» и с борта субмарины «Виктор», обследовавшей дно. В итоге была составлена своеобразная мусорная карта некоторых районов Арктики. Например, в Северном морю обнаружено порядка 300 млн. предметов. Всего же в районе Северного Ледовитого океана находится порядка 1,5 млн. т пластикового мусора, причем большая часть его — на дне, куда он попадает с поверхности.

Американский океанолог Чарлз Мур полагает, что одна из самых больших помоек ныне наблюдается в районе Гавайских островов. Впервые он обратил внимание на это еще в 1997 году, когда, путешествуя на яхте, напоролся на своеобразный мусорный остров протяженностью в сотни километров. Теперь мусорное пятно, площадь которого достигает чуть ли не 700 тыс. кв. км, постепенно приближается к знаменитым гавайским пляжам, одному из любимых мест отдыха американцев.

Туристическому бизнесу Гавайев угрожает серьезная опасность.

От пластикового мусора также сильно страдают представители как минимум 270 видов животных, среди которых птицы, черепахи, морские львы, киты и рыбы.

В общем, не приходится удивляться все более громким голосам, требующим заменить пакеты из полиэтилена на что-нибудь другое, менее вредное, быстро разлагающееся. Правда, сторонники полиэтилена утверждают: то, что пакеты вредят природе, говорит не столько о вреде самого полиэтилена, сколько о низкой культуре человечества. Тем не менее, 110 лет со дня открытия полиэтилена никто, похоже, праздновать не собирается…

С. КИСЕЛЕВ

Кстати…

УТКИ В ОКЕАНЕ

…Из ряда вон выходящий случай произошел 10 января 1992 года. Во время шторма с контейнеровоза, шедшего в Гонконг, стихия сорвала и разбила три транспортных контейнера, в которых оказалось около 30 000 игрушечных пластиковых уток. Ветром и волнами их разбросало буквально по всей планете, и спустя три месяца их обнаружили даже у берегов Аляски. А чуть позднее игрушки объявились на побережье Австралии, Индонезии, Колумбии…

Находкам обрадовались местные дети. Да еще океанологи использовали этот случай для того, чтобы лишний раз проверить свою карту морских течений.

Англичане отнеслись к происшествию с чисто британским юмором. И стали ежегодно проводить своеобразные гонки пластиковых уток по Темзе. В последних таких состязаниях участвовало 250 тыс. пластиковых игрушек!

 

У СОРОКИ НА ХВОСТЕ

ЛЮДЕЙ ПОРА УНИЧТОЖИТЬ! Такое сенсационное заявление сделал недавно робот, созданный учеными Бристольского университета. Правда, произнес он эту фразу вовсе не потому, что сам до этого додумался, а по приказу своих хозяев. Ну, а те поддались на уговоры телевизионщиков, которым хотелось сделать сенсационный сюжет.

Сенсация удалась на славу. Когда робот по имени Жюль, имеющий мужскую голову, которую на телеэкране довольно трудно отличить от настоящей, сделал свое заявление, многим стало жутковато. Ведь Жюль может имитировать человеческую мимику, в том числе движения губ. Голова изготовлена из специальной резины, максимально похожей на настоящую кожу, и снабжена 34 моторчиками, которые оживляют лицо Жюля. Роботу «доступны» десять основных человеческих эмоций: счастье, печаль, концентрация и так далее.

И когда он с видимым удовольствием стал рассуждать о том, как было бы неплохо избавиться от людей и тем самым навести на планете порядок с экологией, многим стало не до смеха. А ну как завтра команда роботов и в самом деле начнет войну с людьми?..

Так что пришлось ученым затем выступать со специальным заявлением. Дескать, такое невозможно в принципе, поскольку роботы запрограммированы на уважительное отношение к людям. Но это сегодня они имеют жесткую программу. А что будет завтра, когда роботы перейдут на самообучение?..

ХИМИЯ ЛЮБВИ. Любовь является сложным психологическим и эмоциональным состоянием, в котором важнейшую роль играют особые нейрохимические вещества — окситоцины, утверждает профессор из американского Университета Эмори (штат Атланта) Ларри Янг.

