Одновременно с проблемой определения формы нашей планеты возник вопрос о ее размерах. Когда стало понятно, что Земля имеет форму сферы, потребовалось определить ее радиус, так как длина окружности (когда речь идет о сфере, имеется в виду длина любого из ее больших кругов) равна 2πr.

Оценки Евдокса и Архимеда

И вновь ответ на вопрос дали древние греки. Как мы рассказали в предыдущей главе, Аристотель в своем трактате «О небе» отмечал, что математики вычислили длину окружности земли — 400000 стадиев. По-видимому, здесь он цитирует греческого математика и астронома Евдокса Книдского (ок. 400 года до н. э. — ок. 347 года до н. э.) , который считается создателем математической астрономии.

Следующая оценка размеров нашей планеты содержится в книге «Исчисление песчинок», написанной величайшим греческим математиком Архимедом  (ок. 287 года до н. э. — ок. 212 года до н. э) . В этой книге он оценивает число песчинок во Вселенной, предварительно вычислив ее размеры. На одном из промежуточных этапов Архимед отмечает, что «периметр Земли равен 3000000 стадиев и не больше», хотя признает, что некоторые оценивают размеры Земли в 300 000 стадиев. Эта цифра казалась Архимеду заниженной — он, как и Платон, считал, что наша планета имеет огромные размеры.

Измерения  Эратосфена

Самое известное измерение размеров Земли в древности принадлежит Эратосфену Киренскому (276 год до н. э. — 194 год до н. э.) . Чтобы узнать размеры Земли, Эратосфен измерил угол и длину дуги меридиана Александрии. Он определил, что длина всего меридиана равна 252 тысячи стадиев — как вы увидите далее, это очень точный результат. Метод Эратосфена известен нам благодаря греческому астроному Клеомеду (ок. 10 — ок. 70) , а также таким классическим авторам, как Герои, Страбон, Плиний и Витрувий.

Эратосфен учел, что Земля имеет форму сферы, а лучи Солнца, достигающие ее поверхности, можно считать параллельными, так как Солнце находится от нас на огромном расстоянии. Ученый провел измерения в Александрии и Сиене (современный Асуан), которые находятся на одном меридиане, определив тем самым дли¬ ну дуги этого меридиана.

Эратосфен определил, что расстояние между Александрией и Сиеной равно 5 тысяч стадиев. Для этого он обратился к погонщикам караванов, которые рассказали ему, что верблюд проходит в день примерно 100 стадиев, а путь от Александрии до Сиены занимает 50 дней. Весьма вероятно, что Эратосфен опирался не только на слова погонщиков верблюдов, а, как хороший ученый, сопоставил их с данными, приведенными в книгах Александрийской библиотеки.

* * *

ЭРАТОСФЕН КИРЕНСКИЙ (276 ГОД ДО Н.Э. — 194 ГОД ДО Н. Э.)

Эратосфен был разносторонним ученым: он занимался географией, математикой, астрономией, философией, хронологией, грамматикой, был литературным критиком и даже писал стихи, за что товарищи наградили его титулом пентатл — «пятиборец», имея в виду пентатлон — состязания в пяти дисциплинах. Было у него и другое прозвище — Бета, то есть «второй». Его можно понимать как намек на то, что Эратосфен, который занимался многими науками, ни в одной из них не достиг совершенства, хотя, отметим, все равно был одним из великих мудрецов Античности. В 30 лет он был назначен главой Александрийской библиотеки и занимал этот пост на протяжении 45 лет, до самой смерти.

* * *

Кроме того, Эратосфен учел, что через Сиену проходит Северный тропик, то есть в полдень в день летнего солнцестояния (примерно 21 июня) солнечные лучи падают на город вертикально. Любой житель и гость Сиены мог подтвердить, что в этот день лучи солнца освещали глубокие колодцы до самого дна.

Схематичное изображение Александрии, Сиены и солнечных лучей, освещающих эти города в день летнего солнцестояния. Эратосфен при измерении размеров Земли использовал похожую схему.

Чтобы измерить угол, определяемый дугой меридиана, Эратосфен также использовал гномон — простой инструмент, представляющий собой вертикальный столб, перпендикулярный горизонтальному основанию. Рассказывают, что в качестве гномона ученый использовал большой обелиск.

С помощью гномона Эратосфен измерил угол наклона Солнца относительно вертикали в полдень в день летнего равноденствия. По его подсчетам, этот угол составил 1/50 окружности, то есть 360°/50 = 7,2°. А поскольку в полдень этого же дня лучи Солнца падают на Сиену вертикально, угол дуги меридиана между Александрией и Сиеной равен α, то есть 7,2°.

