В этой главе рассматриваются понятия размерности и многомерных пространств.

Термин «размерность» широко используется не только в науке и технике, но и в повседневной жизни. Это слово в разных смыслах часто встречается в газетах и в Интернете. Например, выражение «GPS-навигация в трехмерном пространстве» использует понятие трех измерений, которые необходимы устройству GPS для определения положения объекта на земном шаре: широты, долготы и высоты. Вместе с этим выражение «размеры коробки 30 см (длина) х 15 см (ширина) х 15 см (высота)» означает величину предмета. Мы можем даже найти что-то вроде выражения «культурная размерность интернета», которое можно интерпретировать метафорически, имея в виду всю многогранность интернета и нашей культуры в целом.

Слово «размерность», или «измерение», используемое сейчас в нашей повседневной жизни, имеет почти такой же смысл, как и в науке вплоть до XIX в., хотя значение термина развивалось по мере популяризации изначальных математических идей. Даже в таких фразах, как «жить в другом измерении» или «путешествие в другое измерение», значение слова по-прежнему основывается на тех же фундаментальных идеях. В науке и технике этот термин тоже приобрел несколько различных значений и разную степень сложности в зависимости от области, в которой он используется. Например, существуют такие понятия, как размерность векторного пространства, топологическая размерность, фрактальные размерности… Однако целью этой книги является не объяснение терминов, а лишь введение интуитивного понятия размерности.

Степени свободы

Во-первых, давайте остановимся на вопросе: «Что такое размерность?» В общем случае, когда мы говорим о размерности пространства, мы имеем в виду то, что физики и инженеры называют степенью свободы.

В одномерном пространстве у нас есть только одна степень свободы, то есть мы можем двигаться только вперед и назад по одной линии. В поезде мы всегда движемся либо вперед по рельсам, либо назад: состав не может совершать другие движения.

Рельсы, по которым движется поезд, образуют достаточно произвольную кривую, но эта кривая представляет собой одномерное пространство. Наблюдая в поле траектории движения муравьев, мы увидим, что эти траектории тоже представляют собой кривые линии. Насекомые движутся по ним, возвращаясь в муравейник или отправляясь на поиски добычи. Аналогичное движение — вперед и назад — является единственно возможным для короля и других жителей Лайнландии.

В упрощенном виде траектории движения муравьев являются одномерными пространствами, так как насекомые движутся по кривым линиям в обе стороны.

Муравьи движутся так, потому что они следуют по запахам феромонов, оставленным другими муравьями. Однако первый муравей (тот, что проложил путь) мог двигаться во всех направлениях. Если мы выпустим муравья на поверхность стола, мы увидим, что он ползает вперед и назад, а также вправо и влево и под любым углом к этим направлениям. Поверхность стола представляет собой двумерное пространство, другими словами, она имеет две степени свободы.

Муравей-первопроходец на поверхности стола с двумя степенями свободы будет двигаться не только вперед и назад, но и в других направлениях.

Этот муравей имеет такую же свободу передвижения, как и Квадрат, живущий во Флатландии. Корабль на поверхности моря и альпинист на склоне горы также движутся в двумерном пространстве. Положение корабля или альпиниста на поверхности земного шара может быть определено с помощью двух параметров: широты и долготы. Аналогично положение муравья на поверхности стола может быть установлено с помощью расстояний от обеих сторон стола.

Если вместо корабля мы рассмотрим подводную лодку, мы добавим возможность перемещения вверх и вниз на конкретную глубину. Точно так же вертолет может подниматься на разную высоту в воздухе. Следовательно, и вертолет, и подводная лодка имеют три степени свободы. Это и есть наше естественное трехмерное пространство.

Если вертолет летает, например, в определенное время каждый день, мы можем добавить еще одну степень свободы — время, хотя в этом измерении мы можем двигаться только вперед, по крайней мере, таково наше восприятие времени. Наша жизнь, таким образом, протекает в четырехмерном пространстве-времени и поэтому может быть задана с помощью четырех координат.