В статье, опубликованной им в журнале «Нейчур», Ларри Янг сообщил, что им обнаружены химические компоненты, вызывающие чувство любви. Опыты показали, что у влюбленного человека происходят значительные изменения в химическом составе ряда участков головного мозга.

В результате открытия американского ученого получена возможность создания нового класса лекарств как для усиления любовного чувства, так и для быстрого лечения от безответной любви.

КОКОСЫ ОПАСНЕЕ АКУЛ. Многие туристы, отправляющиеся на отдых в жаркие страны, знают, что купаться в открытом океане опасно — можно угодить на обед акуле. При этом никому в голову не приходит опасаться на берегу такого безобидного с виду предмета, как кокосовый орех. А зря! Оказывается, кокосовые орехи становятся причиной гибели людей в 15 чаще, чем акулы!

По данным расположенной в Лондоне компании Club Direct, занимающейся страхованием туристов, ежегодно от нападений хищниц страдают около 80 человек, лишь 10 из которых умирают. А вот от удара по голове кокосовым орехом, упавшим с верхушки пальмы, каждый год в мире гибнет около 150 человек.

 

СЛЕДИМ ЗА СОБЫТИЯМИ

Покорит ли эллипс небо?

В нашей местной прессе мелькнуло сообщение о создании в Белоруссии необычного самолета с крылом в виде эллипса. Пишут, что такой летательный аппарат будет легче, экономичнее и безопаснее традиционного. Что вы можете сказать по этому поводу?

Виктор Засулович , г. Минск

Начнем с того, что предложенная схема не так нова, как может показаться на первый взгляд. Она является развитием идеи кольцеплана (см. рис.), предложенного в СССР еще в 1942 году. Предполагалось, что крыло, свернутое этаким «бубликом», позволит уникальному летательному аппарату летать без срыва воздушного потока даже на закритических углах атаки. То есть самолет сможет взмывать в небо практически вертикально и будет обладать невиданной маневренностью.

Однако продувки в аэродинамической трубе, а также испытания экспериментального летательного аппарата, уже построенного во Франции фирмой СНЕКМА в 1959 году, показали, что самолет хотя и способен взлетать и садиться почти вертикально, в полете весьма капризен. И довести до стадии серийного выпуска колеоптер (такое название он получил за рубежом) так и не удалось.

Белорусские изобретатели сообщают, что их машина имеет на 6–8 градусов больший диапазон углов атаки, чем обычно, менее чувствительна к боковому ветру. Самолету не нужна механизация крыла, и эллипсоидное крыло заметно легче, чем у классического биплана, а индуктивное сопротивление практически сведено к нулю.

Однако, похоже, эти выводы чересчур поспешны и оптимистичны. У авиационных специалистов есть понятие индуктивного сопротивления, связанного с вихреобразованием на концах несущей поверхности. Действительно, подобная схема крыла позволяет несколько снизить аэродинамическое сопротивление, но избавиться от вихревой пелены еще никому не удавалось.

Кроме этого, следует учесть, что коэффициент подъемной силы подобного крыла, вследствие его кривизны, будет ниже, чем у классической бипланной коробки несущих поверхностей. Это вытекает из законов аэродинамики.

Но окончательный вывод, конечно, можно будет сделать лишь по результатам испытаний. Вдруг да в конструкции есть секрет, о котором мы с вами и не догадываемся…

Николай ЯКУБОВИЧ

 

НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ

Пневмомобиль выходит на улицу

Автомобили, работающие на сжатом воздухе, должны появиться на улицах уже в 2009 году.

Идея эта родилась еще в конце XIX века. Суть же ее такова: если в строго определенные моменты времени подавать в цилиндры двигателя порции воздуха, сжатого под большим давлением, мотор будет работать. Однако до поры до времени двигатели на сжатом воздухе имели лишь весьма специфическое применение.

Например, они приводили в движение морские торпеды или локомотивы в шахтах, где малейшая искра могла привести к взрыву. Американский изобретатель Чарлз Ходжес в первой половине XX века даже наладил серийное производство автомобилей с пневматическими двигателями собственного изобретения. И, говорят, они пользовались неплохим спросом до тех пор, пока вперед не вырвались двигатели внутреннего сгорания (ДВС).

