Юный техник, 2010 № 08

Журнал «Юный техник»

СОЗДАНО В РОССИИ

 

 

Небесные тяжеловозы

Мы привыкли, что современные авиалайнеры способны сразу взять на борт сотни пассажиров. Но, положа руку на сердце, надо сказать, что самолеты все еще проигрывают по грузоподъемности железнодорожным составам, кораблям и… дирижаблям. А коли так, то, может, все-таки стоит вернуть в небо «воздушных левиафанов» — так назвали дирижабли в начале XX века? Надобность в них есть и сегодня.

Плюсы и минусы «левиафанов»

Несколько лет тому назад появилась необходимость доставить в Рязанскую область 600-тонный химический реактор, построенный на Ижорском заводе под Санкт-Петербургом. Для этого пришлось построить специальные транспортеры и баржи, углублять порт на реке Ижорка, использовать особое подъемное оборудование. И все равно доставка сверхгабаритного груза на расстояние 1000 км заняла полтора месяца и обошлась в 5 млн. долларов.

По воздуху реактор можно было переправить за один день. Вот только самолету такой груз никак не потянуть. Потому что самый грузоподъемный на сегодняшний день самолет Ан-225 «Мрия» способен принять на борт не более 250 т.

У дирижаблей же пределов грузоподъемности теоретически нет: еще К.Э. Циолковский писал, что один кубометр гелия может поднять один килограмм груза, а увеличивать объем оболочки дирижабля можно почти до бесконечности. При этом энергия двигателей воздушного гиганта почти не расходуется на поддержание подъемной силы (в отличие от самолета), соответственно, он гораздо экономичнее.

Впрочем, есть у дирижабля и недостатки. В 1996 г. немецкая компания Cargolifter попыталась создать дирижабль, способный транспортировать до 160 т груза. Для начала инженеры построили ангар, который имел 360 м в длину, 220 в ширину и 106 в высоту. На этом деньги инвесторов закончились, и компания обанкротилась. Так что ангар, способный вместить Эйфелеву башню, до сих пор пустует в пригороде Висбадена.

Зачем понадобилось строить такой дорогой ангар?

Увы, без ангара дирижабль будет уничтожен при первом же ненастье. Так что затраты на строительство большого дирижабля не могут быть малы.

Еще один недостаток заключается в том, что дирижабль не может летать без балласта. Если он сгружает 200 т, то должен взять на борт 200 т чего-либо другого взамен. И что делать, если в сибирский мороз на месте посадки грунт промерз до состояния бетона, а вода скрыта многометровым слоем льда?.. Да и посадить махину длиной в 250 м где-нибудь в тайге тоже проблема. В воздухе же дирижабль не разгрузишь, его будет все время сносить боковым ветром.

Вот тогда-то специалисты и вспомнили о советском проекте под названием «Термоплан». Главный конструктор проекта Юрий Ишков и его коллеги из ЗАО «КБ Термоплан» при Московском авиационном институте, возглавляемом в те годы ректором Юрием Алексеевичем Рыжовым, создали в 80-е годы прошлого века уникальную конструкцию. «Летающая тарелка» наших конструкторов вобрала в себя все достоинства дирижаблей, и в то же время в ней были учтены все недочеты «воздушных левиафанов» прошлых лет.

Мечта о «летающей тарелке»

Прежде всего создатели термоплана отказались от традиционной формы дирижаблей, предложив создать не «сигару», а «чечевицу», или, если хотите, «летающую тарелку», диаметр которой мог достигать 300 м. При такой конфигурации воздействие бокового ветра уменьшается в несколько раз, а кроме того, создается дополнительная подъемная сила.

Основную же подъемную силу создает легкий газ гелий, заключенный в нескольких герметичных отсеках «чечевицы». Другие отсеки не герметичны, в них обычный воздух, который нагревают до температуры 150–200 градусов газовыми горелками — примерно такими же, что используют в современных монгольфьерах.

