Развитие жизни на Земле (без илл.)

Иорданский Николай Николаевич

ГЛАВА 4. МЕЗОЗОЙСКАЯ ЭРА — ВЕК РЕПТИЛИЙ

 

 

После завершения в середине пермского периода оледенения Гондваны климат Земли стал более теплым. (Возможно, это было связано с перемещением Южного полюса с континента в Тихий океан.) Потепление продолжалось на протяжении мезозойской эры, которая в целом была более однообразной в климатическом отношении, чем другие эры фанерозоя.

В мезозое господствовали теплые климаты с относительно слабо выраженной климатической зональностью. До сих пор не обнаружено мезозойских тиллитов, которые свидетельствовали бы об оледенении какого-либо континента. Южный полюс на протяжении мезозойской эры оставался в океане, а Северный перемещался от восточной оконечности Сибири к Аляске. При отсутствии оледенений температура воздуха и воды в океане была, вероятно, значительно выше современной: на экваторе на 3–5°, в средних широтах на 10°, а в полярных на 20–40° (Р. В. Фэйрбридж, 1970).

В то же время происходили важные изменения рельефа Земли и положения континентов, которые привели к формированию в общих чертах существующих ныне континентов и океанов.

В начале триаса сохранялись относительно высокие материки (продолжение геократической эпохи пермского периода). Затем началась морская трансгрессия с образованием мелких краевых морей Тихого океана. Она была прервана в начале юрского периода древнекиммерийской фазой Альпийской тектоно-магматической эпохи, сопровождавшейся регрессией моря. Затем последовала новая значительная трансгрессия, с которой было связано развитие характерного для мезозойской эры океана Тетис между Лавразией и Гондваной. Конец юрского периода ознаменовался позднекиммерийской фазой горной складчатости. В меловом периоде произошла новая морская трансгрессия, достигшая максимума в позднемеловой эпохе. Краевые теплые моря океана Тетис в эпохи максимальных трансгрессий юрского и мелового периодов заливали значительные территории Европы (в том числе Русскую равнину) и Северной Африки. Морские трансгрессии в середине и конце мелового периода были прерваны поднятиями суши и горообразовательными процессами (соответственно австрийская и ларамийская фазы альпийского горообразования).

Согласно представлениям теории тектоники плит (см. главу 3), общей тенденцией в мезозое был распад суперконтинента Пангеи с последующим расхождением континентальных плит (рис. 39).

В триасе этот процесс еще только начался. Лавразия сместилась несколько к северу. При этом происходило постепенное раскрытие океана Тетис, отделявшего Лавразию от Гондваны. Затем Лавразия раскололась на Северную Америку и Евразию, между которыми началось формирование северной части Атлантического океана.

Вероятно, уже к концу юрского периода относится начало раскола Гондваны и, соответственно, возникновение Индийского океана и южной части Атлантики, отделивших Африку от Австралии и Антарктиды на востоке и юге и от Южной Америки на западе.

В меловом периоде расхождение континентов, которые в конце палеозоя входили в состав единой Пангеи, значительно прогрессировало. Продолжали расширяться Атлантический и Индийский океаны. При движении американских плит к западу на их западных окраинах возникли мощные зоны горной складчатости: в юрском периоде — Сьерра-Невада, в меловом — Анды и Скалистые горы (позднекиммерийская и ларамийская фазы горообразования). Индостан и Мадагаскар обособились от Африки; Индостанская плита начала смещение к северо-востоку. Сложные взаимные смещения Африки и Европы 1 привели к постепенному закрытию океана Тетис. Из материков, входивших в состав Гондваны, в конце мезозоя оставались соединенными лишь Антарктида и Австралия. Зато материки, составлявшие Лавразию и разделившиеся в начале мезозоя, к концу мелового периода вновь соединились, правда противоположными концами: Азия и Северная Америка сошлись в области Чукотки и Аляски. Так возникла Берингия — сухопутный мост, связывавший Америку и Азию на месте современного Берингова пролива.

 

ТРИАС — ВРЕМЯ ОБНОВЛЕНИЯ ФАУНЫ

Рубеж между пермским и триасовым периодами был отмечен существенными изменениями в характере фауны наземных позвоночных. В пермское время преобладающими группами пресмыкающихся были звероподобные рептилии и котилозавры, тогда как группы с диапсидным черепом (лепидозавры и архозавры, объединяемые иногда под названием «завропсиды») оставались сравнительно немногочисленными. Так, по подсчетам П. Робинсон (1971), из верхнепермских отложений известно 170 родов звероподобных рептилий и лишь 15 родов завропсид. Это соотношение резко изменилось к началу мезозоя. Из числа котилозавров в триас перешли лишь проколофоны, вымершие к концу этого периода, а из звероподобных — немногие группы дицинодонтов и высших териодонтов. Зато обилие и разнообразие завропсидных рептилий неуклонно возрастает, и во второй половине триаса они становятся доминирующими. По данным П. Робинсон, соотношение числа родов звероподобных и завропсидных рептилий в раннем триасе было 36 против 20, в среднем триасе — 23 против 29, а в позднем триасе — уже 17 против 83. При этом нужно отметить, что высшие звероподобные рептилии обладали рядом прогрессивных признаков, отсутствовавших у завропсид (например, были способны к пережевыванию пищи, значительно повышавшему степень ее усвоения в кишечнике; вероятно, териодонты имели волосяной покров и т. д.; подробнее см. ниже). Победа в борьбе за существование была достигнута завропсидами, так сказать, вопреки прогрессивным чертам организации териодонтов и, очевидно, основывалась на каких-то важных преимуществах первых. Английский палеонтолог Памела Робинсон (1971) предложила гипотезу, связывающую изменения фауны рептилий в триасе с особенностями физиологии завропсид и звероподобных пресмыкающихся, о которых с известной долей вероятности можно судить по соответствующим характеристикам современных потомков тех и других. Современные завропсиды (в широком смысле этот термин используется для объединения незвероподобных рептилий, т. е. всех современных групп этого класса, и птиц) характеризуются наличием целого комплекса приспособлений к жизни в условиях жаркого засушливого климата. Это, во-первых, способность выживать при значительно более высоких температурах тела, чем это возможно для потомков звероподобных рептилий — млекопитающих (многие ящерицы — до 44 °C, птицы — до 43 °C, млекопитающие — до 39 °C). При этом рептилии путем инсоляции используют энергию солнечного облучения для повышения температуры тела до оптимального уровня (в связи

а — триас б — юра

в — мел г — эоцен

с этим для них сохраняет значение «теменной глаз», регулирующий различные функции организма в зависимости от интенсивности падающего света).

Во-вторых, у завропсид конечным продуктом их белкового обмена, выводимым из организма с мочой, является мочевая кислота, тогда как у млекопитающих мочевина. Мочевая кислота может образовывать перенасыщенные растворы, и поэтому для ее выведения из организма требуется примерно в 10 раз меньше воды, чем для выведения мочевины. Следовательно, выделительная система завропсид гораздо лучше экономит влагу для организма, чем таковая млекопитающих.

Логично предположить, что организация завропсид складывалась в условиях засушливого и жаркого климата, тогда как звероподобные рептилии возникли в местообитаниях с более влажным и прохладным климатом. Такие местообитания, вероятно, были широко распространены, особенно на континентах, входивших в состав Гондваны, в эпоху великого оледенения (т. е. до середины пермского периода). К концу пермского времени и в триасе во многих регионах климат становится все более засушливым (или по крайней море характеризовался значительными сезонными засухами). П. Робинсон связывает это с изменениями морских течений и преобладающих направлений циркуляции атмосферных потоков, которые были обусловлены дрейфом континентов, входивших в состав Лавразии и Гондваны. Засушливость климата (хотя бы в форме сезонных засух) должна была дать важные преимущества в борьбе за существование тем группам наземных животных, которые обладали большей устойчивостью к действию высоких температур, были способны лучше экономить влагу и с помощью специальных форм поведения могли использовать энергию солнечного облучения для достижения оптимальной температуры своего тела (так называемая гелиотермия). Поскольку по всем этим показателям завропсиды существенно превосходили звероподобных рептилий, последние были оттеснены в еще сохранившиеся более прохладные и влажные местообитания. В неблагоприятных условиях, при жесткой конкуренции со стороны завропсид численность терапсид значительно упала и большинство их групп вымерло.

В немногих существовавших в триасе филогенетических стволах высших териодонтов продолжались изменения, наметившиеся еще среди пермских терапсид. Общее направление этих эволюционных изменений обозначают иногда термином «маммализация», т. е. развитие комплекса признаков, характерных для высших амниот — млекопитающих. Здесь мы вновь встречаемся с параллельной эволюцией: сходные черты строения независимо возникали в разных филетических линиях териодонтов (Л. П. Татаринов, 1965, 1972, 1975). Среди этих признаков было постепенное увеличение размеров полушарий переднего мозга, приобретение мяг

Рис. 40. Цинодонт Thrinaxodon (по А. Кромптону и Ф. Дженкинсу).

ких губ (что делало возможным сосание) и волосяного покрова. По мнению Л. П. Татаринова (1975), зачаточные волоски у териодонтов имели осязательную функцию, располагаясь вблизи рта, как специализированные осязательные волосы вибриссы — у млекопитающих. Однако П. Элленбергер (1976) описал отпечатки волос на следах, вероятно, оставленных каким-то цинодонтом (Cynodontia «собакозубые» — одна из групп высших териодонтов). Эти ископаемые следы были обнаружены в отложениях нижней части среднего триаса. Поэтому имеются основания считать, что волосяной покров был развит у териодонтов уже на всем теле, как у млекопитающих, и, вероятно, имел ту же основную функцию, как и у последних, т. е. служил для теплоизоляции (эта его роль понятна, если принять гипотезу о возникновении и развитии звероподобных рептилий в прохладных местообитаниях).

Рис. 41. Ряд последовательных стадий преобразований нижней челюсти (по А. Кромптону):

а — капториноморф Labidosaurus;

б — пеликозавр Dimetrodon; в — териодонт-тероцефал; г — цинодонт Thrinaxodon; д — цинодонт Trirachodon; е — иктидозавр Diarthrognathus; 1 зубная кость;

2 — задние кости нижней челюсти; 3 — венечный отросток зубной кости; 4 первичный челюстной сустав; 5 — вторичный челюстной сустав.