Координаты

При формулировании понятия степени свободы мы уже видели, что для определения положения в пространстве нам нужны не только числовые значения, но и количество измерений пространства. В примере с вертолетом, движущимся в трехмерном пространстве, GPS определяет его положение с помощью трех чисел — широты, долготы и высоты по отношению к уровню моря — и таким образом использует математическое понятие размерностей в виде набора координат, другими словами, группы чисел.

Возьмем теперь пример с поездом. Представьте себе железнодорожный путь, соединяющий два города с центральной станцией, которая контролирует движение поездов. Положение каждого поезда может быть определено как расстояние от станции в одном или другом направлении (чтобы различать направления, мы обозначим одно знаком плюс, а другое — знаком минус). Следовательно, для определения положения поезда будет достаточно одной координаты (x1). Пространство всевозможных положений поезда может быть отождествлено с одномерным пространством координат, задаваемых всевозможными значениями х1.

Аналогичным образом с помощью одного числа можно задать рост каждого члена семьи. Эти значения в некоторых домах можно увидеть на косяке двери, который таким образом становится графическим представлением одномерного пространства всевозможных значений роста.

Точное местоположение любого судна в любом океане Земли можно определить с помощью двух чисел — широты и долготы.

Двумя числами (х1 — долгота, х2  — широта) мы можем описать положение любого места на земной поверхности, которая является двумерным пространством. Более абстрактным примером двумерного пространства будет «пространство», образованное рамками для фотографий, заданными двумя размерами — длиной и шириной. В этом пространстве точкой с координатами (29, 35) является рамка, длина которой 29 см, а ширина — 35 см.

Аналогично, если мы измерим рост и вес членов некой семьи, эти измерения также будут точками в двумерном пространстве, заданными парой измеренных значений. Однако на дверном косяке нельзя будет изобразить эти точки, нам потребуется для этого вся стена. Вот почему ни одна семья не отмечает эти данные таким образом! Стена была бы представлением координатной плоскости. Мы бы отмечали рост по вертикали, а вес — по горизонтали. Тогда пара чисел для каждого члена семьи изображалась бы точкой на стене.

Стена кухни представляет собой координатную плоскость, дверной косяк является осью роста, а плинтус — осью веса. Четыре точки соответствуют четырем парам чисел — росту и весу каждого члена семьи.

* * *

МУХА ДЕКАРТА

Французский математик  Рене Декарт (1596–1650) ввел понятие координатной плоскости, а также аналитической геометрии в своей работе «Геометрия», опубликованной в качестве приложения к книге «Рассуждение о методе». По одной из легенд, идея декартовой плоскости пришла к нему в голову, когда он думал о движении мухи по потолку спальни. Декарт понял, что положение мухи может быть задано расстояниями от двух стен. Таким образом, Декарт добавил координаты — алгебраический инструмент — к плоскости Евклида, которая, в свою очередь, находится в некотором геометрическом пространстве. Хотя в наше время координаты могут показаться простым понятием, в то время это было очень трудно воспринять даже Исааку Ньютону (1643–1727), который испытывал сложности при чтении работ Декарта.

Координатная плоскость с точками А = (4, 2), В = (-5, 3), С = (-2, -4) и D = (5, -3).

* * *

Трехмерное координатное пространство задается тройками чисел (х1, х2, х3). Как уже говорилось, положение вертолета определяется тремя числами — широтой, долготой и высотой. Аналогично более абстрактным примером будет пространство, содержащее картонные коробки, определенные их длиной, шириной и высотой.

Коробка, изображенная в трехмерном координатном пространстве. Координаты точки ( а ,  Ь , с ) определяют размеры коробки длиной а , шириной b  и высотой с .