Сейчас ДВС занимают доминирующее положение в автомобильном транспорте. Однако все более жесткие экологические требования нашего времени заставили конструкторов автомобилей вспомнить об этой идее вновь…

За последнее десятилетие сжатый воздух в качестве альтернативного источника энергии обрел новую жизнь. Было запатентовано несколько конструкций транспорта на сжатом воздухе. Одну из них, кстати, предложили наши бывшие соотечественники, работающие ныне в США.

Многие специалисты и сегодня относятся к таким двигателям сдержанно. Говорят, что сжатый воздух несет слишком мало энергии, зато при сжатии сильно нагревается, а чтобы аккумулировать тепло, требуются сложные и громоздкие устройства… При расширении же в цилиндрах воздух, наоборот, охлаждается, и чтобы повысить КПД, его надо подогревать, а для этого приходится ставить либо специальные горелки, как в пневмолокомотивах вековой давности, либо эффективные теплообменники. А это тоже усложняет конструкцию. Наконец, чтобы пневмомобили могли ездить повсюду, придется создавать сеть насосных станций, которые закачивали бы в баллоны сжатый воздух. При этом расходуется электричество, вырабатываемое опять-таки на тепловых электростанциях, которые загрязняют атмосферу дымом своих топок…

В общем, получается замкнутый круг. Однако рассмотрим проблему внимательнее. Эксплуатировать двигатель с пневмобаллоном проще, чем аккумулятор с электромотором. Баллон для сжатого воздуха можно перезаряжать сколько угодно раз, в отличие от электрических батарей, причем для изготовления воздушной системы не нужны дорогостоящие материалы, которые используются в современных батареях или водородных топливных элементах. Весит такой баллон из композитного материала меньше, чем аккумуляторная батарея, да и места занимает меньше. Кроме того, заряжать баллоны сжатым воздухом можно по ночам, когда электростанциям все равно некуда девать вырабатываемое электричество…

А потому некоторые конструкторы заинтересовались пневмомобилями столь серьезно, что перешли от слов к делу. Так, машину OneCat, движимую сжатым воздухом, сконструировал французский конструктор Ги Негрэ. Она представляет собой пятиместный автомобильчик с кузовом из стекловолокна. Весит такая машина всего 350 кг и приводится в движение сжатым воздухом, запас которого хранится во вмонтированных в ходовую часть баллонах. Автомобиль также сможет «питаться» дизельным или иным топливом. Эта возможность будет использоваться в том случае, если запасы воздуха исчерпаются.

По заявлениям Негрэ, расход топлива будет меньше, чем у любого из современных автомобилей, — всего 2,5 л на 100 км пути. В городской черте OneCat и вовсе будет ездить на одном лишь воздухе, не загрязняя атмосферу.

По замыслу конструктора, заправлять баллоны владельцы авто смогут на станциях, оборудованных мощными компрессорами. Весь процесс займет около 3 минут. Кроме того, машина будет оснащена бортовым компрессором, работающим от обычной электросети. Правда, в этом случае для наполнения «топливных» баков понадобится примерно 4 часа. Без дозаправки OneCat сможет проехать более 200 км.

Негрэ работает над проектом уже 10 лет. В свое время изобретатель обещал, что «воздухомобиль» начнет колесить по улицам в начале 2002 года. Сотрудникам его компании Motor Development International (MDI) почти удалось убедить муниципалитет Мехико заменить обычные такси пневматическими автомобилями своей конструкции. Городские власти было согласились, но в последний момент заявили, что еще никто в мире так не делает…

Однако Негрэ не бросил начатое и смог заручиться поддержкой известной индийской компании Tata, уже предложившей миру одно «авточудо» — машину ценой 2500 долларов.

Ожидается, что на начальном этапе OneCat, получивший теперь название Air Саг, будет продаваться только в Индии примерно за 5000 долларов. В перспективе, рассчитывает Негрэ, заводы по выпуску транспортных средств, работающих на сжатом воздухе, появятся и в других странах.