У цинодонтов (рис. 40) продолжалось совершенствование механизма пережевывания пищи с развитием окклюзии (смыкания коронок верхне- и нижнечелюстных зубов в щечной области) и продольных и поперечных движений нижней челюсти. Для обеспечения этих движений произошли соответствующие перестройки челюстных мышц, сыгравшие важную роль в дальнейшей эволюции челюстного аппарата. Механически наиболее благоприятное расположение челюстных мышц было достигнуто при разрастании зубной кости нижней челюсти назад и вверх, с развитием высокого венечного отростка, к которому прикреплялась височная мышца (рис. 41). При этом задние кости нижней челюсти подверглись редукции. Гипертрофия задней части зубной кости привела к возникновению ее контакта с чешуйчатой костью черепа. Между двумя этими костями появилась суставоподобная связь, которая оказалась механически более эффективной опорой и осью вращения для нижней челюсти, чем первичный челюстной сустав (между квадратной и сочленовной костями). Так возник вторичный челюстной сустав 1, присущий среди всех позвоночных только млекопитающим и ставший поэтому важнейшим диагностическим признаком последних. Редуцированные кости первичного челюстного сустава, освободившиеся от прежней функции, вошли в состав цепи косточек среднего уха в качестве двух наружных ее элементов (наковальни и молоточка), что стало еще одной характерной особенностью млекопитающих 2, обеспечившей более тонкую слуховую чувствительность в области звуков высокой частоты.

Наиболее древние ископаемые остатки млекопитающих, или зверей (Mammalia), известны из верхнетриасовых отложений. Это были небольшие хищные животные (рис. 42), вероятно, питавшиеся насекомыми и различными мелкими позвоночными. По всей вероятности, у них уже существовало выкармливание молоди молоком, поскольку оно присуще всем современным группам млекопитающих, а расхождение эволюционных стволов, ведущих, с одной стороны, к однопроходным (Monotremata), с другой — к сумчатым (Marsupialia) и плацентарным (Placentalia), произошло уже в триасе (Д. Хопсон, 1969, 1970). Интересно, что млечные железы возникли у древних млекопитающих из видоизмененных потовых желез. В связи с этим Д. Холден (1965) высказал предположение, что первоначальной функцией млечных желез было не столько выкармливание, сколько «выпаивание» детенышей, т. е. снабжение их необходимой влагой и солями; дефицит влаги был особенно опасен для новорожденных детенышей млекопитающих в условиях засушливого климата. Судя по способу развития современных однопроходных, наиболее примитивных среди ныне живущих млекопитающих, древнейшие звери были яйцекладущими животными, которые высиживали кладку или вынашивали яйца в специальной сумке на животе.

В конце триаса млекопитающие уже были довольно разнообразны и принадлежали к нескольким обособленным группам: триконодонтам (Triconodontia), симметродонтам (Symmetrodontia) и трехбугорчатым (Trituberculata), различавшимся по строению зубов и, вероятно, по способам питания и пережевывания пищи.

Рис. 42. Эритротерий (Erythrotherium) (по А. Кромптону).

Несмотря на ряд прогрессивных морфофизиологических особенностей (некоторое увеличение головного мозга, особенно его больших полушарий, забота о потомстве и выкармливание его молоком, пережевывание пищи, волосяной покров, расположение конечностей под туловищем, обеспечивавшее более совершенную локомоцию), млекопитающие в мезозое не достигли больших успехов в борьбе за существование. Они оставались относительно малочисленными мелкими животными и, вероятно, вели ночной или сумеречный образ жизни (характерный для большинства зверей и ныне), обеспечивавший более благоприятные для них условия влажности и температуры. Возможно, именно несовершенство систем терморегуляции и выделения, «настроенных» на условия относительно низких температур и высокой влажности (как у их предков — терапсидных рептилий), не позволили мезозойским млекопитающим успешно конкурировать с завропсидами. Хотя мезозойские млекопитающие уже обладали таким хорошим теплоизолятором, как шерстный покров, и, вероятно, могли усиливать теплоотдачу за счет потоотделения, у них еще не было совершенной интеграции разных механизмов терморегуляции в единую систему; они не могли иметь постоянной температуры тела и проигрывали рептилиям в условиях жаркого и сухого климата 1.

В триасе начался подлинный расцвет рептилий. Особенно многочисленны и разнообразны становятся группы пресмыкающихся с диапсидным черепом (лепидозавры и архозавры).

Среди лепидозавров появляются клювоголовые, дожившие до наших дней в лице единственного современного вида — гаттерии (Sphenodon punctatus). Широкое распространение в триасе получила родственная клювоголовым группа ринхозавров (Rhynchosauria), довольно крупных (0,5–5 м) животных, челюсти которых были преобразованы в мощный беззубый клюв. Эти животные несколько напоминали дицинодонтов и, возможно, конкурировали с ними.

В среднем триасе появляются настоящие ящерицы, которые вскоре становятся очень разнообразными. Замечательно, что среди позднетриасовых ящериц кюнеозавр (Kuehneosaurus) и икарозавр (Icarosaurus) развили приспособления к планирующему полету, подобно современным агамовым ящерицам Draco volans («летающим драконам»); на удлиненных ребрах, выступавших далеко вбок от туловища, была натянута перепонка, образующая неподвижные или малоподвижные широкие «крылья».

Возможно, вымирание последних котилозавров — проколофонов — в конце триаса было связано с их конкуренцией с экологически близкими к ним, но более совершенными ящерицами.

Многочисленны и разнообразны в триасе были и представители другого ствола завропсид — архозавры. Корневой группой этого ствола являются псевдозухии (Pseudosuchia), или текодонты (Thecodontia, рис. 43), — преимущественно небольшие животные, примитивные представители которых внешне несколько напоминали ящериц. Но у псевдозухий череп сохранял типичное диапсидное строение, зубы сидели в специальных ячейках (текодонтный тип), а не прикреплялись к краю челюсти, как у ящериц. Для псевдозухий была характерна тенденция к удлинению задних конечностей, связанная с переходом к быстрому бегу на двух ногах (бипедальная локомоция). Нужно отметить, что и ящерицы при максимальной скорости бегут лишь на двух задних конечностях, приподняв переднюю часть тела и длинный хвост над землей 1. Такой способ убыстрения бега был, видимо, характерен и для псевдозухий, но у последних он получил более значительное развитие. Среди их потомков появились настоящие двуногие формы (см. ниже).

Рис. 43. Псевдозухии:

а — Ornithosuchus (по Гейльману); б — Scleromochlus (по Абелю).

Большинство псевдозухий были хищниками мелкого и среднего размеров, но самые крупные достигали в длину 3,5 м. Одни из них стали быстро бегающими наземными животными, другие приспособились к лазанию по деревьям. Среди лазающих псевдозухий уже в раннем триасе появились планирующие формы (Podopteryx), подобные упомянутым выше «летающим» ящерицам — кюнеозавру и икарозавру. Но, в отличие от них, у подоптерикса летательные перепонки были натянуты между телом, передними и задними конечностями и хвостом. Остатки подоптерикса были обнаружены А. Г. Шаровым (1971) в нижнетриасовых отложениях Ферганы (Мадыген).

Некоторые группы псевдозухий перешли к полуводному, или амфибиотическому, образу жизни. В среднем и позднем триасе широко распространены были фитозавры (Phytosauria), имевшие внешнее сходство с крокодилами. В позднем триасе от псевдозухий возникли и настоящие крокодилы (Crocodilia), оказавшиеся лучше приспособленными к роли амфибиотических хищников и быстро вытеснившие фитозавров. И фитозавры, и крокодилы конкурировали в водоемах с последними стегоцефалами — лабиринтодонтами, представленными в триасе очень крупными формами с огромным уплощенным черепом (достигавшим у Mastodonsaurus в длину 125 см). Однако и эти гиганты не выдержали конкуренции с водными рептилиями. Последние стегоцефалы вымерли к середине юрского периода. Зато выжили самые мелкие потомки лабиринтодонтов, давшие начало бесхвостым земноводным (Anura); наиболее древние представители последних (Protobatrachus), еще имевшие небольшой хвост, известны из отложений нижнего триаса.

В триасе появились также черепахи (Chelonia) и ряд других групп пресмыкающихся, которые заслуживают особого рассмотрения.

 

ЖИЗНЬ В МЕЗОЗОЙСКИХ МОРЯХ И МОРСКИЕ РЕПТИЛИИ

Теплые моря, заливы и лагуны океанов Тетис, Тихого и начинавших формироваться Атлантического и Индийского в мезозое были богаты жизнью. После пермского вымирания разнообразие морских организмов в триасе вновь возрастает. В эволюционных стволах, переживших пермский кризис, появляются многочисленные новые виды и новые крупные ветви. По-видимому, в мезозое возник новый тип водорослей: во всяком случае, начиная лишь с юрских отложений достоверно известны ископаемые остатки представителей диатомовых водорослей (тип Diatomeae).

В донной фауне опять обильны мшанки; многочисленны морские ежи и морские звезды. Постепенно растет численность и разнообразие брюхоногих моллюсков. Среди двустворчатых моллюсков выделяется мезозойская группа рудистов (Rudistae), неподвижно прикреплявшихся к субстрату одной из створок своей асимметричной раковины, которая у ряда форм достигала размера 1,5 м. В триасе начинается бурный расцвет аммонитов и белемнитов. Мезозойские головоногие были очень разнообразны и по форме раковины, и по размерам, варьировавшим у аммонитов от нескольких миллиметров до 3 м. Белемниты, подобно современным кальмарам, стремительно проносились в толще воды, охотясь за мелкими рыбами, а аммониты медленно переплывали, поднимаясь к поверхности или опускаясь ко дну с помощью замечательной раковины. Вероятно, всплывавшие трехметровые гиганты представляли собой удивительное зрелище.

Постепенно обновилась и ихтиофауна. В юрское время сформировались существующие и ныне группы пластинчатожаберных хрящевых рыб — акулы (Selachoidei) и скаты (Batoidei). Среди костных рыб появились новые группы актиноптеригий: костные ганоиды (Holostei) и костистые рыбы (Teleostei). Первые пережили расцвет в юрском и начале мелового периода; вторые возникли в юрском периоде, а начиная с мелового времени стали доминирующей группой (к костистым принадлежит 95 % всех современных видов рыб). Продолжали существовать в мезозойских морях и представители кистеперых — целаканты.