В общем случае координаты точки в n-мерном пространстве задаются кортежем (набором) из n чисел (х 1 …,x n ), где n — размерность пространства. Таким образом, каждая точка пространства является кортежем (х 1 …,x n ), а n-мерное координатное пространство состоит из всевозможных кортежей. В математических символах это записывается так:

Во многих отраслях науки и техники различные данные представляют собой наборы числовых значений, поэтому, применяя понятие координатного пространства к этим кортежам чисел, мы можем использовать геометрические инструменты для организации, локализации и обработки информации. Таким образом мы получаем возможность делать полезные заключения. Можно привести разнообразные примеры, такие как результаты медицинских анализов крови (количество в крови натрия, калия, глюкозы, холестерина и других соединений). Эти результаты представляют собой кортеж из n чисел, где n обозначает количество проведенных клинических испытаний. Другими примерами могут выступать списки групп студентов, результаты спортивных соревнований и так далее.

* * *

ОБЫЧНОЕ РАССТОЯНИЕ

Понятие координатного пространства предполагает существование фиксированного расстояния между двумя точками в этом пространстве, так называемого обычного расстояния. Например, для двух точек р  =  (x 1 , х 2 , х 3 ) и q  = (y 1 , у 2 ,  у 3 ) в трехмерном координатном пространстве R 3 обычное расстояние задается выражением

что делает наш мир трехмерным евклидовым пространством. Именно это расстояние мы используем в нашей повседневной жизни. Конечно, это понятие расстояния легко обобщается на n-мерное координатное пространство.

Расстояние ( С ) между двумя точками ( x 1 , y 1 ) и ( х 2 , у 2 ) на плоскости определяется по теореме Пифагора, так как С является гипотенузой прямоугольного треугольника со сторонами А = у 2 — у 1 и В =  х 2   — х 1

Существование пространств более высокой размерности

Несмотря на кажущуюся простоту этих идей, потребовалось много времени, чтобы привыкнуть к ним и начать применять их на практике. Математики, другие ученые и философы вели жаркие споры о смысле и реальности пространств более высокой размерности. Например, в «Началах» Евклида определяется, что точка не имеет размерности, прямая линия имеет одну размерность (длину), плоскость — два измерения (длину и ширину), а тело в пространстве — три измерения (длину, ширину и высоту). Но Аристотель в своей работе «О небе» утверждал, что четырехмерного пространства не существует: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и кроме них нет никакой другой величины, так как три измерения суть все измерения, и величина, которая делима в трех измерениях, делима во всех измерениях».

Клавдий Птолемей (ок. 100–170 н. э.) в своей работе «О расстоянии» впервые доказал, что четвертого измерения не существует. К сожалению, эта книга не сохранилась до наших дней, мы знаем о ней благодаря греческому математику и философу Симпликию Киликийскому (490–560). Фактически Птолемей говорил, что если рассмотреть три перпендикулярные прямые, то невозможно провести четвертую прямую, перпендикулярную к трем другим. Таким образом, четвертого измерения не существует. Однако Птолемей лишь доказывает, что невозможно воспроизвести четыре измерения в нашем трехмерном пространстве.

Позже, при попытке дать геометрическую интерпретацию алгебраических уравнений, возникла идея, что могут существовать пространства более высоких размерностей, но некоторые математики отзывались об этой возможности как о «неестественной». Английский математик Джон Валлис (1616–1703) в своей работе «Алгебра» назвал четвертое измерение «чудовищем, возможным в природе не более, нежели химера или кентавр. Длина, ширина и толщина полностью заполняют пространство. Даже фантазия не может описать, как четвертое измерение может существовать наряду с этими тремя».

Были и те, кто пытался принять существование четвертого измерения на духовном уровне. Например, английский философ Генри Мор (1614–1687) утверждал, что души имеют четыре измерения. Эта идея, как мы увидим в пятой главе, стала очень популярной. В этой связи немецкий философ Иммануил Кант (1724–1804) писал: «Наука обо всех этих возможных видах пространства, несомненно, представляла бы собой высшую геометрию, какую способен построить конечный ум… Если возможно, чтобы существовали протяжения с другими измерениями, то весьма вероятно, что Бог где-то их действительно разместил. Поэтому подобные пространства вовсе не принадлежали бы к нашему миру, они должны были бы составлять особые миры».