Сердце пневмомобиля — четырехпоршневой двигатель, позволяющий развивать скорость около 100 км/час. Сжатый воздух плотностью 125 кг/см3 хранится в легких баках вместимостью более 9000 декалитров, изготовленных из термопласта и покрытых оболочкой из углеволокна. Из баков воздух поступает в небольшую камеру, где расширяется и охлаждается. Под давлением расширяющегося воздуха поршень уходит вниз. Камера начинает нагреваться, стремясь достичь температуры окружающей среды, и нагревшийся воздух переходит во вторую камеру, где снова расширяется, заставляя поршень подняться вверх.

В отличие от четырехтактных ДВС, в которых половина тактов уходит на заполнение камеры смесью воздуха и горючего, а также выпуск выхлопных газов, пневматический двигатель использует каждый такт для движения. Переключение передач автоматическое. Необходимость в сцеплении отпадает, поскольку в статическом положении двигатель не работает. «Выхлоп» у Air Саг состоит из воздуха температурой от 0 до 15 градусов ниже нуля (не забудьте, что при расширении воздух охлаждается) и направляется не в выхлопную трубу, а через углеродный фильтр в систему кондиционирования салона. Корпус пневматического автомобиля склеен из стекловолокна и пенопластика. Шасси алюминиевое, опять-таки клееное.

Есть подобные наработки и у французской фирмы MDI. Там разработали несколько моделей пневмомобиля: трехместные легковушки ОnеСАТ и MiniCAT, пикапы CityCAT и микроавтобусы MultiCAT. Кроме того, есть варианты с гибридным топливно-пневматическим приводом для дальних поездок. Причем на умеренной скорости такая машина сможет преодолеть до 1500 км на трех литрах солярки или бензина!

Серийный выпуск первых пневмомобилей MDI планирует начать на своем французском заводе уже в 2009 году.

И.ЗВЕРЕВ

 

УДИВИТЕЛЬНО, НО ФАКТ!

Дождь по заказу

Ученые и инженеры продолжают разрабатывать методы и устройства, позволяющие вызывать дождь по своему желанию, а также разгонять дождевые облака, пишет журнал New Scientist.

«Ветряки можно превратить в машины, увлажняющие атмосферу», — утверждает инженер из Эдинбургского университета Стивен Солтер. Он стал известен еще в 70-е годы прошлого века тем, что изобрел так называемую «утку-качалку» для использования энергии волн. Он также спроектировал машинку вихревого действия для дистанционного подрыва противопехотных мин. А недавно, выступая на Международной конференции по проблемам освоения Мирового океана, изобретатель предложил идею плавучего ветряка, который бы поднимал водяные испарения высоко над морем и нагонял на сушу дождевые облака. Подобные дождевальные ветряки, по его мнению, позволят остановить продвижение пустынь и нейтрализовать процессы, связанные с изменением климата.

Так, возможно, будет выглядеть установка для образования дождя.

Эксперимент с турбиной Даррьеуса в лаборатории.

Солтер предлагает разновидность конструкции, известной среди инженеров как турбина Даррьеуса. Внешне она похожа на огромную взбивалку для яиц. Ветер вращает лопасти турбины вокруг вертикальной оси. С одной стороны, установка удобна тем, что одинаково работает при любом направлении ветра, ее не надо разворачивать при смене направления движения воздушных потоков. С другой стороны, по эффективности выработки электричества она уступает устройствам с горизонтальной осью.

Впрочем, Солтера в данном случае мало интересует выработка энергии. Главное здесь то, что за счет центробежной силы турбина Даррьеуса способна подбрасывать капли воды высоко в атмосферу.

Согласно замыслу, трубы, встроенные в лопасти турбины, будут забирать морскую воду из океана. Установленные на выходе из труб форсунки — превращать ее в аэрозоль и подбрасывать на сотни метров в турбулентном потоке, создаваемом ротором. В итоге, по расчетам Солтера, заметно увеличится влажность атмосферы в данном районе океана, что приведет к дополнительному образованию облачности. И если в жарких регионах разместить сотни, а то и тысячи таких установок, то они смогут полностью устранить угрозу засухи.