Всякая группа организмов, сумевшая в ходе эволюционных преобразований достичь нового уровня организации, под давлением естественного отбора начинает «экологическую экспансию», осваивая все доступные на этом новом уровне организации местообитания, способы питания и т. п. Разнообразие развивающихся при этом приспособлений (адаптаций) и возникающих жизненных форм зависит от совершенства и пластичности организации данной группы. Несомненно, одной из самых поразительных в этом отношении групп являются рептилии, которые в мезозое освоили практически все возможные типы местообитаний и дали фантастическое разнообразие жизненных форм, не превзойденное ни одним другим классом животных. Ниже мы рассмотрим наиболее интересные формы наземных и летающих рептилий юрского и мелового периодов; здесь же остановимся на мезозойских пресмыкающихся, перешедших к водному образу жизни.

Триас ознаменовался успешным освоением рептилиями не только пресных водоемов (фитозавры и крокодилы), но и морей. Морские рептилии получили в мезозое широкое распространение и были чрезвычайно разнообразны: одни из них жили на мелководье в прибрежной зоне и, вероятно, сохраняли некоторую связь с сушей; другие стали обитателями открытого океана и никогда не выходили на берег.

Среди первых наиболее известны завроптеригии (Sauropterygia). Это были животные довольно странного облика (рис. 44): массивное широкое туловище, имевшее, однако, обтекаемую форму, впереди продолжалось длинной и тонкой шеей (у некоторых форм шея была длиннее туловища), а сзади заканчивалось длинным сжатым с боков веслообразным хвостом, несущим сверху небольшой хвостовой плавник. Передние и задние конечности у более специализированных к жизни в море плезиозавров (Plesiosauria) имели строение широких и мощных ластов, которые были основными движителями в воде. Хвостовой плавник был невелик и мог помогать при плавании лишь с малой скоростью, в основном же он, вероятно, служил рулем. Ласты могли, вероятно, использоваться и на суше, при выползании на прибрежные отмели для откладки яиц, как это делают современные морские черепахи. Однако даже такое кратковременное возвращение на сушу для некоторых плезиозавров было очень затруднено их огромными размерами: ряд юрских и меловых видов достигал в длину 12–16 м (плиозавры, аласмозавры).

Причудливый облик плезиозавров имеет, однако, современную аналогию (хотя и в миниатюре): у морских змей ластохвостов (Hydrophis) также имеется утолщенное туловище, плоский хвост и длинная тонкая шея (в 4–5 раз более тонкая, чем туловище). Такие пропорции тела помогают водному хищнику использовать массивное и широкое туловище как своего рода опору в воде на плаву, по отношению к которой голова на длинной и гибкой шее имеет значительную подвижность при ловле добычи и борьбе с нею.

Пищей завроптеригиям служили различные рыбы и головоногие (аммониты и белемниты). Большинство плезиозавров, обладавших небольшой головой на тонкой и длинной шее, питалось относительно некрупной добычей. Зато появившиеся в позднеюрское время крупные плиозавры (Pliosauroidea) имели огромный череп (до 3 м у 12-метровых ящеров) с острыми зубами длиной до 10 см. Эти морские хищники могли, вероятно, питаться крупными глубоководными головоногими (подобно современным кашалотам) и даже нападать на более мелких плезиозавров и других морских рептилий.

Рис. 44. Плезиозавр Peloneustes (реконструкция З. Буриана).

Близкими родственниками завроптеригий были плакодонты (Рlаcodontia) — еще одна любопытная группа морских пресмыкающихся, существовавшая в триасе. Плакодонты были более мирными, чем их хищные родственники. Одни из них напоминали современных морских черепах и даже имели панцирь из кожных окостенений — остеодерм; другие — современных морских млекопитающих — сирен (дюгоней и ламантинов). Зубы плакодонтов имели форму широких крепких пластин и, вероятно, служили для раздавливания раковин моллюсков и панцирей ракообразных.

Наиболее совершенными пловцами среди морских рептилий мезозоя, бороздившими как прибрежные моря, так и открытый океан, были ихтиозавры (Ichthyopterygia). Их название означает «рыбоящеры», что подчеркивает внешнее сходство этих животных (рис. 45) с рыбами. Действительно, тело ихтиозавров приобрело идеально приспособленную для быстрого плавания рыбообразную форму (характерную также для современных дельфинов среди китообразных, с которыми ихтиозавры сходны, пожалуй, еще более, чем с рыбами).

Рис. 45. Ихтиозавр Leptopterygius (экземпляр скелета с отпечатком кожи).

Размеры ихтиозавров чаще всего составляли 3–5 м, но некоторые виды достигали в длину 13 м. Череп ихтиозавров напоминал дельфиний большими глазницами, длинной узкой мордой, наверху у основания которой располагались ноздри, и длинными узкими челюстями, усаженными многочисленными тонкими и острыми зубами. Как рыбы и китообразные, ихтиозавры плавали за счет работы большого хвостового плавника, расположенного, как у рыб, в вертикальной плоскости (у дельфинов и других китообразных хвост располагается горизонтально). Имелся и спинной плавник — стабилизатор движения. Однако опорой плавников у ихтиозавров служили не скелетные элементы, как у рыб, а, как и у китообразных, плотная соединительная ткань. Парные конечности, превращенные в ласты, играли роль рулей глубины. В ластах ихтиозавров, как и у плезиозавров было увеличено количество фаланг пальцев (гиперфалангия), а у некоторых видов рыбоящеров увеличено было и число пальцев (до 10; гипердактилия), так что скелет конечности включал, до 200 небольших костей, расположенных правильными рядами, обеспечивая прочность и гибкость ласта.

Ихтиозавры, по всей вероятности, уже не могли выходить на сушу даже для откладки яиц. Вероятно, они стали живородящими. Живорождение (даже с образованием примитивной плаценты) не так уж редко среди пресмыкающихся: оно характерно, в частности, для целого ряда видов современных ящериц и змей. О живорождении у ихтиозавров свидетельствуют и находки палеонтологов: были обнаружены скелеты крупных особей (самок?), внутри которых находились скелетики маленьких ихтиозавров, иногда свернутые кольцом (как зародыши в яйце), иногда располагавшиеся так, что хвостовая часть скелета детеныша должна была выступать наружу из отверстия клоаки матери. Можно предполагать, что последние случаи связаны с гибелью самки-ихтиозавра вместе с детенышем в момент родов. Судя по этим данным, у ихтиозавров при родах, как и у современных китообразных, детеныши выходили хвостом вперед и сразу же рефлекторно начинал работать хвостовой плавник.

Любопытно, что вместе с некоторыми скелетами ихтиозавров были обнаружены остатки фоссилизованной кожи, причем сохранились даже пигментные гранулы. Исследовавшая эти остатки М. Уайтиэр (1956) пришла к выводу, что ихтиозавры при жизни имели темно-коричневую окраску.

Было обнаружено также фоссилизованное содержимое желудков некоторых ихтиозавров: в нем оказались остатки головоногих моллюсков и рыб. Вероятно, в мезозойских морях ихтиозавры соответствовали в экологическом отношении современным дельфинам. Приспособление к сходному образу жизни в одной и той же среде обитания и привело к значительному конвергентному сходству тех и других.

Происхождение специализированных водных рептилий — завроптеригий и плакодонтов, объединяемых в подкласс синаптозавров (Synaptosauria), так же как и ихтиозавров, до сих пор остается дискуссионным. Многие палеонтологи склоняются к мнению об их независимом возникновении непосредственно от какой-либо группы котилозавров (капториноморфов или проколофонов). Высказывалось также предположение о родстве ихтиозавров с черепахами (Р. Эпплби, 1959) или с синаптозаврами (А. Ромер, 1968; Ф. фон Хюне, 1964) и, соответственно, общем происхождении этих групп от капториноморфов, проколофонов или пеликозавров.

Завроптеригии в лице своих наиболее примитивных представителей нотозавров (Nothosauria), еще не имевших настоящих ластов, но лишь укороченные конечности с плавательными перепонками между пальцами, появились в раннем триасе. Ихтиозавры известны начиная со среднего триаса. Расцвет обеих групп приходится на юрский период и первую половину мелового. Отметим, что ископаемые остатки завроптеригий и ихтиозавров нередко встречаются в юрских осадочных породах на Русской равнине. Целые скелеты плиозавров были обнаружены при разработках горючих сланцев в Поволжье.

Помимо синаптозавров и ихтиозавров, к жизни в море перешли и многие другие мезозойские рептилии. Можно сказать, что все подклассы пресмыкающихся имели в море своих представителей. В позднеюрское время появились первые морские черепахи. Некоторые морские черепахи мелового периода достигали крупных размеров (длиной свыше 3,5 м).

Архозавры были представлены в море специализированными группами крокодилов, в какой-то мере конкурировавшими с ихтиозаврами. Морские крокодилы были очень многочисленны во второй половине мезозоя. Некоторые из них (метриоринхи — Metriorhynchidae), как и ихтиозавры, приобрели рыбообразное тело, вертикальный хвостовой плавник и ластообразные конечности.

Лепидозавры также делали неоднократные попытки «овладеть океаном». Среди морских ящериц наиболее замечательны позднемеловые мозазавры (Mosasauridae), достигавшие в длину 10 м и ставшие столь же совершенными пловцами, как ихтиозавры и метриоринхи. Мозазавры по времени возникновения и существования были самыми поздними из этих трех конвергентных групп. Высказывались предположения, что конкуренция со стороны мозазавров могла сыграть роль в вымирании ихтиозавров, большинство видов которых исчезло уже в середине мелового периода.

 

ВЕК ДИНОЗАВРОВ

К концу триаса произошло постепенное «выравнивание» климатических условий на значительной части континентов, о чем говорит, в частности, очень однообразный и в целом сходный характер флоры на больших пространствах континентов, входивших прежде в состав Гондваны и Лавразии. Растительность юрского периода (рис. 46) характеризовалась преобладанием различных групп голосеменных (цикадовые, беннеттиты, хвойные, гинкговые) и древовидных папоротников; широко распространены были также крупные хвощи (среди которых, например, Equisetites arenaceus достигал в высоту 10 м и в диаметре 25 см).