* * *

ПОЛЕЗНЫЕ СВОЙСТВА ГНОМОНА

Зафиксировав гномон в одном положении, мы можем наблюдать движение его тени по мере того, как солнце движется по небу. Так, можно определить, когда наступает полдень — в этот момент Солнце находится в наивысшей точке над горизонтом, а тень гномона будет самой короткой. Гномон можно использовать и в качестве простого компаса, так как в полдень его тень указывает направление «север — юг».

В полдень, когда длина тени гномона наименьшая, он указывает направление «север — юг». В течение дня тень гномона описывает гиперболу, симметричную относительно направления «север — юг», за исключением 20 марта и 22 сентября, — в эти дни тень гномона движется по прямой, указывающей направление «запад — восток».

Если мы будем наблюдать за гномоном, расположенным на одном и том же месте, в течение года, то сможем также определить дни летнего и зимнего солнцестояния. Если в каждый день года мы будем отмечать конец тени в полдень, то увидим, что зимой, когда Солнце находится ниже всего над горизонтом, тени будут длиннее, чем в остальные времена года. День зимнего солнцестояния — это день, когда тень гномона будет самой длинной. День года, когда тень гномона будет самой короткой, — это день летнего солнцестояния.

Гномон также можно использовать для определения угловой высоты Солнца. Чтобы измерить угол, определяющий высоту Солнца (см. рисунок ниже), нужно всего лишь измерить длину гномона и его тени. Говоря современным языком, соотношение между длиной гномона и его тени будет равно тангенсу искомого угла. Аналогично можно определить угол между гномоном и лучами Солнца, указывающий, насколько Солнце отстоит от вертикали. Этот угол будет дополнительным к первому, то есть сумма этих углов будет равна 90°.

Гномон и его тень позволяют определить угловую высоту Солнца.

* * *

Путем несложных рассуждений можно прийти к выводу: если дуга меридиана имеет длину в 5000 стадиев и ей соответствует угол в 7,2°, то длина полной окружности, то есть 360°, будет равна

В полдень, в день летнего солнцестояния, лучи Солнца освещают Сиену вертикально, достигая дна самых глубоких колодцев. В этот же день и час лучи Солнца освещают Александрию под углом 7,2° относительно вертикали.

По-видимому, Эратосфен провел несколько измерений и в итоге получил окончательный результат в 252 тысячи стадиев. Его метод, который можно использовать и в наши дни, очень прост и эффективен. К сожалению, мы не можем точно перевести стадии в привычные нам метры: во времена Эратосфена не существовало единой системы мер, поэтому в точности неизвестно, какой была длина стадия, использованного ученым. Если мы рассмотрим египетский стадий, равный 157,5 м, то результат Эратосфена составит 39690 км. Эта цифра очень близка к 40030,2 км — именно столько составляет длина окружности Земли в сферической модели (полученной на основе эллипсоида WGS 84).

Хотя почти все оценки, которые привел Эратосфен, были слегка неточными, ошибки наблюдений и измерений компенсировали друг друга, и полученный результат был очень близок к реальному. Александрия и Сиена не располагаются в точности на одном меридиане, определить точное расстояние между ними в то время было невозможно, а гномон позволял лишь приближенно измерить угол между лучами Солнца и вертикалью.

Измерения  Посидония и ошибка  Колумба

Еще один важный результат, связанный с измерением земной окружности в древнем мире, принадлежит греческому философу-стоику Посидонию  (ок. 130 года до н. э. — 30 год до н. э.), одному из великих географов своего времени. Его результаты также дошли до нас благодаря трудам различных классических авторов. Как и Эратосфен, Посидоний измерил дугу меридиана, на этот раз — между Родосом и Александрией. В своей обсерватории на Родосе философ обнаружил, что звезда Канопус, вторая по яркости на звездном небе, находится в точности над горизонтом, а при наблюдении из Александрии угловая высота этой звезды равна 1/48 земной окружности (см. следующую иллюстрацию). Согласно Клеомеду, Посидоний посчитал, что длина дуги меридиана между Родосом и Александрией равна 5 тысячам стадиев, таким образом, длина окружности Земли составляет 48·5000 = 240000 стадиев. Однако греческий географ и историк Страбон (63 год до н. э. — 24 год н. э.) приводит более позднюю оценку Посидония: 180 тысяч стадиев, то есть 28350 км (если использовать египетские стадии). Этот результат ученый получил, уточнив расстояние между Родосом и Александрией: оно составило 3750 стадиев. Таким образом, Земля стала меньше.