В одной из своих работ Кант утверждал, что левая рука является зеркальным отражением правой и что мы не можем идеально совместить руку с ее отражением. Однако Август Фердинанд Мёбиус (1790–1868) впервые заметил, что при вращении правой руки в гипотетическом четырехмерном пространстве она может стать своим зеркальным отражением — левой рукой, вернувшись в трехмерное пространство.

Если даже ученым было трудно представить пространства с более высокими размерностями, то обычным людям требовалось гораздо больше времени и усилий, чтобы понять это, и обычно это происходило на интуитивном уровне. Революция в геометрии XIX в., которая, как мы увидим в следующей главе, вышла за рамки простых обобщений пространств с более высокими размерностями, была ключевым моментом для науки и общества и означала вступление в мир многомерных пространств.

Физические и математические пространства

В двух предыдущих разделах мы уже затрагивали вопрос о различии физического и математического пространства, но не углублялись в детали.

Для физиков и других ученых понятие пространства тесно связано с понятием действительности, но для математиков это не совсем так. Вопрос «Существует ли четырехмерное пространство?» имеет различный смысл в зависимости от того, кто его задает. Для физиков этот вопрос звучит так: «Существует ли реальное четырехмерное пространство?» Ответ, конечно, отрицательный, если под реальным пространством имеется в виду наблюдаемый физический мир.

Таким образом, когда речь идет о четвертом измерении, физики имеют в виду четырехмерное пространство-время. Однако для математиков этот вопрос означает: «Существует ли концепция четырехмерного пространства?»

В конечном итоге это различие связано с самой сущностью математики и ее подходом. Математики не только изучают физический мир, который нас окружает, но и способны абстрагироваться от него и перенестись в мир идей, концепций и математических структур, в котором физический мир является лишь небольшой его частью или совсем отсутствует. Математики работают в этом мире идей, получая абстрактные результаты, общие понятия, создавая новые формы и инструменты. Несмотря на огромное расстояние между реальностью и математикой, эта наука успешно применяется в реальном мире. Венгерский математик и физик Юджин Вигнер (1902–1995), лауреат Нобелевской премии по физике, говорил о «необъяснимой эффективности прикладной математики в естественных науках». Математики Эдвард Казнер и Джеймс Ньюман в своей знаменитой книге «Математика и воображение» (1989) использовали другую метафору: «Математик — это портной, служащий благородному сословию наук. Он шьет всевозможные костюмы для всех, кто только пожелает их носить».

В этом смысле математики естественным образом работают с многомерными пространствами, не ограничивая себя физической реальностью. Для них математические понятия существуют, если только они не являются логически противоречивыми. Вот почему, когда математики говорят о четырехмерном пространстве, им не нужно обязательно думать о пространстве-времени или о четвертом пространственном измерении.

* * *

РАЗМЕРНОСТЬ ВСЕЛЕННОЙ

Наши чувства говорят нам, что мы живем в трехмерном пространстве, а если мы добавим время, то можно считать, что наша Вселенная является четырехмерной. В настоящее время физики работают над теорией струн, которая предполагает, что наша Вселенная может существовать в пространстве более высоких размерностей: 10,11 или даже 26. Но размерности эти существуют в субатомных масштабах, поэтому они — вне нашей способности воспринимать их. Многие из нас не в состоянии даже представить их! Интересно, что Чарльз Хинтон уже в конце XIX в. говорил о такой возможности, излагая теорию четвертого измерения.

Теория струн до сих пор не доказана экспериментально, хотя уже произвела глубокую научную и философскую революцию. Ее противники утверждают, что ее невозможно полностью проверить и, следовательно, в действительности она вообще не является научной теорией. Это один из вопросов, на который может пролить свет Большой адронный коллайдер, построенный в ЦЕРНе.

Какая польза от многомерных пространств?