В условиях ровного и очень теплого климата в средней части мезозоя завропсидные рептилии достигли максимального расцвета. Это было время удивительных животных, получивших широкую известность под названием «динозавры» («страшные ящеры»). Название это относится к нескольким независимым группам рептилий из подкласса архозавров и в современном понимании не имеет определенного таксономического статуса 1 (подобно термину «стегоцефалы», см. выше). Хотя среди ученых еще нет единства мнений в отношении классификации динозавров, наиболее распространено распределение этих животных по двум отрядам: ящеротазовых (Saurischia) и птицетазовых (Ornithischia), отличавшихся друг от друга рядом признаков, в частности строением пояса задних конечностей. У птицетазовых лобковая кость имела особый отросток, тянувшийся назад под седалищной костью, тогда как у ящеротазовых такого отростка не было (рис. 47).

Динозавры одним или несколькими независимыми корнями (вопрос этот остается дискуссионным) возникли от псевдозухий. Древнейшие остатки ящеротазовых известны из среднетриасовых, а птицетазовых — из верхнетриасовых отложений Восточной и Южной Африки. Примитивные динозавры унаследовали от псевдозухий тенденцию передвигаться на двух задних конечностях (бипедальность).

При сохранении примитивного положения конечностей (см. выше) бипедальная локомоция позволяет увеличивать скорость (В. Б. Суханов, 1968). Кроме того, при двуногом передвижении передняя часть тела высоко поднимается над почвой, что увеличивает обзор и уменьшает опасность перегрева при длительном пребывании животного на сухих открытых участках, где почва раскаляется под лучами яркого солнца. Бипедальность была широко распространена среди динозавров, хотя некоторые их группы по различным причинам вновь вернулись к опоре на четыре конечности.

Рис. 46. Ландшафт юрского периода (по З. Буриану).

На первом плане — цветущий беннеттит Cycadeoidea, правее на втором плане древовидный беннеттит Williamsonia, слева на втором плане — древовидный папоротник, в лагуне — заросли хвощей, на заднем плане — хвойные и гинкговые.

Как и у звероподобных рептилий, у динозавров конечности располагались в вертикальной плоскости под телом, что обеспечивало большую экономичность передвижения (по сравнению с группами, сохранившими позу пресмыкания). Вероятно, двуногие ящеры передвигались подобно современным страусоподобным птицам, используя бег или ходьбу с чередованием опоры на левую и правую ногу. Длинный мускулистый хвост уравновешивал высоко поднятую тяжелую голову и переднюю часть тела; возможно, хвост также служил дополнительной опорой при стоянии в выпрямленной позе. Передние конечности у бипедальных динозавров либо использовались как хватательные, либо подвергались редукции.

В юрском и меловом периодах динозавры доминировали среди наземных животных, заселив всевозможные местообитания и дав огромное разнообразие форм, которые поражают воображение гротескной причудливостью облика, а иногда и огромными размерами.

Рис. 47. Строение тазового пояса у ящеротазовых (а) и птицетазовых (б) динозавров:

1 — вертлужная впадина; 2 — подвздошная кость; 3 — седалищная кость; 4 лобковая кость.

Безусловный рекорд в последнем отношении принадлежит ящеротазовым динозаврам из группы завропод (Sauropoda), среди которых были самые крупные из когда-либо существовавших на Земле четвероногих животных. Например, диплодок (Diplodocus, рис. 48) достигал в длину 25–30 м при высоте в области середины спины около 4 м, масса этого животного составляла около 30 т. Несколько более короткий (длиной 24 м) брахиозавр (Brachiosaurus) имел более высокие передние конечности и массивное тело, масса которого, по расчетам, могла достигать 45–50 т. Из всех животных Земли на протяжении всей истории жизни больше и тяжелее завропод лишь некоторые наиболее крупные современные китообразные, но нужно помнить, что киты — чисто водные животные, тогда как завроподы оставались по общему облику наземными четвероногими. Правда, и завроподы значительную часть жизни, скорее всего, проводили в воде или по берегам водоемов. Об этом говорят, помимо гигантских размеров и массы, при которых очень трудно свободно передвигаться по суше, многие особенности строения этих удивительных животных (например, смещение отверстий ноздрей по верхней стороне черепа назад, так что они располагались рядом с глазницами). Когда животное находилось в воде, длинная шея позволяла поднимать голову над поверхностью для дыхания и обзора (брахиозавр мог поднять голову выше крыши трехэтажного дома), а также добывать корм со дна водоемов. Судя по строению зубов, мелких, тонких, иногда ложкообразных, завроподы были растительноядными животными, питавшимися, вероятно, какими-то сочными, мягкими и обильными водными растениями.

Колоннообразные конечности завропод опирались на огромную стопу, пальцы которой были вооружены большими когтями. Вероятно, последние помогали животным прочно удерживаться на месте при ударах волн. Возможно, завроподы могли и плавать с помощью работы сжатого с боков мощного хвоста. Завроподы обитали по берегам морей и озер, где они могли бродить в воде многочисленных лагун, речных дельт и эстуариев, в приливо-отливной зоне (занимавшей на низменных материках мезозоя гораздо большие площади, чем ныне), среди мангровых зарослей.

Рис. 48. Диплодок (Diplodocus) (реконструкция З. Буриана).

Другой группой ящеротазовых были тероподы (Theropoda), включавшие разнообразных двуногих хищников, которые в мезозое заняли место синапсидных хищных рептилий пермского периода. Среди теропод более примитивны были целюрозавры (Coelurosauria) — мелкие подвижные формы (размерами от нескольких десятков сантиметров до нескольких метров) с длинными передними конечностями (рис. 49), помогавшими при ловле добычи. Питались целюрозавры, вероятно, разнообразной пищей, включавшей крупных беспозвоночных и мелких позвоночных (подобных ящерицам, лягушкам или мезозойским млекопитающим), а также, возможно, раскапывали кладки яиц более крупных рептилий. Некоторые целюрозавры могли даже специализироваться на этом последнем способе питания. В частности, такое предположение высказывалось по отношению к позднемеловой группе орнитомимид (Ornithomimidae) — легких и быстрых страусоподобных целюрозавров с длинными хватательными передними конечностями и беззубыми челюстями, одетыми, вероятно, роговым клювом.

Рис. 49. Целюрозавр Compsognathus (по З. Буриану).

Второй группой теропод были карнозавры (Carnosauria), к которым принадлежали самые крупные хищники, когда-либо существовавшие на суше (мегалозавры — Megalosauridae и дейнодонты — Deinodontidae). Некоторые из этих чудовищ, например тираннозавр, или «царственный ящер — тиран» (Tyrannosaurus rex, рис. 50), достигали в длину 12–14 м. Полутораметровый череп, вооруженный острыми, кинжалообразно изогнутыми зубами с пильчатыми краями (длиной до 10–15 см), находился на высоте 4–6 м. По расчетам, масса тираннозавров достигала 2 т. Передние конечности у этих гигантских хищников редуцировались до маленьких придатков с 2–3 пальцами. Зато череп обладал подвижной верхней челюстью: черепной кинетизм, унаследованный наземными позвоночными от далеких предков (см. выше), у теропод значительно усовершенствовался (рис. 38), как и у лепидозавров, но на несколько другой основе. Вероятно, подвижность верхней челюсти в какой-то мере компенсировала редукцию передних конечностей. Подвижность верхней челюсти позволяет лучше удерживать добычу; кинетический череп в этом отношении имеет такое же преимущество перед акинетическим, т. е. лишенным подвижности верхней челюсти, как рука с гибкими пальцами перед клешней.

Вероятно, основным способом нападения крупных карнозавров на добычу было преследование (едва ли такие гиганты могли подстерегать добычу в засаде) с последующим страшным ударом тяжелого черепа, вооруженного кинжалообразными зубами, сверху, с высоты огромного роста хищника, в шею или спину жертвы. Не случайно у многих растительноядных динозавров имелись специальные приспособления для защиты шеи и спины от ударов сверху.

Следует упомянуть, что среди карнозавров были не только гигантские, но и более мелкие хищники (размером 1–2 м). При сохранении того же общего плана строения, карнозавры были достаточно разнообразны. В связи с этим упомянем, например, мелового спинозавра (Spinosaurus), у которого остистые отростки туловищных позвонков были гипертрофированы, достигая в длину 1,8 м. Очевидно, вдоль спины этого крупного двуногого хищника тянулся высокий гребень, подобный спинному парусу некоторых пеликозавров и также, вероятно, игравший роль в терморегуляции.

Рис. 50. Тираннозавр (Tyrannosaurus) (реконструкция К. К. Флерова).

Рис. 51. Завролоф (Saurolophus) (реконструкция К. К. Флерова).

Все птицетазовые динозавры были растительноядными животными. Среди них имелись и двуногие и четвероногие ящеры. Первые (подотряд орнитопод Ornithopoda) варьировали в размерах от 1 до 15 м. Масса взрослых особей крупных видов в среднем составляла около 5,5 т. Это были наземные или полуводные формы с довольно разнообразными пропорциями тела и внешним обликом. Представители наземных групп: пситтакозавры, или «ящеры-попугаи» (Psittacosauridae), и игуанодоны (Iguanodontidae) имели на пальцах небольшие копытца. Эти животные, вероятно, обитали во влажных тропических лесах и питались сочной зеленью и плодами. Пситтакозавры получили название за внешнее сходство их черепа (с высоким сжатым с боков роговым клювом на передней части челюстей) с таковым попугаев (Psittaci); игуанодоны обладали крупными зубами, коронки которых (с небольшими зубчиками на режущем крае) напоминали зубы современных растительноядных ящериц игуан. Большие пальцы на передних конечностях игуанодонов были вместо копыт снабжены крепкими острыми когтями, вероятно, использовавшимися этими животными при обороне от нападений хищников. Размеры игуанодонов достигали 10 м.

