В нашем рассказе о картографии не обойтись без географических координат — широты и долготы, которые позволяют однозначно определить положение любой точки земной поверхности. Познакомьтесь с координатной сеткой, образованной двумя почтенными семействами сферических кривых — параллелями и меридианами, которые являются кривыми постоянной широты и долготы. Мы настолько привыкли к тому, что кратчайшим путем между двумя точками является прямая, что сложно представить, что на поверхности сферы это не так. Однако это действительно не так, хотя бы потому, что на поверхности сферы нельзя провести прямую. Следующий вопрос кажется очевидным: какие кривые играют на сфере ту же роль, что и прямые на плоскости? Точнее, каков кратчайший путь между двумя точками сферической поверхности? Ответом на этот вопрос будет еще одно интересное семейство сферических кривых — большие круги.

Широта и параллели

Чтобы определить географические координаты, нужно учесть вращение Земли вокруг воображаемой оси, проходящей через ее центр. Северный и Южный полюс — это точки пересечения оси с земной поверхностью, а также единственные точки, которые при вращении Земли остаются неподвижными. Если мы рассмотрим сферическую модель нашей планеты, то параллели будут окружностями, полученными сечением сферы плоскостями, перпендикулярными ее оси вращения (см. следующий рисунок). Существует особая параллель, экватор, которая находится на полпути между Северным и Южным полюсом. Экватор определяется сечением земного шара плоскостью, перпендикулярной его оси вращения и проходящей через центр нашей планеты. Экватор — это самая длинная параллель.

Схема, на которой изображены пять главных параллелей и широта точки Р .

Широта произвольной точки земной поверхности определяется как угол наклона относительно плоскости экватора, то есть угол между отрезком, соединяющим центр земли с рассматриваемой точкой, и плоскостью экватора (на предыдущей схеме этот угол обозначен буквой φ). Например, город Бильбао расположен на 43°15′52″ северной широты, то есть в 43 градусах 15 минутах и 52 секундах к северу от экватора. Широта принимает значения от 90° ю. ш. (в Южном полушарии) до 90° с.ш. (в Северном полушарии). Следовательно, параллели — это кривые, образованные точками с одинаковой широтой.

Данное нами определение широты верно для сферической модели Земли, которую мы рассматриваем в этой книге. Для эллипсоидной модели требуется более общее определение геодезической широты, которая понимается как угол между плоскостью экватора и перпендикуляром к прямой, касательной к меридиану эллипсоида, проходящему через данную точку (см. следующий рисунок).

Понятие геодезической широты обобщает понятие широты для эллипсоидной модели земной поверхности.

* * *

ПРОИСХОЖДЕНИЕ ГЕОГРАФИЧЕСКИХ КООРДИНАТ

Карту известной части мира, на которой можно увидеть неправильную сетку меридианов и параллелей, составил еще Эратосфен, однако систему меридианов и параллелей, разделенных равными интервалами, первым предложил греческий астроном Гиппарх Никейский (ок. 180 года до н. э. — ок. 120 года до н. э.) . В своих картах он разделил обитаемый мир одиннадцатью параллелями и предложил определять широту, одновременно наблюдая лунные затмения. Кроме того, Гиппарх первым в Древней Греции, вслед за вавилонянами, стал делить окружность на 360°, каждый градус — на 60 минут, каждую минуту — на 60 секунд.

Карта  Эратосфена с неравномерной сеткой меридианов и параллелей.

ОСОБЫЕ ПАРАЛЛЕЛИ

Земля, и в частности ее центр, вращаются вокруг Солнца по эллиптической орбите, форма которой очень близка к окружности. Орбита Земли лежит в плоскости, называемой плоскостью эклиптики, относительно которой земная ось наклонена на 23°30′. В один из дней года (примерно 21 июня), когда земная ось указывает на Солнце, Северное полушарие находится ближе всего к Солнцу, и этот день, который называется днем летнего солнцестояния, становится самым длинным в году. В Южном полушарии этот же день будет самым коротким. В полдень дня летнего солнцестояния Солнце находится точно над параллелью, расположенной на 23°30′ северной широты, которая называется Северным тропиком. В день зимнего солнцестояния (22 декабря) земная ось, напротив, указывает в противоположную от Солнца сторону, и в Северном полушарии этот день — самый короткий в году.

Схема движения Земли, на которой отмечены дни равноденствия и солнцестояния.