В области математической физики важность работы с многомерными пространствами уже давно стала очевидной. Французский математик Жозеф Луи Лагранж (1736–1813) в своей книге «Аналитическая механика» рассматривал механику в терминах многих координат (степеней свободы), включая время как отдельную координату. Впоследствии ирландский математик и астроном Уильям Роуэн Гамильтон (1805–1865) переписал уравнения механики для многомерных пространств.

Давайте рассмотрим следующий пример. Нам нужны четыре координаты для описания положения колеса, которое без скольжения движется вперед по поверхности: две координаты для описания точки касания колеса с поверхностью, одна — для угла поворота, и еще одна — для угла вращения вокруг продольной оси. Это делает пространство положений колеса четырехмерным. Если мы добавим движение, нам придется ввести еще четыре координаты для скорости. Таким образом, пространство положений колеса, движущегося по поверхности, имеет восемь измерений.

Эта диаграмма показывает, что пространство положений колеса, которое катится без скольжения по плоской поверхности, имеет четыре измерения. Координаты точек — х , у , α , Θ . Первые две, х и у , описывают точку касания колеса с плоскостью. Угол α является углом вращения вокруг продольной оси, а Θ — углом поворота.

Большинство областей науки (физика, астрономия, экономика, биология, медицина, машиностроение и многие другие) используют многомерные пространства.

Значение такого подхода заключается в том, что он позволяет нам оперировать геометрическими и математическими инструментами для получения полезной информации по изучаемому объекту или для выявления его интересных применений. Рассмотрим два ярких примера, которые показывают полезность этих методов в нашей повседневной жизни.

Шифрование сообщений

Мобильные телефоны, интернет, цифровые телевизоры, музыкальные компакт-диски, фильмы на DVD, цифровая идентификация — все это зависит от шифрования данных и их последующей расшифровки. В этом процессе обнаружение и исправление ошибок является важным элементом.

В наш цифровой век шифрование сообщений, будь то изображение, музыка или текст, требует перевода информации в последовательности нулей и единиц. Это называется двоичным шифрованием (каждый 0 или 1 называется бит — сокращение от английского выражения «двоичная цифра»). Такие последовательности делятся на «слова» фиксированной длины, которую мы обозначим k. Строки из 4 бит (содержащие 4 цифры) называют шестнадцатеричными цифрами. Всего существует 24 = 16 таких цифр, а строки из 8 бит называются байтами (их 28 = 256 штук).

Кодировка ASCII содержит 256 возможных кодов для выражения различных символов, другими словами, с помощью этих кодов можно закодировать 256 печатных символов. Бит каждого «слова» можно рассматривать как координату, хотя она принимает только значения 0 и 1. Каждое «слово» из k бит представляет собой точку в координатном пространстве размерности k, другими словами, количество размерностей равно длине слов. Например, шестнадцатеричное слово ООН отождествляется с точкой (0, 0, 1, 1) четырехмерного координатного пространства. В этом пространстве можно задать расстояние — способ измерения, насколько далеко друг от друга находятся точки (двоичные «слова») этого геометрического пространства.

Например, так называемое расстояние Хэмминга между двумя словами определяется количеством цифр, которыми эти слова различаются (так, слова ООН и 1011 находятся на расстоянии 1). В этом координатном пространстве мы можем использовать все математические инструменты арифметики, алгебры, анализа и геометрии.

Однако все не так просто, учитывая, что при передаче данных — со спутника или по электронной почте — или при чтении зашифрованных данных (например, на музыкальных компакт-дисках) могут возникнуть ошибки. В этой ситуации у нас имеется две проблемы: возможно, мы не знаем, что полученная информация является ошибочной, а также мы не знаем, какие биты неправильны. Поэтому приходится использовать дополнительные контрольные коды, увеличивая длину слов и, следовательно, размерность координатного пространства.

Пример кода, который помогает обнаружить ошибки, — это испанский налоговый идентификационный номер, содержащий дополнительную букву, которая генерируется с помощью математической формулы. Таким образом, если хотя бы одна цифра номера будет неверной, то буква будет отличаться от нужной, что и поможет выявить ошибку.