У позднемеловых орнитопод — гадрозавров (Hadrosauridae, рис. 51), называемых также «утконосыми динозаврами» (за форму передней части челюстей, лишенной зубов и одетой роговым «утиным» клювом), между пальцами передних и задних конечностей имелись плавательные перепонки, сохранившиеся у мумифицированных экземпляров, найденных в Северной Америке. Гадрозавры жили, подобно завроподам, по берегам различных водоемов и в мангровой зоне, но в более закрытых (лесных) и, возможно, болотистых ландшафтах. Зубы этих животных были приспособлены к перетиранию жесткой растительной пищи: позади клюва располагалось несколько рядов зубов, тесно прилежащих друг к другу и составлявших «зубные батареи», которые включали до 500 зубов в одной половине челюсти (т. е. общее число зубов было около 2000). У многих гадрозавров череп был снабжен гребнем или шлемом, образованным разросшимися предчелюстными, носовыми и лобными костями. Внутри шлема находилась полость, связанная с носовым ходом. Назначение этого приспособления остается пока непонятным.

Другие группы птицетазовых динозавров вернулись к четвероногому передвижению. Пожалуй, наиболее странный облик среди них имели стегозавры (Stegosauria, рис. 52). Это были крупные (длиной 6–9 м) животные с маленькой, низко посаженной головой, позади которой высокой крутой дугой горбилась спина. Задняя часть туловища была приподнята на задних конечностях, которые были вдвое длиннее передних. Более длинные задние конечности вообще характерны для подавляющего большинства динозавров, что, вероятно, связано с двуногостью примитивных представителей во всех их группах. Но самой причудливой особенностью стегозавров было их защитное приспособление в виде двух рядов огромных костных пластин и шипов, вертикально укрепленных в толстой коже животного над позвоночником и тянувшихся от затылка до кончика хвоста.

Вероятно, стегозавры были медлительными сухопутными животными. Они просуществовали лишь до раннего мела, когда их сменили другие крупные растительноядные динозавры, которые, вероятно, были лучше защищены от нападений гигантских меловых карнозавров.

В течение всего мелового периода существовали анкилозавры (Ankylosauria, рис. 53), которых называют иногда «ящерами-танками». Анкилозавры имели длину 3,5–5 м при средней массе 3,7 т. В противоположность стегозаврам анкилозавры имели широкое приземистое тело, поддерживаемое короткими толстыми ногами. У анкилозавров чрезвычайно сильное развитие получили остеодермы, вторичные кожные окостенения, прираставшие к поверхности костей черепа (придавая ему облик, напоминавший череп древних парейазавров) и образовав

Рис. 52. Стегозавр (Stegosaurus) (реконструкция З. Буриана)

шие костный панцирь на шее, туловище и хвосте из поперечных рядов шипов или пластинок.

В позднемеловое время существовала еще одна группа растительноядных четвероногих птицетазовых динозавров — рогатые динозавры, или цератопсы (Ceratopsia, рис. 54), которых можно назвать своего рода рептилиями-носорогами. Цератопсы достигали в длину 6 м при высоте до 2,5 м и средней массе около 4,3 т. Защитные приспособления цератопсов включали прочный костный «воротник», образованный разрастаниями теменных и чешуйчатых костей назад и закрывавший шею сверху и сбоку. Помимо этого органа пассивной защиты, многие цератопсы имели и приспособления, так сказать, для «активной обороны»: на морде и над глазами возвышались три крепких и острых рога (откуда и название одного из характерных родов: Triceratops — «трехрогий»), иногда на скулах сидела еще пара дополнительных рогов. Вероятно, взрослые цератопсы могли обороняться даже от нападений крупных хищников.

Среди биологических особенностей динозавров чаще всего обращают внимание на широкое распространение среди этих рептилий гигантизма. Действительно, многие динозавры были очень крупными, а некоторые — гигантскими животными (необходимо подчеркнуть, что отнюдь не все динозавры были гигантами, среди них были и сравнительно небольшие ящеры, хотя и эти последние были в среднем крупнее, чем большинство лепидозавров). Крупные размеры тела обеспечивают животным определенные физиологические преимущества.

С общим увеличением размеров поверхность тела возрастает (приближенно) в квадра

Рис. 53. Анкилозавр Talarurus (реконструкция Н. А. Яньшинова).

те, а объем (а также масса) — в кубе по отношению к линейным размерам. В результате отношение поверхности тела к его массе у более крупных животных будет при одинаковых пропорциях тела существенно меньше, чем у мелких. Поэтому крупные размеры оказываются в энергетическом отношении выгоднее: теплоемкость тела велика, а теплообмен с внешней средой через поверхность тела относительно мал; следовательно, уменьшается зависимость температуры тела от внешних температур, уменьшается риск перегрева и переохлаждения организма. По расчетам Е. Кольберта, Р. Коулса и Ч. Боджерта, у крупных динозавров для повышения температуры тела всего на 1° потребовалось бы 86 ч непрерывного пребывания на солнце. Соответственно, при большой массе и относительно малой поверхности тела замедляется и понижение температуры тела при пребывании животного в среде с низкой температурой.

В условиях преобладания ровных теплых климатов в течение большей части мезозоя взрослые крупные динозавры, вероятно, обладали практически постоянной оптимальной температурой тела при общем характере метаболизма и систем терморегуляции, вполне сходных с таковыми современных рептилий 1. Такая температура тела постепенно формировалась в онтогенезе: молодые животные имели небольшие размеры, и их температура должна была изменяться, как и у современных рептилий; вероятно, они также использовали обогревание в лучах солнца (гелиотермию) для достижения оптимальной температуры.

Физиологически динозавры были, скорее всего, в целом сходны с современными архозаврами — крокодилами. Вполне вероятно наличие у динозавров четырехкамерного сердца и двух дуг аорты, начинающихся от разных желудочков и имеющих между собой связь (анастомоз), что позволяло (как у современных крокодилов и в несколько другой форме у всех других современных рептилий) регулировать поток крови, направляемый в тот или другой из отходящих от сердца сосудов, в зависимости от физиологической необходимости. В частности, при инсоляции или при нырянии у водных форм уменьшается приток крови из правого желудочка в легочные, артерии и, соответственно, возрастает в левую дугу аорты.

Рис. 54. Цератопс Stiracosaurus (реконструкция К. К. Флерова).

Как и у современных рептилий, головной мозг динозавров имел относительно небольшие размеры. Особенно это бросается в глаза у гигантских форм, полость мозговой коробки которых поражает своими ничтожно малыми размерами по отношению к размерам черепа и всего тела. Зато спинной мозг был сильно утолщен в крестцовой области, причем нередко это утолщение было много больше по объему, чем головной мозг. Вероятно, здесь находились нервные центры, ответственные за работу задних конечностей, хвоста и за различные безусловнорефлекторные реакции. Особенно велико было крестцовое утолщение спинного мозга у завропод. Например, у диплодока его поперечный диаметр примерно в 20 раз превышал таковой головного мозга (что, собственно, и подчеркнуто в названии этого животного: Diplodocus — «дву-ум»).

Как и большинство современных рептилий, динозавры были яйцекладущими животными. Известны довольно многочисленные находки ископаемых яиц, которые считают принадлежащими динозаврам. В верхнемеловых отложениях Прованса (Франция) были обнаружены хорошо сохранившиеся кладки яиц, предположительно, отложенные орнитоподами. Кладки включают по 4–8 яиц, объем каждого из которых составляет 0,4–3,3 л. Обычно внутри известковой скорлупы ископаемых яиц не сохраняется никаких следов зародыша. Лишь в 1972 г. А. В. Сочава впервые описал фоссилизованные остатки скелета эмбриона в яйце динозавра, найденном в верхнемеловых отложениях Восточной Гоби. Не исключено, что по крайней мере некоторые динозавры могли быть живородящими. По аналогии с крокодилами кажется вполне оправданным предположение, что динозавры обладали достаточно сложными формами поведения, включавшими охрану яйцевых кладок и новорожденных детенышей.

Многочисленные местонахождения с ископаемыми остатками различных динозавров и их яиц из разных горизонтов мела на территории Монголии были раскопаны Монгольской палеонтологической экспедицией Академии наук СССР в 1946–1949 гг. 1. С 1969 г. эти работы продолжает совместная Советско-Монгольская палеонтологическая экспедиция. Богатые сборы экспедиций представлены в Палеонтологическом музее АН СССР в Москве. Их изучение внесло важный вклад в понимание развития жизни в конце мезозоя и начало кайнозоя.

На территории Советского Союза ископаемые остатки динозавров встречаются в верхнемезозойских отложениях Кузбасса, откуда А. К. Рождественским описаны остатки пситтакозавров, и в Приамурье, где были обнаружены остатки гадрозавра, описанного А. Н. Рябининым в качестве рода Mandschurosaurus.

 

ЛЕТАЮЩИЕ ЯЩЕРЫ И ПТИЦЫ

Архозавры в мезозое овладели не только сушей, но и воздухом (их попытки выйти в море были менее успешны). По крайней мере две группы этих рептилий приобрели способность к полету.

Первой из них были птерозавры (Pterosauria) — летающие ящеры (рис. 55, 57), появившиеся в начале юрского периода. Крылья птерозавров, как у летучих мышей, были образованы летательными перепонками, натянутыми между передними и задними конечностями и телом. Но если у летучих мышей крыло поддерживается четырьмя удлиненными пальцами пе

Рис. 55. Рамфоринх (Rhamphorhynchus) (реконструкция З. Буриана).

редней конечности, то у птерозавров — лишь одним гипертрофированным четвертым пальцем. Три других пальца кисти у них были свободны, имели когти и располагались на сгибе крыла. Вероятно, птерозавры могли использовать их при лазании и цеплянии. Крыло летающих ящеров было, по-видимому, механически менее прочным, чем таковое летучих мышей. Однако птерозавры были способны к достаточно разнообразным формам полета, как это было показано аэродинамическими расчетами и экспериментами с моделями, имитирующими летательный механизм этих животных.

Многие особенности строения птерозавров предвосхитили связанные с полетом приспособления птиц и летучих мышей (возникшие независимо у каждой из этих трех групп летающих позвоночных). Так, скелет птерозавров характеризовался высокой прочностью и легкостью, многие кости были пневматизированы, облитерировались швы между рядом костей черепа, сильно развитая грудина несла продольный киль для увеличения поверхности прикрепления летательных мышц. Хотя у примитивных птерозавров сохранялись зубы, высшие представители этой группы их утратили и приобрели роговой клюв. Головной мозг летающих ящеров в целом ряде отношений напоминал мозг птиц: полушария переднего мозга значительно увеличены, тогда как обонятельные доли редуцированы, очень велик мозжечок, крупные зрительные доли среднего мозга оттеснены вниз и отчасти прикрыты большими полушариями и мозжечком.