Комбинированная схема позволяет обходиться без балласта. В термоплане он ни к чему. Надо взлететь — включают горелки. Суммарная подъемная сила термоплана увеличивается, и он плавно поднимается вверх. А потребовалось совершить посадку — горелки гасят, воздух постепенно остывает, подъемная сила уменьшается, и аппарат плавно идет на снижение.

Если экипаж видит, что условий для мягкой посадки нет — скажем, кругом тайга, — термоплан может зависнуть на высоте, а вниз на тросах уйдут лишь грузовые платформы, выполняя роль своеобразных лифтов. «Чечевицу» же при этом сдувает значительно меньше, чем «сигару».

Наметили специалисты и несколько конкретных дел, за которые дирижабли смогли бы взяться в первую очередь.

Например, ежегодно на север и восток страны доставлять турбины для ГЭС, химические реакторы, оборудование для разведки, добычи и переработки нефти… Традиционный путь их следования через Беломорско-Балтийский канал, а то и вокруг Европы на баржах и судах, причем в разобранном виде. Хорошо, если транспортники успевают доставить такой груз на место за два-три месяца летней навигации. Между тем термоплан способен доставить его в полном сборе всего за сутки-двое.

Такова теория. А вот что получилось на практике.

Опытный образец грузоподъемностью 3 т начали строить в Ульяновске на авиапромышленном комплексе имени Устинова (ныне завод «Авиастар») в 1989 году. И закончили к 1992 году. Но к тому времени СССР распался, и финансирование проекта практически прекратилось.

Тем не менее, в августе того же 1992 года советскую «летающую тарелку» вывели из ангара на испытания. Ее несколько раз поднимали, придерживая на привязных тросах, и наблюдатели дивились 40-метровому гиганту.

Но однажды из-за несогласованных манипуляций со швартовочными лебедками оболочка порвалась, и гигант осел на землю. Денег на восстановление не было, и уникальный проект был похоронен, и, как казалось, навсегда.

От «Термоплана» к «ЛокомоСкаю»

Однако есть все-таки в нашей стране люди, которые умеют оценить хорошие идеи. В 2005 году Кирилл Лятс, генеральный директор группы компаний «Метапроцесс», увидев публикацию про «Термоплан», решил все-таки поинтересоваться, чем дело кончилось. Оказалось, что ульяновская часть команды работала кто на «Авиастаре», кто в КБ Туполева, а московская образовала КБ «Аэростатика», разрабатывавшее обычные сигарообразные дирижабли.

Лятс с Рыжовым снова собрали всех вместе и приняли решение довести проект до завершения. Новая компания получила название «ЛокомоСкай», а сам аппарат — локомоскайнер (то есть «небесный локомотив»).

Генеральным конструктором стал Александр Иванович Харчиков, бывший заместитель генерального конструктора «Термоплана».

За полтора десятка лет изменилось многое — материалы, оборудование, уровень компьютеризации. Так что локомоскайнер похож на термоплан лишь внешне. Но по сути — это иной аппарат второго поколения. Например, изменениям подверглись принципы нагрева термообъема. В первоначальном проекте отработанные газы от двигателей прямо поступали внутрь оболочки, в результате чего образовывалась сажа, и термоплан необходимо было регулярно очищать изнутри. Более того, температура газов составляла порядка 70 °C, что создавало существенный риск для оболочки. Локомоскайнер оборудован теплогенераторами, работающими по принципу тепловой пушки. Таким образом, даже при отказе всех двигателей тепловой баланс будет поддерживаться.

Сегодня построен 7-метровый локомоскайнер, который одновременно является прототипом полноценного грузового дирижабля и беспилотной наблюдательной машиной. Убедившись, что конструкция работоспособна, «ЛокомоСкай» приступил к строительству второго прототипа грузоподъемностью 3 т. Это уже серьезная машина, позволяющая доставлять тяжелые грузы в труднодоступные районы. Ее оболочка рассчитана на работу в температурном диапазоне от -50 до +50 °C, но в случае необходимости запас прочности позволяет летать и при -80 °C; такие морозы бывают в Антарктиде.