Южный тропик — параллель, расположенная на 23°30′ южной широты. Солнце находится точно над этой параллелью ровно в полдень в день зимнего солнцестояния. В дни весеннего и осеннего равноденствия земная ось указывает соответственно либо вправо, либо влево от Солнца, и в полдень солнечные лучи падают на экватор. Так как в день летнего солнцестояния солнечные лучи падают перпендикулярно Северному тропику (23°30′ северной широты), то в тех частях нашей планеты, которые отстоят от Северного тропика больше чем на 90°, то есть находятся южнее 66°30′ южной широты, в этот день все 24 часа будет темно. К северу от 66°30′ северной широты в этот день все 24 часа светит Солнце. В день зимнего солнцестояния все происходит с точностью до наоборот.

В день зимнего солнцестояния к северу от параллели 66°30′ северной широты (Северного полярного круга) ночь длится 24 часа.

* * *

Математическое определение широты корректно и понятно, но как определить широту в открытом море или на суше, вдали от цивилизации? Сейчас для этого используется технология GPS, однако раньше людям приходилось прибегать к более естественным решениям. Чтобы определить широту, нужно учесть, что угол φ равен разности между углом, под которым Солнце находится в полдень, в точке, широту которой мы хотим определить, и углом, под которым расположено Солнце относительно экватора в полдень того же дня. Эти углы можно определить, например, с помощью гномона.

Широта φ точки  Р на поверхности Земли равна разности между углом α р , под которым солнечные лучи освещают точку  Р в полдень, и углом α Е между солнечными лучами и экватором в полдень того же дня.

Если мы из города, широта которого известна, отправимся в другой город, то мы сможем определить широту последнего, сравнив углы, под которыми солнечные лучи освещают Землю в полдень одного и того же дня. Ночью для определения широты можно использовать Полярную звезду (она указывает направление на Северный полюс с погрешностью ровно в 1° и почти не меняет своего положения на небе) или любую другую яркую звезду. В течение многих веков широту определяли с помощью таблиц-альманахов, в которых указывалось положение Солнца и других небесных тел в различные дни и часы, а также с помощью инструментов, позволявших измерять угловую высоту небесных тел: астролябии, квадранта или поперечного жезла (позднее на смену ему пришел секстант). Все эти способы можно использовать и сейчас.

Долгота и меридианы

Если широта указывает положение в направлении «север — юг», то долгота — в направлении «запад — восток». Сначала рассмотрим окружности, получаемые сечением земной сферы плоскостями, содержащими ось вращения земли (см. следующий рисунок). Меридианами будут полуокружности, заключенные между полюсами. Над всеми точками одного меридиана астрономический, или солнечный полдень наступает в одно и то же время. Слово «меридиан» происходит от латинского meridianus, что означает «полуденный».

На схеме слева изображены меридианы — большие круги земной сферы, проходящие через полюса. На схеме справа показано, как определяется долгота произвольной точки Р .

Первое важное отличие меридианов от параллелей заключается в том, что не существует какого-то особого меридиана, который можно было бы считать нулевым. Эратосфен считал нулевым меридиан Александрии, Птолемей — меридиан островов Фортуны (Канарских островов и острова Мадейра), который был западной границей известного в то время мира. По патриотическим и религиозным причинам в качестве нулевого меридиана в разное время выбирались меридианы Мекки, Иерусалима, Парижа, Рима, Мадрида, Копенгагена, Кабо-Верде и другие, что вызывало большую путаницу. Наконец в XVIII веке, после того как в 1767 году был опубликован самый полный на тот момент морской астрономический альманах, Гринвичская королевская обсерватория в Англии стала всеобщей точкой отсчета.

В результате в 1884 году на международной конференции в Вашингтоне (США) в качестве нулевого меридиана был выбран именно меридиан Гринвича. Долгота точки земной поверхности — это угол поворота относительно Гринвичского меридиана, то есть угол между меридианом рассматриваемой точки, точнее плоскостью этого меридиана и плоскостью, в которой лежит нулевой меридиан (этот угол на рисунке выше обозначен буквой θ). Долгота Бильбао равна 2°55′43″ западной долготы, то есть Бильбао отстоит от Гринвичского меридиана на 2° 55 минут и 43 секунды на запад. Долгота принимает значения от —180° до 180°, то есть от 180° восточной долготы до 180° западной долготы.

За 24 часа Земля совершает полный оборот вокруг своей оси, то есть поворот на 360°. Таким образом, каждый час Земля поворачивается на 15°. Рассмотрим пример. Житель Бильбао пообщался со своим другом из Рима и оказалось, что солнечный полдень в Риме (Рим находится на востоке от Бильбао) наступает примерно на час позже. Следовательно, разница в долготе между этими городами будет равна примерно 15° (точная долгота Рима равна 12°30′ восточной долготы). Иными словами, чтобы определить долготу точки, нужно знать разницу во времени между этой точкой и Гринвичским меридианом. Как мы уже говорили, эту разницу проще всего определить в полдень.