Тело птерозавров было покрыто не чешуей, как у большинства рептилий, а тонкими во

Рис. 56. Археоптерикс (Archaeopteryx lithographica) (реконструкция З. Буриана).

Рис. 57. Птеродактиль (Pterodactylus) (реконструкция З. Буриана).

лосообразными придатками, сохранившимися, как и летательные перепонки, на отпечатках в тонкозернистых породах, вмещающих ископаемые остатки. К сожалению, невозможно установить, были ли эти покровные образования настоящими волосами, подобными таковым млекопитающих, или представляли совершенно особый тип производных покровов (для этого нужно выяснить их тонкое строение и эмбриональное развитие).

Более примитивной группой летающих ящеров являются юрские рамфоринхи (Rhamphorhynchoidea, рис. 55), обладавшие длинным хвостом и хорошо развитыми зубами. В позднеюрское время появляются птеродактили (Pterodactyloidea, рис. 57), у которых хвост редуцировался (как и у высших птиц). Вероятно, птеродактили обладали более совершенным полетом, чем рамфоринхи.

Разные формы летающих ящеров сильно различались по размерам тела, строению челюстей, форме крыльев и, очевидно, по характеру полета и способам питания. Среди птеродактилей встречались виды размером с воробья, а самые крупные представители птерозавров были самыми большими летающими животными, когда-либо существовавшими на Земле. Долгое время рекорд размеров принадлежал позднемеловому птеранодону (Pteranodon) — огромному ящеру, размах крыльев которого составлял 7,5–8 м, а их площадь — 5,8 м2; масса тела птеранодона достигала 18–25 кг. Череп этого летающего гиганта имел странный торчавший далеко назад затылочный гребень (может быть, уравновешивавший длинный тяжелый клюв), и общая длина черепа от конца гребня до переднего конца беззубых челюстей достигала 2 м. В 1975 г. Д. Лоусоном были описаны ископаемые остатки трех особей еще более чудовищного летающего ящера, найденные в верхнемеловых отложениях Техаса. Размах крыльев этого гиганта, названного Quetzalcoatlus, достигал 15,5-21 м.

По предположению Д. Лоусона, гигантские птерозавры питались трупами динозавров, т. е. были аналогами современных крупных птиц-падальщиков; грифов, сипов, стервятников и др. Среди более мелких видов птеродактилей и рамфоринхов были насекомоядные и рыбоядные формы (возможно, некоторые птерозавры могли плавать, подобно современным водоплавающим птицам). У некоторых птеродактилей (Belonochasma, Ctenochasma) в челюстях сидели тесно посаженные, крайне многочисленные (до 1000), очень тонкие и длинные, щетинообразные зубы, которые могли использоваться как цедильный аппарат при питании планктоном.

Мелкие птеродактили и длиннохвостые рамфоринхи при полете, вероятно, часто взмахивали крыльями, тогда как гигантские формы величественно парили высоко в воздухе, используя поддержку его восходящих потоков и помогая себе редкими взмахами огромных крыльев.

Ископаемые остатки летающих ящеров известны главным образом из юрских и меловых отложений Северной Америки и Западной Европы, отдельные находки сделаны также в Южной Америке и Африке. На территории СССР остатки рамфоринхов хорошей сохранности были обнаружены в верхнеюрских отложениях Каратау (Казахстан) (А. Н. Рябинин, 1948; А. Г. Шаров, 1971).

Птерозавры были единственными летающими позвоночными на протяжении большей части юрского периода. В поздней юре у них появились конкуренты, дальнейшие эволюционные преобразования которых привели к формированию более совершенного летательного аппарата и к достижению более высокого общего уровня организации. Это были птицы.

Впрочем, примитивные позднеюрские птицы во многих отношениях еще уступали летающим ящерам и не могли спорить с ними за первенство в воздухе. Остатки древнейших птиц, широко известных археоптериксов, или «первоптиц» (Archaeopteryx lithographica), были найдены в тонкозернистых сланцах Золенгофена (Западная Германия).

В организации археоптерикса (рис. 56) причудливо объединены с одной стороны, птичьи, а с другой — рептильные признаки. По отпечаткам на сланце видно, что тело первоптицы было покрыто настоящими перьями. Крупные маховые перья формировали несущую поверхность крыльев. Мозговая коробка была увеличена по сравнению с таковой типичных рептилий, и головной мозг рядом особенностей напоминал птичий (Г. Джерисон, 1968), хотя и не в большей степени, чем у птерозавров. С другой стороны, общий облик черепа был вполне обычен для архозавров; челюсти несли хорошо развитые текодонтные зубы. Некоторые птичьи особенности имелись также в поясах конечностей археоптерикса (например, характерная «вилочка», образованная ключицами). Позвоночник сохранял примитивное строение. Он состоял из амфицельных (двояковогнутых) позвонков и продолжался сзади в длинный хвост, по бокам которого прикреплялись перья (а не веером на конце копчика, как у современных птиц). Кости не были пневматизированы, а грудина невелика и лишена киля, следовательно, у археоптерикса не могло быть мощных летательных мышц. Скелет передних конечностей гораздо более напоминал рептильный, чем птичий; имелось три длинных свободных пальца с когтями.

Вряд ли археоптериксы хорошо летали. Скорее всего, они лишь перепархивали на небольшие расстояния среди кустов и ветвей деревьев. Современные им птерозавры, несомненно, обладали значительно более совершенным полетом.

Задние конечности археоптерикса были устроены так же, как у птиц, но этот тип строения характерен и для многих архозавров, в частности для ящеротазовых теропод.

Птицы, как и летающие ящеры, возникли от мелких архозавров приспособившихся к лазанию по деревьям. Более древние наземные предки птиц, несомненно, использовали бипедальное (двуногое) передвижение (иначе нельзя объяснить строение задних конечностей птиц). При лазании по деревьям и прыжках с ветки на ветку очень полезны любые приспособления, позволяющие планировать, удлиняя прыжок. У птерозавров таким приспособлением стали летательные перепонки, а у птиц — перья, представляющие собой усложненную модификацию роговых чешуй 1, характерных для всех рептилий. Первоначально основной функцией перьевого покрова была теплоизоляция (эту функцию сохраняют перья и у современных птиц). Усовершенствование этой первичной функции, сопровождавшееся разрастанием перьев и усложнением их структуры, создало предпосылки (явилось преадаптацией, см. выше) для использования перьев в формировании несущей поверхности крыльев, сначала для планирования, а затем и для машущего полета.

Рис. 58. Гесперорнис (Hesperornis) (реконструкция З. Буриана).

Птерозавры, по всей вероятности, произошли от одной из групп позднетриасовых (или среднетриасовых) псевдозухий. Аналогичное происхождение (но от другой группы псевдозухий) некоторые ученые приписывают и птицам. А. Вокер (1972), в частности, полагает, что предки птиц были очень близки к предкам крокодилов: и тех и других, согласно А. Вокеру, следует искать среди псевдозухий семейства сфенозухид (Sphenosuchidae), которые, возможно, были древесными лазающими формами.

Согласно другой гипотезе, птицы произошли не непосредственно от псевдозухий, а от их потомков — одной из групп юрских динозавров. Д. Остром (1973, 1976) указал на значительное сходство многих особенностей скелета археоптерикса и целюрозавров (примитивных ящеротазовых теропод, см. выше). Сходные черты прослеживаются практически во всех отделах скелета этих животных. В пользу данной гипотезы говорит и значительный промежуток времени, отделяющий археоптерикса от самых поздних известных псевдозухий (около 20 млн. лет), тогда как средне- и позднеюрские целюрозавры по времени своего существования вполне подходят в качестве предков птиц 1.

В раннемеловое время появляются наиболее древние представители современного подкласса птиц (Ornithurae, или птицехвостых; археоптерикс выделен в особый подкласс Saururae, или ящерохвостых птиц).

Среди птиц мелового периода выделяется группа Odontornithes («зубастые птицы», рис. 58). К ним принадлежат отряды гесперорнисов (Hesperornithes) и ихтиорнисов (Ichthyornithes), для представителей которых было характерно сохранение целого ряда примитивных признаков. Головной мозг у этих птиц был еще относительно невелик, в челюстях сидели мелкие острые зубы, у некоторых видов позвонки оставались амфицельными, а редукция хвостового отдела еще не достигла состояния, типичного для высших птиц. В связи с этим некоторые орнитологи рассматривают Odontornithes как особый третий подкласс птиц (Г. П. Дементьев, 1964).

Ихтиорнисы уже обладали полетом, мало чем уступавшим таковому высших птиц. Гесперорнисы же были первыми (среди известных птиц) водоплавающими формами, причем совершенно утратили способность к полету. Крылья у гесперорнисов были довольно сильно редуцированы, и плавали эти птицы с помощью работы мощных задних конечностей. По внешнему облику и, вероятно, в экологическом отношении гесперорнисы могли напоминать современных гагар.

С усовершенствованием полета, приобретением гомойотермии и усложнением головного мозга птицы становились все более серьезными конкурентами летающих ящеров. Возможно, конкуренция со стороны птиц была косвенной причиной эволюции птерозавров в направлении все большего возрастания размеров, вплоть до гигантских летающих ящеров позднего мела. Во второй половине мелового периода происходила широкая адаптивная радиация 1 птиц, в процессе которой возникли основные современные их группы (большинство из них известны начиная с палеогена).

 

ИЗМЕНЕНИЯ В СОСТАВЕ НАЗЕМНЫХ БИОЦЕНОЗОВ ВО ВТОРОЙ ПОЛОВИНЕ МЕЗОЗОЯ

На фоне поражающей воображение эволюции архозавров, во второй половине мезозоя происходили и многие другие, может быть, внешне менее эффектные, но столь же интересные и важные события.