При этом ангар локомоскайнеру не нужен. Внутри небольшого помещения собирают элементы тора и силового агрегата. Окончательную сборку производят на открытой местности, ведь «чечевица», как сказано, не боится бокового ветра. А когда на конструкцию натягивают верхнюю часть оболочки, она уже служит ангаром сама себе. Это удешевляет постройку таких аппаратов в сравнении с дирижаблем как минимум вдвое.

Запланированная дальность полета 3-тонника — 500 км, а 60-тонника — уже 3000 км. А самый могучий локомоскайнер грузоподъемностью в 600 т сможет свободно перенести буровую установку или опору ЛЭП, например, из Санкт-Петербурга на Камчатку, и никакие реки и горы не станут ему преградой.

Схема локомоскайнера:

1 — силовой тор; 2 — ванты; 3 — емкости с гелием; 4 — руль; 5 — термообъем; 6 — гондола; 7 — предел расширения термообъема.

Полетим хоть на орбиту?

Работы для «небесного локомотива» — непочатый край. На Севере сегодня не строят заводов в блочно-модульном исполнении только потому, что туда невозможно доставить тяжелые блоки оборудования в сборе. Использование локомоскайнера позволит осуществить монтаж завода практически с воздуха и сэкономить миллиарды рублей.

Аналогичную конструкцию можно использовать и в качестве своеобразного летающего отеля, на котором можно совершать кругосветные круизы, любуясь с высоты птичьего полета лучшими ландшафтами планеты Земля.

Да что там птичий полет! В принципе подобным летательным аппаратам доступны и космические высоты.

В свое время еще создатели термоплана придумали вот какую интересную штуку. Как показали продувки в аэродинамической трубе, «летающая тарелка» имеет свойства крыла-диска. То есть при движении с достаточно высокой скоростью к аэростатической подъемной силе добавляется еще и аэродинамическая. При этом удельная нагрузка на крыло в 15–20 раз меньше, чем, например, у всем известного «шаттла».

О «челноке» мы вспомнили совсем не случайно. Какая у него главная обязанность? Правильно, выводить в космос разные грузы. Так вот специалисты еще тогда подсчитали, что термоплан может быть использован и в качестве первой ступени системы, которая будет осуществлять подобные транспортные операции в 2–3 раза дешевле, чем «шаттл». Выглядеть все это будет примерно так. Локомоскайнер берет прямо со двора завода, КБ или иного предприятия ракету-носитель вместе со спутником связи, модулем строящейся международной орбитальной станции.

Все это на внешней подвеске дирижабль буксирует в экваториальную зону, откуда запускать ракеты, как известно, выгоднее. Здесь он поднимается на высоту в 15–20 км, а то и выше, и производит оттуда пуск ракеты.

Таким образом, мы экономим, как минумум, одну ступень ракеты-носителя. А можно, в принципе, и вообще обойтись без нее. Локомоскайнер ведь вовсе не случайно напоминает по форме «летающую тарелку». И если сделать оболочку достаточно жесткой, рассчитали наши конструкторы, прикрепить к нему реактивные двигатели и ракетные ускорители, то можно добиться, что, разогнавшись, наш гибридный летательный аппарат сам выйдет на околоземную орбиту.

Фантастика? Верно. Нет еще такого летательного аппарата в натуре. Однако фантастика, уже выполненная в чертежах, имеющая четкое физико-математическое обоснование. При соответствующем финансировании специалисты берутся превратить мечту в действительность всего за несколько лет.

С. ЛЫКОВ

 

Кому необходим биопластотан?

Научная работа молодого красноярского ученого Екатерины Шишацкой , удостоенная премии Президента России, вызвала у медиков большой интерес. Многие из них отмечают, что создание уникального искусственного материала биопластотан в ближайшие годы позволит произвести своего рода революцию в медицине.