Задача об определении долготы

Аналогично задаче об определении широты можно поставить задачу об определении долготы произвольной точки Земли. И вновь для того, чтобы найти решение, необходимо взглянуть на небо, хотя определить долготу будет намного сложнее: в течение дня, то есть по мере того как Земля вращается вокруг своей оси, одни небесные тела на востоке скрываются, другие, на западе, появляются. Следовательно, определить положение «запад — восток» по звездам сложнее. Поиски решения задачи о долготе продолжались четыре столетия. Великие морские державы, например Испания, Нидерланды, Англия и Франция, предлагали внушительные премии (не будем забывать, насколько важным было мореходство для этих стран в XV веке), а великие ученые, такие как Галилео Галилей, Жан-Доминик Кассини, Христиан Гюйгенс, Исаак Ньютон и Эдмунд Галлей, активно участвовали в поисках решения. Крупнейшей премией, возможно, была премия, учрежденная в 1714 году британским парламентом и составлявшая 20 тысяч фунтов.

* * *

ПЕРВОЕ ПУТЕШЕСТВИЕ КОЛУМБА

3 августа 1492 года Христофор Колумб отправился в путешествие по Атлантическому океану в поисках Азии. Сначала флотилия Колумба из 90 моряков на трех судах — «Пинта», «Нинья» и «Санта-Мария» (размеры последней составляли около 22 м в длину и 7,5 м в ширину) — направилась в сторону Канарских островов. От Канарских островов 6 сентября корабли отплыли на запад, следуя примерно вдоль прямой линии (для простоты курс был проложен вдоль одной параллели) между 26-й и 30-й параллелями. По оценкам Колумба, через 25–30 дней экспедиция должна была достичь Японии. 12 октября (21 октября по современному календарю) Колумб высадился на острове Сан-Сальвадор (туземцы называли его Гуанахани) и начал обследовать окрестности, посчитав, что достиг островов у берегов Японии.

* * *

Как предполагал еще Гиппарх, для определения долготы можно было использовать некое астрономическое явление, которое позволило бы оценить разницу во времени между двумя точками. Предположим, что в Бильбао солнечное затмение наблюдалось в полдень, но моряк, находящийся на корабле в Атлантическом океане, для которого затмение произошло в то же самое время, наблюдал его спустя четыре часа после того, как для него наступил полдень. Следовательно, разница в долготе между Бильбао и кораблем составляет 60°, то есть долгота корабля примерно равна 63° западной долготы. Однако солнечные и лунные затмения происходят крайне редко (в среднем примерно четыре раза в год), следовательно, их нельзя постоянно использовать для определения долготы.

Можно было решить задачу о долготе, зная относительное положение разных небесных тел. Так, астроном Иоганнес Вернер (1468–1522) предложил составить карту положений звезд, чтобы предсказать, когда Луна будет находиться рядом с теми или иными небесными телами в разные годы. Этот метод очень помог бы мореплавателям, однако он был небезупречен: положения звезд были известны неточно, не существовало инструментов для измерения расстояний между звездами и Луной, а траектория движения спутника Земли была изучена не до конца, поэтому точно предсказать положение Луны на небе также было очень сложно.

Галилео Галилей (1564–1642)  в качестве астрономических часов предложил использовать затмения лун Юпитера, которые наблюдались тысячу раз в год, и предсказать их было очень легко. Однако эта идея также была принята не слишком тепло. Кроме того, точные наблюдения Юпитера в те годы были проблематичны.

Ученые предлагали все новые и новые методы. Одни из них были безрассудными, другие — более серьезными, например предлагалось использовать компас и учитывать изменения земного магнетизма в разных точках нашей планеты. Позднее ученые вновь обратились к методу определения долготы по положению Луны и расстояниям от нее до звезд. Это стало возможным благодаря усовершенствованию навигационных измерительных инструментов, в частности квадрантов и секстантов, развитию астрономии и публикации подробного альманаха по данным наблюдений в новой Гринвичской королевской обсерватории. Кроме того, с помощью теории тяготения Ньютона была получена более точная информация о движении Луны.

Секстант — важный инструмент морской навигации. Он позволяет измерять углы между двумя звездами или двумя точками побережья, а также высоту звезд на небосводе.