В начале мелового периода от ящериц возникли змеи (Ophidia). Нужно сказать, что среди ящериц нередко появлялись формы с сильно удлиненным телом и редуцированными конечностями (многие из них существуют и ныне). Такое строение приобретали виды, приспосабливавшиеся к жизни в различных укрытиях (густые заросли, пространства под корой упавших деревьев и т. п.) и к рытью в лесной почве или в песке. Вероятно, предки змей также стали роющими (хотя бы отчасти) животными; роющий образ жизни сохраняется и в ряде архаических современных групп змей. Однако представители основного ствола эволюции змей вновь вернулись на поверхность субстрата, что было связано с переходом к питанию все более крупной добычей; современные специализированные роющие змеи (Scolecophidia) являются микрофагами, поедающими муравьев, термитов и т. п. Однако, в отличие от других хищников, питающихся крупной добычей, змеи не разрывают ее на части, а проглатывают целиком. Освоение такого способа питания у змей сопровождалось чрезвычайным усилением кинетизма черепа, в котором самостоятельную подвижность получает каждая половина (левая и правая) и верхней и нижней челюсти, и даже внутри этих челюстных комплексов многие кости подвижны относительно друг друга (гиперкинетическое состояние 2). Это позволяет змее целиком проглатывать добычу, поперечный диаметр которой нередко в несколько раз превышает диаметр головы хищника: челюсти постепенно охватывают тело жертвы, как бы «переступая» по ней, и челюстной аппарат в целом широко растягивается. В позднемеловую эпоху уже существовали крупные змеи, родственные современным удавам.

Млекопитающие в течение «века динозавров» оставались сравнительно малозаметными членами мезозойских биоценозов. Это были небольшие зверьки, которые вели скрытный образ жизни, избегая открытых пространств (вероятно, большинство из них имело сумеречную или ночную активность, см. выше). Однако и среди млекопитающих происходила адаптивная радиация. Помимо разнообразных насекомоядных и мелких хищников — триконодонтов (Triconodontia), докодонтов (Docodontia), симметродонтов (Symmetrodontia), пантотериев (Pantotheria), уже в конце триаса появились и растительноядные звери, принадлежавшие к отряду многобугорчатых (Multituberculata) (Л. Ван-Вален, 1976). Название «многобугорчатые» связано со строением зубов этих зверей, в некоторых отношениях удивительно сходных с зубами грызунов и приспособленных к перетиранию растительной нищи. Настоящие грызуны возникли гораздо позднее, уже в кайнозое.

Вероятно, в раннемеловую эпоху произошло расхождение эволюционных стволов сумчатых (Marsupialia) и плацентарных (Рlаcentalia) млекопитающих. Центром эволюции сумчатых была, вероятно, Америка, а плацентарные как группа сформировались в Евразии (Р. Хофстеттер, 1972). Позднее сумчатые через Антарктиду (еще до окончательного расхождения этих материков Гондваны) проникли в Австралию, которая и стала их второй родиной после широкого расселения плацентарных. Плацентарные обладали более высоким развитием головного мозга и более совершенным онтогенезом (с длительным развитием зародыша в матке матери и рождением хорошо сформированного детеныша). Вероятно, эти прогрессивные особенности определили успех плацентарных в конкуренции с сумчатыми. Изолированное положение Австралии воспрепятствовало проникновению туда плацентарных и сделало ее уникальным «заповедником» более примитивных групп — сумчатых и однопроходных (Monotremata). Последние стоят особняком среди современных млекопитающих; в ископаемом состоянии они известны лишь из кайнозойских (плейстоценовых) отложений, а судя по особенностям строения скелета, однопроходные ближе к многобугорчатым, докодонтам и триконодонтам, чем к сумчатым и плацентарным. Последние группы обнаруживают родственные связи с двумя другими отрядами архаических млекопитающих, симметродонтами и пантотериями; вероятно, пантотерии были предками эволюционного ствола, в раннем мелу разделившегося на стволы плацентарных и сумчатых (Д. Хопсон, 1969, 1970; З. Кьелан-Яворовска, 1970, 1971, 1975). Таким образом, все группы ископаемых и современных млекопитающих распределяются в два основных комплекса (которым разные исследователи придают различный таксономический ранг): прототерии (Prototheria), исключающие однопроходных, докодонтов, триконодонтов и многобугорчатых, и терии (Theria) — плацентарные, сумчатые, пантотерии и симметродонты. Два этих главных филогенетических ствола млекопитающих обособились друг от друга очень рано, еще в позднем триасе. Не исключено, что это произошло на уровне организации высших териодонтов и основные диагностические признаки млекопитающих были приобретены представителями терий и прототерий независимо друг от друга и параллельно 1.

Может быть, наиболее значительным по своим последствиям событием, происшедшим примерно в середине «века динозавров» и значительно изменившим облик позднемезозойских биоценозов, было появление покрытосеменных, или цветковых, растений (Angiospermae). Первые достоверные остатки представителей этой группы высших растений встречаются в нижнемеловых отложениях (с абсолютным возрастом около 120 млн. лет). Древнейшие покрытосеменные были мелколистными кустарниками или небольшими деревьями. В начале позднего мела покрытосеменные приобретают самое широкое распространение и огромное разнообразие размеров и форм. Среди них становятся многочисленными крупнолистные растения, в том числе представители современных семейств магнолиевых, лавровых, платановых и др. (А. Н. Криштофович, 1957).

Происхождение покрытосеменных остается до сих пор одной из интереснейших и оживленно дискутируемых проблем палеоботаники. Основываясь на наличии некоторых признаков «покрытосемянности» у ряда групп домеловых растений, некоторые ученые предполагают, что покрытосеменные возникли гораздо раньше раннего мела (может быть, даже в конце палеозоя). Однако отсутствие достоверных остатков цветковых в отложениях более древних, чем нижнемеловые, говорит скорее в пользу более позднего происхождения этой группы (в поздней юре или в самом начале раннего мела 2).

Характерные особенности покрытосеменных, в частности образование завязи, защищающей семяпочки (макроспорангии) посредством срастания краев плодолистиков (макроспорофиллов), постепенно развивались у нескольких групп голосеменных растений, которых на этом основании иногда называют «проангиоспермами». При этом (как и во многих других, упоминавшихся выше случаях) происходило параллельное и независимое развитие признаков покрытосеменных в разных филетических линиях проангиоспермов (кейтониевых Caytoniales, чекановскиевых — Czekanowskiales, диропалостахиевых Dirhopalostachyaceae), существовавших в конце юры — начале мела (В. А. Красилов, 1976, 1977). Как и в других подобных случаях, высказывались предположения о независимом полифилетическом происхождении разных групп покрытосеменных (двудольных, однодольных и казуариновых, согласно П. Грегуссу, 1971) от различных голосеменных.

Так или иначе, становление организации ангиоспермов происходило постепенно, и разные их признаки (покрытосемянность, развитие цветка, крайняя редукция полового гаплоидного поколения — гаметофита, появление в древесине так называемых настоящих сосудов — трахей) развивались в достаточной степени независимо друг от друга, причем в разных филетических линиях «опережающее» развитие получали различные признаки 1. В итоге пока не представляется возможным указать исходную для покрытосеменных филетичсскую линию среди проангиоспермов (если, конечно, не придерживаться концепции полифилии).

Широкое распространение покрытосеменных к середине мелового периода и приобретение ими ведущей роли среди флоры в большинстве наземных биоценозов произошло в относительно небольшие (в категориях геологического времени) сроки (порядка 15–20 млн. лет), но не носило «взрывного» характера. Неоднократно отмечалось многими авторами, что это изменение в составе наземной флоры не обнаруживает корреляции с какими бы то ни было заметными в геологической летописи преобразованиями условий существования.

Если принять концепцию древнего происхождения покрытосеменных (до поздней юры), то расцвет ангиоспермов в меловом периоде выглядит загадочным. Для решения этой загадки выдвигались различные предположения. Одной из интересных попыток такого рода была гипотеза М. И. Голенкина (1927), согласно которой победа покрытосеменных в борьбе за существование была обусловлена устойчивостью этих растений к высокой интенсивности солнечного света (ангиоспермы, по М. И. Голенкину, «являются, несомненно, детьми солнца, детьми яркого безоблачного или во всяком случае малооблачного неба, детьми менее влажной атмосферы»). В связи с этим М. И. Голенкин предполагал, что в течение мелового периода произошло усиление яркости солнечного света на поверхности Земли которое могло быть вызвано повышением прозрачности воздуха 2.

Если покрытосеменные возникли лишь в конце юрского периода, что в целом представляется более вероятным, то их последующее расселение и повышение разнообразия в первой половине мела теряет характер внезапного изменения, но представляется постепенным, хотя и быстрым процессом экологической экспансии и адаптивной радиации новой группы после приобретения ею целого комплекса важных приспособлений. Среди этих приспособлений свою роль сыграли и покрытосемянность, и связанная с развитием цветка энтомофилия (опыление с помощью насекомых), и высокая устойчивость вегетативных органов к солнечному свету, подмеченная М. И. Голенкиным. Очевидно, в этом случае нет нужды искать внешние причины, обусловившие биологический прогресс покрытосеменных.

Как бы то ни было, столь существенное изменение флоры в середине мелового периода неминуемо должно было сказаться на всем облике биосферы, в первую очередь на структуре биоценозов суши.

 

ВЕЛИКОЕ ВЫМИРАНИЕ

Последние века мезозойской эры были временем драматических событий, сущность которых пока еще не вполне ясна. Возможно, эти события были в какой-то мере подготовлены только что рассмотренными нами изменениями флоры. Вслед за «победным шествием» покрытосеменных в течение позднего мела вымирают их предшественники — беннеттиты и проангиоспермы, сильно сокращаются распространение и разнообразие папоротников и саговников. Общий облик флоры позднего мела уже всецело определяется ангиоспермами; из голосеменных сохранили свои позиции лишь хвойные.

С середины мелового периода наметились некоторые изменения и в фауне. Изменения флоры прежде всего сказались на насекомых. На протяжении позднего мела энтомофауна постепенно обновилась: исчез целый ряд архаических семейств и появились группы, существующие и поныне 3.

Однако в широколиственных и хвойных лесах и на открытых равнинах позднего мела по-прежнему доминировали различные динозавры; в воздухе реяли гигантские летающие ящеры; в морях были обильны разнообразные морские рептилии плезиозавры и мозазавры (существовали в позднем мелу, по новым данным, и последние ихтиозавры), было много морских черепах; в пресных водоемах обитали многочисленные крокодилы (в это время жили самые крупные известные крокодилы дейнозухи (Deinosuchus), длина черепа которых достигала 2 м, а общая длина около 16 м). Общий облик фауны в позднемеловой эпохе оставался в целом прежним, типичным для «века динозавров», в течение свыше 45 млн. лет после повсеместного распространения покрытосеменных.