Разработка найдет применение прежде всего в хирургии. «Самое простое — это, например, создание шовных нитей из полимера, которые растворяются после того, как зарастает рана, — рассказала Екатерина Шишацкая. — При повреждении костей или суставов можно делать искусственные копии. Со временем кость сама восстановится, а искусственная замена из биопластотана исчезнет. Можно также делать специальные вставки в сосуды — стенты. Эти маленькие трубки используют, чтобы расширить сосуд. Через некоторое время после операции сосуд восстанавливается, а полимерный заменитель растворяется».

Кроме того, разработка Екатерины Шишацкой может применяться и в фармакологии. Например, в качестве системы контролируемой доставки лекарств.

Екатерина Шишацкая

«Когда мы глотаем таблетку, лишь малая часть лекарства достигает цели, — рассказывает исследовательница. — Большая же часть, не успев попасть туда, куда нужно, выходит наружу. Как увеличить эффективность?

Можно сделать специальную капсулу из биоразрушаемого полимера, состоящую из большого числа маленьких ячеек. Потом эти ячейки заполняют лекарством, а капсулу помещают в тот орган, куда необходимо доставить лекарство. Постепенно разрушаясь, капсула выделяет лекарство с той скоростью и в такой концентрации, которая наиболее эффективна для лечения»…

Первые изделия из нового биоразрушаемого полимера уже успешно прошли клинические испытания и применяются на практике в Красноярске.

Владимир БЕЛОВ

Кстати

ЗАЧЕМ НУЖНА МЕТАЛЛИЧЕСКАЯ ПЕНА?

Исследователи Университета Северной Каролины, США, представили свой материал для изготовления имплантатов, который не только биосовместим с костями, но и способствует их регенерации и росту.

Разработка представляет собой легкий сплав алюминия и стали. Причем его исключительные характеристики обусловлены не столько составом, сколько структурой: ученые «взбили» металл, превратив его в пену, и благодаря пористой структуре, материал стал близок по своей функциональности к обычной кости. Скрепляя ее в месте перелома, металлическая пена обеспечивает восстановление поврежденной костной ткани, не меняя при этом ее естественной упругости, что, например, невозможно при использовании жестких титановых имплантатов. Ведь титан примерно в 10 раз жестче, чем кость. Кроме того, в отличие от жестких имплантатов, останавливающих рост тканей пациента, металлическая пена способна даже деформироваться, не зажимая кость в местах перелома и давая ей возможность регенерироваться.

Способность менять форму и плотность делает новый материал применимым и в стоматологии. Пломба или имплантат из металлической пены смогут предотвратить боли в челюсти, возникающие при неправильном распределении нагрузки.

Кроме того, шероховатая, пористая поверхность материала будет способствовать прорастанию кости через имплантат. Клетки костной ткани будут пронизывать нанопоры материала, используя его как каркас. Таким образом, риск неправильного сращивания сводится к минимуму.

«Новая кость будет формироваться только в границах имплантата, — пояснил один из разработчиков, профессор машиностроения и аэрокосмической техники Афсанех Раби. — Это не только ускорит процесс реабилитации, но и увеличит механическую прочность вставки».

Имплантат из металлической пены под микроскопом.

Еще одно неожиданное открытие сделали недавно итальянские ученые, которым удалось создать кость из… древесины. Сделанные из ротанговой пальмы искусственные кости были пересажены овцам и сейчас практически ничем не отличаются от естественных.

Секрет превращения древесины в костную ткань заключается в ее специальной обработке. Первоначально из ротанга вырезают необходимый имплантат. Затем древесину нагревают в специальном растворе, содержащем уголь и кальций. После этого деревянные «кости» помещают в специальную камеру с фосфатным раствором и держат под сильным давлением. На эти операции требуется всего 10 дней. Обработанную таким образом древесину пересаживают пока лишь животным.

Искусственные кости из ротанговой пальмы успешно пересажены овце.

Однако, как показали опыты, костный ротанг получает способность абсорбировать в живом организме биологически активные элементы и срастается с костью, не оставляя даже нароста. Фактически ротанг превращается в настоящую костную ткань. Так что в ближайшие 5 лет будут созданы ротанговые кости и для человека, обещают исследователи.

В. ВЛАДИМИРОВ