Наиболее удачное решение задачи об определении долготы предложил английский часовщик Джон Гаррисон (1693–1776) , который сконструировал морской хронометр высокой точности, позволявший, находясь в любой точке мира, вычислять время в порту отплытия и, соответственно, долготу. Мореплаватель в открытом море должен был всего лишь определить по солнцу, когда наступит полдень, посмотреть, какое время показывает хронометр (а он показывал время в порту отплытия), рассчитать разницу во времени между портом и кораблем, умножить число часов на 15° и получить разницу в долготе относительно порта отплытия. Такое механическое решение задачи о долготе не обрадовало ни ученых того времени, ни членов Комитета по долготе, учрежденного английским парламентом. Чиновники всячески оттягивали выплату часовщику Джону Гаррисону причитающейся ему премии, надеясь, что свое решение предложат астрономы. Однако в конечном итоге всем пришлось признать, что морские хронометры Гаррисона позволяли определить долготу с требуемой точностью.

В результате всего изложенного можно сказать, что любая точка земной сферы однозначно задается параллелью и меридианом, проходящими через нее, или, что аналогично, широтой и долготой, которые называются географическими координатами.

Хронометр Джона Гаррисона Н5. С помощью хронометра Н4, сконструированного этим английским часовщиком, удалось решить задачу об определении долготы. Н4 выглядел как карманные часы большого размера и имел примерно 13 см в диаметре. Его эффективность была доказана во время путешествия корабля «Дептфорд» на Ямайку. По прибытии в Порт-Ройал два месяца спустя хронометр Н4 отстал всего на 5 секунд. Обратный путь выдался невероятно трудным, и общее расхождение за все время путешествия возросло до 1 минуты 54 секунд. Несмотря на это ошибка при вычислении долготы по-прежнему была меньше, чем требовал Декрет по долготе. Джон Гэррисон все-таки получил причитавшиеся ему 20 тысяч фунтов премии, хотя и спустя много лет.

* * *

ГИБЕЛЬ «ТИТАНИКА»

Каждый из нас видел хотя бы один художественный или документальный фильм, посвященный гибели «Титаника». Возможно, именно поэтому мы хорошо знаем историю этого роскошного корабля, который был создан с использованием новейших технологий своего времени. «Титаник» был гордостью владельцев, ему было суждено стать флагманом трансатлантических путешествий начала XX века. Тем не менее ночью 14 апреля 1912 года корабль столкнулся с айсбергом и затонул. Спасти уцелевших пассажиров удалось благодаря тому, что были известны географические координаты места крушения. С «Титаника» по радио был отправлен сигнал SOS: «Столкнулись с айсбергом. Тонем. «Титаник». 41°16′ северной широты, 50°14′ западной долготы. Срочно пришлите помощь». Корабль «Карпатия», находившийся ближе всего к месту катастрофы, получил сообщение и быстро направился в точку с указанными географическими координатами. «Карпатия» прибыла вовремя, удалось спасти более 700 человек (большинство из них составляли женщины и дети), находившихся в шлюпках.

* * *

Большие круги, геодезические линии сферы

Расстояние между двумя точками произвольной поверхности можно определить как длину кратчайшей из кривых, соединяющих эти две точки (именно так поступают геометры). По сути этим расстоянием будет длина кратчайшего пути между двумя рассматриваемыми точками, при условии что такой путь вообще существует. В геометрии кривые, указывающие кратчайший путь на поверхности, называются геодезическими линиями. Впрочем, это понятие несколько шире и включает кривые, определяющие «локальный» кратчайший путь. Что это означает? Это означает, что мы можем выбрать две точки поверхности, соединенные геодезической линией, так, что она не укажет наименьшее расстояние между ними. Однако если мы выберем две произвольные промежуточные точки геодезической линии, близкие друг к другу, то кратчайшим путем между ними всегда будет соединяющая их часть геодезической линии, как показано на рисунке.

Геодезические линии указывают кратчайшее расстояние между соседними точками, однако в общем случае это не так. Например, часть меридиана, соединяющего Лондон и город Гао в Мали и проходящего через Северный полюс, Атлантический океан и Южный полюс, — это геодезическая линия, но она не соответствует кратчайшему пути из Лондона в Гао. Однако эта геодезическая линия соответствует кратчайшему пути между близлежащими точками, например между Гао и городом Аккра в Гане или между Лондоном и Северным полюсом.

Как всем хорошо известно, геодезическими линиями плоскости являются прямые. Тем не менее минимальное расстояние между точками на сфере указывают большие круги — кривые, получаемые сечением сферы плоскостями, проходящими через ее центр. Примерами больших кругов сферы являются меридианы. Единственная параллель, которая является большим кругом, — это экватор.

На иллюстрации показаны большие круги Земли.

