На прошедшем XVI Московском международном салоне изобретений и инновационных технологий «Архимед-2013» одной из работ мы решили посвятить персональную публикацию. Речь пойдет о разработке ученицы 2-го «Б» класса московской гимназии № 1569 «Созвездие» Светланы Расюк. Работу ее брата, 5-классника Саши, как и многих других участников салона, мы уже представили вам в «ЮТ» № 7 за 2013 г.

— Мой проект называется «Устройство для улавливания звуков», — начала свой рассказ Света. И показала необычный головной убор.

А дальше выяснилось вот что. Обычно люди слышат разговор метров за пять. На большем расстоянии уже приходится повышать голос. Между тем существуют устройства, позволяющие значительно повысить возможности нашего слуха.

Вот, например, медицинский фонендоскоп. Подобный прибор несложно сделать и самому. Для этого понадобятся две пластиковые воронки лейки и резиновый шланг длиной примерно метр и диаметром порядка 10 мм. Оба конца шланга натяните на узкие концы воронок, оставив раструбы открытыми. А если приложить один раструб к уху, а другой — к груди, можно услышать, как стучит сердце. Кстати, фонендоскопы раньше использовали не только в медицине, но и в промышленности. С их помощью специалисты прослушивали работу механизмов — например, двигателей внутреннего сгорания. Опытному механику звук мотора мог рассказать о многом… Теперь, правда, специалисты чаще прибегают к помощи систем электронной диагностики.

Светлана Расюк демонстрирует свою конструкцию.

Стали использовать электронику и прочие достижения современной техники и «слухачи». В начале Второй мировой войны приближение вражеских бомбардировщиков бойцы противовоздушной обороны пытались обнаружить по шуму моторов с помощью звукопеленгаторов — громоздких установок в большими жестяными раструбами (см. фото).

Но потом оказалось, что радары справляются с такой работой гораздо лучше. Если звукопеленгатор позволял засечь приближение вражеской армады за 10–20 км, то радар «видит» цель за сотни и даже тысячи километров.

Тем не менее, не перевелись еще и охотники подслушать чужие секреты. Разведчики используют электронную аппаратуру, позволяющую расслышать и записать речь за сотни метров. В ход идут остронаправленные микрофоны, лазерные лучи, использующие оконное стекло как микрофонную мембрану, и подобные устройства. Орнитологи записывают птичьи голоса…

Изучив все это с помощью брата и научного руководителя проекта Ирины Генриховны Струнгис, Света Расюк стала думать над собственной конструкцией устройства для улавливания звука. И в конце концов, пришла к такой мысли.

Чувствительность остронаправленных микрофонов повышают с помощью параболических отражателей. Однако такая конструкция очень громоздка. Можно попробовать поместить микрофон в зауженную часть рупора. Но и такую конструкцию компактной не назовешь. А что если рупор заменить просто трубкой? Одну трубку очень трудно нацелить на источник звука, но… Надо взять несколько трубок и в каждую поместить по микрофону…

Дальнейшее уж было, как говорится, делом техники.

Светлана методом проб и ошибок отобрала оптимальные по длине, диаметру и материалу трубки. Закрепила их на пластиковой пластине, которая, в свою очередь, была закреплена стяжками на строительной каске. С тыльной части в каждую трубку был вставлен крошечный микрофон. Проводки от них идут к двум усилителям (по одному на каждое ухо с наушником). Усилители были собраны из деталей радионабора и спаяны с помощью брата и взрослых на печатной плате. От усилителей провода идут к наушникам. Осталось добавить блок питания из батареек типа АА и выключатель. Ну и, конечно, отладить всю систему.

Вы можете повторить устройство Светланы Расюк.

Пластиковая строительная каска может стать основой устройства. На гибкой полосе пластика шириной 10–15 см и длиной около 30 см крепятся (например, клеем и скотчем) 10–12 трубок из дюраля или пластика, с внутренним диаметром чуть более 6 — 10 мм. Размер этот зависит от того, какие электретные микрофоны окажутся в вашем распоряжении. Они бывают диаметром от 6 до 10 мм и стоят от 40 до 100 рублей. Длина трубок подбиралась Светой экспериментально. Ориентировочные размеры — 25–30 см.

Схема включения электретного микрофона.

Провода от микрофонов лучше всего вывести на входы микшера, суммирующего сигналы.

Провода от микрофонов лучше всего вывести на вход микшерам, суммирующим сигналы, а потом на наушники через двухканальиый усилитель. Схемы включения микрофона и простейшего микшера приведены на рисунках. Усилитель можно взять практически любой.

Готовое устройство крепится на строительную каску, например, с помощью двух небольших винтов с гайками. Для них в каске и пластине с трубками сверлятся отверстия с правой и левой сторон.

— Устройство получилось компактным и мобильным, — довольна результатами Светлана. — Прибор можно применять для направленного прослушивания различных звуков при наблюдениях за живой природой или на производстве, для удаленного мониторинга шума действующих механизмов…

Кстати…

Светлана Расюк — не единственная, кто работает над устройствами для усиления слуха и зрения. Студенты Королевского колледжа искусств в Лондоне разработали маску, которая существенно усиливает возможности зрения и слуха. Она позволяет вам выбирать один конкретный разговор или один визуальный объект среди множества, а затем следить за ними.

Фактически это две разные полумаски — Eidos Vision и Eidos Audio, которые можно использовать как совместно, так и раздельно.

Усилитель слуха, разработанный английскими студентами.

Так выглядит усилитель зрения, созданный в Лондоне.

Eidos Audio имеет сверхчувствительные микрофоны и два канала усиления (по одному на каждое ухо), которые позволяют расслышать все до последнего словечка за сотни метров. Маска подавляет все шумы и усиливает звуки разговора, который вы хотите услышать.

Eidos Vision просматривает окружающее пространство с помощью встроенной видеокамеры и транслирует его в компьютер для обработки. В итоге обладатель такой маски не только приобретает возможность видеть даже в темноте, но и способен заметить малейшие движения, которые обычно не воспринимает человеческий глаз, поскольку обработанное компьютером изображение транслируется на телеэкран внутри маски.