Самокорректирующийся код американского инженера Ричарда Уэсли Хэмминга устроен так: к каждому шестнадцатеричному слову с помощью математического алгоритма добавляются еще три бита (например, слово ООП превратится в 0011101). К тому же, этот код способен исправить ошибку в одном из битов слова.

Код Хэмминга очень прост, но существуют и другие, гораздо более сложные коды обнаружения и исправления ошибок. Например, код Рида — Соломона, который используется в компакт-дисках и в телеметрии с гражданских спутников, где применяются 65- и 265-битовые слова соответственно, то есть каждое слово представляет собой точку в координатном пространстве с 65 и 265 измерениями. Таким образом, использование математического аппарата в координатном пространстве оказывается очень полезным, особенно при создании кодов для обнаружения и исправления ошибок.

Поисковая система Google

В настоящее время поисковая система Google стала одним из основных инструментов поиска в интернете, и у нее огромное количество пользователей. Одной из причин такого успеха является ее эффективность, так как для каждого поискового запроса система быстро выдает упорядоченный список результатов, и первые из них, как правило, содержат то, что мы ищем. Способ упорядочивания результатов поиска, то есть присвоения числового рейтинга каждой странице, использует сложную математику — смесь линейной алгебры, теории графов и теории вероятностей.

При разработке поисковых систем, подобных системе Google, приходится решать и математические, и технические задачи. Другими словами, главный вопрос заключается в том, как упорядочить результаты поиска. Можно предположить, что рейтинг определенной веб-страницы зависит от количества других страниц, ссылающихся на нее. Однако существуют страницы, на которые мало ссылок, но которые очень важны для данного поиска. Поэтому такая модель невыгодна для пользователей. К тому же она может быть легко использована веб-сайтами для искусственного повышения рейтинга.

Создатели Google Сергей Брин и Ларри Пейдж разработали алгоритм для определения рейтинга страницы не по количеству ссылок на нее, а пропорционально важности этой страницы для данного поиска. Этот алгоритм требует решения системы алгебраических уравнений. Фактически задача сводится к линейной алгебре, а именно к вычислению собственных векторов и собственных значений некой матрицы. Если обозначить важность веб-страниц в интернете набором чисел (x 1 , …., x n ), где n — число страниц, существующих в интернете, а хi   — число, означающее важность конкретной веб-страницы i, то задача сводится к поиску в n-мерном пространстве элемента (x 1 , …., x n ), который является решением некой системы уравнений.

В 2006 г. было подсчитано, что в интернете существует около 600 миллиардов веб-страниц. Это число и соответствует числу измерений рассматриваемого пространства. Такое пространство, безусловно, является многомерным!

* * *

АЛГОРИТМ, КОТОРЫЙ ИЗМЕНИЛ ИНТЕРНЕТ

В 1998 г. два молодых студента-информатика Стэнфордского университета в Калифорнии Ларри Пейдж и Сергей Брин заканчивали исследовательский проекте несколько загадочным названием «Анатомия системы крупномасштабного гипертекстного интернет-поиска». Он содержал первую версию простого и элегантного алгоритма PageRank, используемого для упорядочивания списка

страниц в зависимости от их значимости. PageRank стал основой поисковой системы Google, которая через несколько лет обошла Yahoo, Altavista и многие другие поисковые системы. Поиск в Google даже стал синонимом поиска в интернете (слово «гуглить»» еще не вошло в словари, но активно употребляется в разговорной речи).

Алгоритм PageRank действительно элегантен и прост и может быть записан следующим образом:

где  W j  — рейтинг страницы j ; W i   — рейтинг страницы i , которая содержит ссылку на страницу j ; число d — коэффициент затухания со значением между 0 и 1, необходимый для сходимости рядов; n i , — число ссылок на странице W i , на другие страницы; N  — общее количество страниц, которые содержат ссылку на страницу j .

Рейтинг любой страницы является суммой рейтингов всех страниц, которые ссылаются на нее, с весовым коэффициентом, зависящим от общего числа ссылок на каждой.