Схема измерений размеров Земли, проведенных Посидонием . Если при наблюдении из Родоса звезда Канопус находится точно над горизонтом, то для наблюдателя в Александрии она располагается на небосводе под углом  θ к горизонту, равным углу между Родосом и Александрией.

Метод Посидония для оценки размеров Земли также был остроумным, простым и геометрически безупречным, однако философ не учел преломление света в земной атмосфере, из-за которого при наблюдении небесных тел вблизи горизонта мы видим их выше, чем они располагаются на самом деле. Если бы лучи света не преломлялись, Канопус находился бы ближе к горизонту и, как следствие, реальная величина угла была бы меньше вычисленной Посидонием.

Клавдий Птолемей, как и Страбон, и другие, считал результат Посидония корректным и привел его в своей «Географии». Таким образом, представление о малых размерах Земли было популярным среди географов и картографов до XV века. Именно поэтому итальянский математик и картограф Паоло Тосканелли (1397–1482) , составивший мореходную карту Атлантического океана, считал, что можно проплыть из Европы в Азию, а Христофор Колумб верил, что существует неизвестный путь доставки специй в Европу через Атлантический океан.

Реконструкция карты Тосканелли , на которой изображены более или менее реалистичные очертания Американского континента.

Метод триангуляции

Позднее для измерения меридианов Земли, а следовательно, для вычисления ее размеров использовалась триангуляция. Этот метод заключается в разделении местности на треугольники, максимально точном измерении углов триангуляции и длины одной из сторон исходного треугольника, называемого базовым, и последующем вычислении длин остальных сторон с помощью тригонометрии. Измерить длины сторон треугольников напрямую из-за неровностей рельефа довольно сложно, особенно если речь идет о больших расстояниях. Однако измерить с большой точностью углы вполне возможно.

Вверху — общая триангуляция Франции, проведенная в период с 1818 по 1845 год.

В истории об измерении размеров Земли с помощью метода триангуляции нам встретятся труды французского астронома Жана Пикара (1620–1682) (вычисленную им длину земного меридиана использовал Ньютон для подтверждения своего закона всемирного тяготения) и Жана-Доминика Кассини — первого директора Парижской обсерватории, который сделал ее ведущим мировым центром астрономии и картографии и попытался составить точную карту Франции. Вы также узнаете об экспедициях в Лапландию и Перу, организованных Парижской академией наук с целью определить, какова форма нашей планеты у полюсов — приплюснутая или вытянутая; об измерении меридиана между Дюнкерком и Барселоной, которое провели французские ученые Жан-Батист-Жозеф Деламбр (1749–1822) и Пьер Мешен (1744–1804) , что привело к определению метра как единицы длины.

Карта побережий Франции (1682), составленная по результатам научных измерений (с помощью триангуляции), проведенных Пикаром , де Ла Гиром и  Кассини . На этой карте вы можете видеть береговую линию Франции до измерений (более широкую) и после (более точную). Увидев эту разницу, Людовик XIV сказал Кассини: «Ваше путешествие стоило мне части моего королевства!»

* * *

МЕТР

Единицей длины в Международной системе единиц является метр, который сегодня определяется как расстояние, которое проходит свет в вакууме за 1/299 792458 секунды (примерно 3,34 наносекунды, то есть 3,34 миллиардных (10 -9 ) частей секунды).

В разное время метр определялся по-разному, однако началом его использования в качестве универсальной единицы длины мы обязаны Великой французской революции. В 1790 году для унификации единиц мер была создана Комиссия по мерам и весам. Было поставлено два условия: единицы измерения должны быть универсальными, то есть применяться повсеместно, и они не должны быть выбраны произвольно. В соответствии с этими условиями новая единица длины, метр, была определена как одна десятимиллионная часть расстояния от Северного полюса до экватора, измеренного вдоль меридиана. В самый разгар революционных потрясений было организовано две экспедиции для измерения длины парижского меридиана между Дюнкерком и Барселоной. Экспедицию, которая направилась в Дюнкерк, возглавил Деламбр, барселонскую экспедицию — Мешен. В ходе измерений с помощью триангуляции, которые длились 7 лет, ученые пережили всевозможные тяготы и многочисленные приключения. Этим событиям посвящен очень интересный роман Дэниса Гейджа «Измерение мира» (« The Measure of the World »).