Проведем эксперимент. Допустим, что мы хотим провести прямую, проходящую через две точки плоской поверхности. Для этого мы можем соединить эти точки простой веревкой и сильно натянуть ее. Веревка примет форму прямой, соединяющей две точки. Теперь рассмотрим земной шар. Чтобы определить кратчайший путь между двумя точками земного шара, например между Барселоной и Аделаидой, соединим указанные точки веревкой и натянем ее. Мы получим кривую наименьшей длины, соединяющую два указанных города (то есть геодезическую линию), которая будет частью большого круга, проходящего через эти города, как показано на иллюстрации.

Натянутая веревка соответствует кратчайшему пути между двумя точками.

На интуитивном уровне можно сформулировать следующее доказательство. Допустим, даны две точки на сфере, и мы хотим найти кривую, которая определяет кратчайший путь между ними. Кажется логичным предположить, что мы можем ограничиться рассмотрением окружностей сферы, которые проходят через эти точки и образуются сечением сферы плоскостями, проходящими через две данные точки. Кроме того, в силу свойств симметрии, четко видно, что дуга окружности, полученной сечением сферы плоскостью, проходящей через центр сферы, соответствует кратчайшему пути между точками, что показано на предыдущем рисунке. В итоге большие круги являются геодезическими линиями сферы, или кривыми, указывающими наименьшее расстояние.

Дуга большого круга, заключенная между между двумя точками, имеет наименьшую длину среди всех дуг окружностей, соединяющих данные точки.

* * *

ГЕОДЕЗИЧЕСКИЕ КУПОЛА

Одно из самых впечатляющих сооружений сферической формы, созданных в XX веке, — это геодезические купола Ричарда Бакминстера Фуллера (1895–1983). Мы могли бы многое сказать об этом гениальном изобретателе, архитекторе, инженере, математике, поэте и космологе, провидце, который опередил свое время и смог поставить науку и технику на службу обществу. Величайшим его творением, несомненно, являются геодезические купола.

Американский павильон на Всемирной выставке 1967 года в Монреале, построенный по проекту Ричарда Бакминстера Фуллера . Позднее в павильоне разместился музей воды и окружающей среды

(фотография: Филипп Хайнсторфер ).

Геодезический купол — это сферическая структура, образованная сеткой больших кругов (геодезических линий). Треугольники, из которых состоит сетка, придают структуре жесткость. Для построения классического геодезического купола рассматривается икосаэдр, вписанный в сферу, как показано на иллюстрации. Затем каждая грань икосаэдра делится на треугольники, которые проецируются на сферу, образуя сетку геодезических линий.

Преимущества геодезического купола следующие.

1. Он покрывает обширное пространство и не требует поддерживающих конструкций в середине.

2. Для геодезического купола характерно оптимальное соотношение объема к площади поверхности, иными словами, он покрывает пространство максимального объема при наименьшей площади поверхности.

3. Пространство внутри купола нетрудно обогревать, так как потери тепла зависят от соотношения между объемом и площадью поверхности, которое является оптимальным.

4. Геодезические купола благодаря своей структуре и распределению нагрузки обладают высокой жесткостью.

5. Геодезические купола имеют малый вес и просты в сборке.

* * *

Кривизна больших кругов

Прямые также можно определить как кривые, обладающие нулевой кривизной. Можно ли дать похожее определение большим кругам сферы? Кажется очевидным, что окружность, будучи плоской кривой, имеет одинаковую кривизну во всех точках, и эта кривизна ненулевая. Кроме того, чем больше радиус окружности, тем более вытянутой она будет, и тем меньше будет ее кривизна (см. иллюстрацию на следующей странице). Геометрически кривизна окружности радиуса r равна 1/r. Следовательно, чем больше радиус окружности, тем меньше ее кривизна. Изменение кривизны окружности в зависимости от ее радиуса можно почувствовать, если проехать на велосипеде по кругу: в зависимости от радиуса круга нужно будет поворачивать руль на больший или меньший угол. Когда мы не поворачиваем руль, велосипед движется по «прямой», то есть по большому кругу, имеющему наименьшую кривизну. Следовательно, большие круги имеют наименьшую кривизну, а их радиус будет наибольшим.

Чем больше радиус окружности r , тем меньше ее кривизна k .

В действительности геометры определили новую величину, которую можно назвать кривизной кривой на заданной поверхности. Это так называемая геодезическая кривизна, которая указывает степень кривизны кривой на поверхности, которой она принадлежит. В качестве окружающего пространства рассматривается именно эта поверхность, а не трехмерное пространство.

Геодезическая кривизна геодезических линий, в частности больших кругов сферы, равна нулю, что является обобщением кривизны прямой на плоскости.