До сих пор ученые никак не могут прийти к единому мнению, как же образовалась жизнь на Земле. Недавно были опубликованы еще две гипотезы, авторы которых полагают, что развитие жизни на нашей планете обязано влиянию цинка и никеля. Тех самых элементов, которые в современной металлургии обеспечивают защиту от коррозии стали и ее сплавов, а также используются в некоторых видах аккумуляторов.
«Цинковый мир»
Биофизик из немецкого Оснабрюкского университета Армен Малкиджанян и его коллега Михаил Гальперин из Национального института здоровья США предполагают, что жизнь на Земле возникла «в результате восприятия активными пористыми структурами, состоящими из цинкового сульфида, сверхмощного солнечного излучения».
В своих изысканиях авторы исследования опирались на опыт, проведенный еще в 1953 году американскими исследователями Стенли Миллером и Гарольдом Ури. Из смеси метана, водорода, аммиака и водного пара ими в лабораторных условиях была воссоздана атмосфера ранней Земли, состоящей из сжатого газа с большим количеством водорода и почти полным отсутствием кислорода. Эта смесь, поджигаемая искрами, имитирующими молнии, привела к формированию аминокислот. Однако все последующие попытки повторить опыт Миллера — Ури заканчивались провалом — водородная смесь не синтезировала аминокислот.
Ныне Малкиджанян и Гальперин решили видоизменить эксперимент. Они предположили, что у Земли в свое время была такая же нейтральная атмосфера, какая ныне существует на Марсе и Венере, где много углекислого газа, но мало азота и водорода.
На основе нового представления о структуре атмосферы на древней Земле исследователи и воссоздали цепочку превращения неживого в живое. Они утверждают, что под воздействием преобладавшего тогда в атмосфере углекислого газа и солнечного света на поверхности первых континентов сформировались структуры из сульфида цинка, которые и стали своеобразной базой для зарождения рибонуклеиновых кислот.
Миллиарды лет назад, накапливая ультрафиолет, именно сульфид цинка способствовал уменьшению углекислого газа в атмосфере и ускорил накопление кислорода в атмосфере, сделал ее пригодной для жизни первых клеточных организмов, поясняют ученые.
Чтобы проверить свою гипотезу, Малкиджанян и Гальперин подсчитали содержание различных металлов в клетках, начиная от клетки простейших организмов и заканчивая клеткой человека, и обнаружили повсюду «удивительно высокие уровни цинка». Особенно высоки показатели этого металла в комплексах белков, содержащих РНК и ДНК. Этот факт подтверждает гипотезу о том, что формирование первых клеток происходило в среде, богатой этим металлом, — делает вывод Малкиджанян.
Проведенные эксперименты и детальные химические анализы живых клеток дают ученому сообществу основания рассмотреть гипотезу «цинкового мира». Однако она будет признана лишь после того, как ее авторы смогут осуществить ряд опытов, воссоздающих схему возникновения жизни в описываемых условиях и доказывающих жизнеспособность подобных реакций. Именно этим Армен Малкиджанян и Михаил Гальперин ныне и занимаются.
Влияние никеля
Итак, допустим, что благодаря соединениям цинка и простейшим живым существам, которые, подобно растениям, питались углекислым газом и производили кислород, около двух с половиной миллиардов лет назад содержание кислорода в атмосфере нашей планеты возросло. Это уникальное событие открыло путь к возникновению и развитию высших форм жизни. Причем, по мнению группы геологов из США и Канады, работавших под руководством Курта Конхаузера из Эдмонтонского университета, не обошлось тут и без влияния еще одного металла, а именно никеля.
Группа Конхаузера проанализировала состав так называемых полосчатых железных руд, образовавшихся на планете за очень продолжительный период — от момента появления первых следов жизни на Земле (около 3,8 млрд. лет назад) до «кембрийского взрыва» (около 550 млн. лет назад).
При этом, изучая примеси, которые обнаруживаются в рудах, ученые определяли содержание никеля в древних океанах, покрывавших планету. И выяснили, что около 2,7 млрд. лет назад оно было очень высоким.
В таких условиях могли процветать метанобразующие бактерии. Они выделяли в атмосферу большое количество метана, препятствуя тем самым повышению концентрации кислорода. Ведь метан и кислород реагируют друг с другом; причем продуктами реакции являются углекислый газ и вода. Но затем химический состав морских вод изменился.
Конхаузер и его коллеги полагают, что причиной стало то, что мантия нашей планеты постепенно остыла. Вулканическая деятельность заметно поутихла и на поверхности Земли стало меньше лавы, богатой никелем. А стало быть, меньше никеля начало поступать в результате эрозии почв в морскую воду. Поумерили свою деятельность и метанобразующие бактерии, которым никель нужен для жизненного цикла, дав таким образом возможность накапливаться в атмосфере кислороду. Им на смену пришли цианобактерии, которым потребовалось примерно полмиллиарда лет, чтобы путем фотосинтеза довести содержание кислорода в атмосфере почти до его нынешних показателей. И 2,4 млрд. лет назад это значение, по расчетам ученых, стало достаточно высоким, чтобы считать атмосферу Земли «кислородной». Планета оказалась подготовленной к появлению более сложных форм жизни.