Но в конце мелового периода в относительно краткие (геологически) сроки произошло вымирание многих групп позвоночных и беспозвоночных животных, наземных, водных и летающих организмов. Вымирают и гигантские формы, и животные мелких размеров, и растительноядные, и хищные. К началу кайнозоя вымерли все динозавры, 8 из 10 верхнемеловых семейств крокодилов, все летающие ящеры, плезиозавры, мозазавры, последние виды ихтиозавров. Среди беспозвоночных вымирание постигло широко распространенных в юрском и меловом периодах двустворчатых моллюсков-рудистов, аммонитов, белемнитов и многих наутилоидных головоногих, вымерли также многие виды морских лилий и фораминифер.

Следует подчеркнуть, что это великое вымирание не сопровождалось одновременным повышением численности и разнообразия видов каких-то других групп. Как и в пермском периоде, произошло значительное общее обеднение фауны. Уже в кайнозое (так сказать, на освободившемся месте) начинается экспансия не затронутых вымиранием групп (млекопитающие, птицы, наземные лепидозавры, бесхвостые земноводные). С другой стороны, как и во время пермского вымирания, на рубеже мезозоя и кайнозоя некоторые группы животных как бы остались в стороне от происходивших событий (их разнообразие и численность не претерпели существенных изменений). Среди позвоночных это различные группы рыб, хвостатые земноводные, черепахи.

Как и в пермском периоде, великое вымирание в конце мела не носило характера мировой катастрофы (физико-географические условия на рубеже мезозоя и кайнозоя не претерпели каких-либо внезапных и резких изменений) и сам процесс вымирания был кратким лишь в геологическом смысле. Он продолжался в течение миллионов лет, когда вымирающие филетические линии постепенно угасали.

Остается неясным, в какой мере эти процессы происходили одновременно на разных континентах и в разных океанах и морях. Например, по данным Р. Слоуна (1976), в Северной Америке динозавры (трицератопсовая фауна) существовали еще несколько миллионов лет в начале палеогена, после их вымирания в других регионах. Но, так или иначе, общий итог был один на всем земном шаре, что, собственно, и придает великим вымираниям особенно загадочный характер.

В гипотезах о причинах великого вымирания в конце мела нет недостатка. Эта волнующая проблема привлекала и продолжает привлекать внимание многих ученых. Достаточно подробный обзор этих многочисленных гипотез потребовал бы специальной книги и далеко выходит за рамки возможностей данной работы. Мы вынуждены здесь ограничиться рассмотрением лишь некоторых основных вариантов гипотез.

Поскольку подвергшиеся вымиранию группы организмов в конечном итоге исчезли повсеместно, многие ученые предполагали, что причины таких явлений должны были иметь характер всемирных катастроф. Первая из «катастрофических» гипотез была выдвинута еще Ж. Кювье, который считал причиной великого вымирания в конце мела вулканическую деятельность, связанную с альпийской фазой горообразования. Несомненно, усиление вулканизма оказывает влияние на органический мир не только непосредственно (излияние лав, покрывающих большие территории, которые становятся на длительное время непригодными для жизни, и другие губительные для жизни факторы вулканических извержений), но также и косвенно. Происходят значительные изменения ландшафта, в атмосферу выбрасываются огромные количества вулканической пыли и углекислого газа, снижающие прозрачность воздуха, все это сказывается на климате. Однако в фанерозое проявления вулканизма всегда имели локальный характер, и непосредственный эффект вулканической деятельности мог сказываться лишь на относительно небольшой части земной поверхности. С другой стороны, горообразовательные процессы, сопровождавшиеся вулканизмом, происходили в разных регионах земного шара и в юрское время, и в меловом периоде задолго до эпохи великого вымирания (древне- и новокиммерийские и австрийская фазы альпийского горообразования, см. выше), не приводя к катастрофическим последствиям для мира динозавров и их современников. Ларамийская фаза горообразования также началась задолго до вымирания в конце мела и ничем принципиально не отличалась от предшествовавших ей фаз.

В некоторых более новых вариантах «катастрофических» гипотез предпринимались попытки связать вымирание со вспышками Сверхновых звезд в относительной близости к солнечной системе (порядка 100 световых лет). Мы уже обсуждали выше гипотезу О. Шиндевольфа о «взрыве» мутаций в ответ на повышение уровня космической радиации (см. главу 2).

Иначе интерпретируют результаты вспышки Сверхновой звезды Д. Рассел и В. Такер (1971). По мнению этих авторов, повышение интенсивности космического излучения должно вызвать резкое усиление атмосферной циркуляции с образованием вихрей, результатом чего может быть резкое (хотя геологически кратковременное) общее понижение температуры на поверхности Земли. Последнее рассматривается как фактор, определивший вымирание динозавров, приспособленных к теплому ровному климату мезозоя. Однако, как мы уже упоминали, нет никаких геологических и палеонтологических фактов, свидетельствующих о резких и внезапных изменениях физико-географических условий на границе мезозоя и кайнозоя. Хорошим индикатором этого является состояние флоры, которая в конце мезозоя не претерпела никаких резких преобразований, а ведь растения очень чувствительны к климатическим изменениям. Кроме того, и сам процесс вымирания динозавров и других групп животных был, как мы подчеркивали, в достаточной степени растянут во времени и не был ни внезапным, ни строго единовременным по всей Земле.

Совокупность имеющихся ныне данных говорит в целом против «катастрофических» гипотез вымирания в конце мела (так же как и в другие геологические эпохи).

Высказывались предположения о связи вымирания динозавров с изменениями биотических факторов, в качестве которых называли, в частности, конкуренцию со стороны млекопитающих и преобразования флоры, связанные с широким распространением покрытосеменных в середине мелового периода.

Однако млекопитающие возникли еще в позднем триасе и на протяжении примерно 130 млн. лет, прошедших до конца мезозоя, оставались малозаметной и малозначительной группой животных.

Т. Свейн (1976) считает, что определенную роль в вымирании динозавров могло сыграть преобладание покрытосеменных в позднемеловых растительных сообществах, поскольку эти последние в биохимическом отношении существенно отличаются от групп растений, служивших пищей растительноядным животным до середины мела. Однако динозавры сосуществовали с ангиоспермамн около 70 млн. лет, и фауна динозавров, включавшая многочисленные и разнообразные растительноядные виды, процветала не менее 45 млн. лет после широкой экспансии покрытосеменных растений. Не следует забывать также о других группах животных, в частности морских, вымерших, в конце мезозоя. Очевидно, указанные биотические факторы сами по себе никак не могут объяснить вымирания плезиозавров, мозазавров, рудистов, морских лилий и т. д.

Поскольку великое вымирание коснулось одних групп животных и почти (или совсем) не затронуло другие, ключ к пониманию событий, происходивших на рубеже мезозоя и кайнозоя, видимо, следует искать в равной мере и в изменениях внешних факторов, и в особенностях организации и биологии подвергшихся вымиранию животных. Особая трудность заключается в том, что, в отличие от великого пермского вымирания, в конце мела «под ударом», оказались группы животных с совершенно разной экологией, обитающих в различной среде (наземные, амфибиотические, пресноводные и морские). Пока остается неясным, было ли вызвано вымирание столь различных животных, как всевозможные динозавры, летающие ящеры, аммониты, рудисты и т. п., какой-то одной внешней причиной (хотя бы косвенно) или же одновременным действием разных факторов, не связанных друг с другом причинно.

Поскольку динозавры более всего привлекали внимание, в большинстве гипотез обсуждается в первую очередь вымирание именно этих рептилий. В поисках «слабого места» в организации динозавров, которое могло привести к их вымиранию при определенных изменениях внешних условий, многие ученые останавливались на особенностях теплообмена этих животных. Как мы уже упоминали, вероятнее всего, динозавры оставались физиологически пойкилотермными (холоднокровными) животными, как и все современные пресмыкающиеся. Однако, используя гелиотермию, динозавры (особенно крупные формы) в условиях ровного и теплого климата юрского и мелового периодов могли поддерживать температуру тела на практически постоянном, оптимальном для функций организма уровне. При отсутствии значительных сезонных изменений климата, подобных, например, современным в средних широтах, у динозавров не могло выработаться каких-либо физиологических или поведенческих механизмов для успешной зимовки.

В поисках тех изменений внешних условий, которые вызвали вымирание динозавров, Д. Аксельрод и Г. Бейли (1968) вновь обратились к процессам горообразования и вулканизма, происходившим в конце мела, последствия которых могли иметь важное значение, хотя и не носили характера катастрофы. Мезозой был в целом эрой низкого стояния материков. Альпийская фаза горообразования, постепенно развивавшаяся в юрском и меловом периодах, сопровождалась значительным общим поднятием материков к концу мезозоя. Результатом этого (а также снижения прозрачности атмосферы вследствие вулканической деятельности) было, по Д. Аксельроду и Г. Бейли, постепенное понижение среднегодовой температуры в течение 20 млн. лет примерно на 5°. Но, вероятно, еще более существенным фактором было возрастание неравномерности температурных условий в умеренном поясе, с развитием все более резко выраженной сезонности климата и значительным возрастанием перепада между максимальными и минимальными температурами. Об этом, в частности, говорит все более широкое распространение в позднем мелу листопадной флоры (Л. Рассел, 1965, 1966). При таком направлении развития климата динозавры не могли сохраниться в умеренном поясе и в целом оказались в худших условиях, чем животные, у которых к этому времени сформировалась настоящая гомойотермия (млекопитающие и птицы), а также чем те рептилии, у которых развились различные приспособления для переживания неблагоприятных в температурном и кормовом отношении сезонов года в неактивном состоянии (ящерицы, змеи, черепахи). Последний путь адаптации для динозавров был затруднен в связи с крупными размерами тела этих животных (которые были столь выигрышны в энергетическом отношении на протяжении юры и мела), а также рассмотренной выше спецификой их теплообмена: не будучи гомойотермными, динозавры были приспособлены к практически постоянным оптимальным температурам. Отметим, что, говоря здесь о крупных размерах, мы не имеем в виду гигантские формы, а вообще крупные, более 1 м (а именно таковы были мелкие виды динозавров). Отметим далее и то, что ныне в умеренном поясе пресмыкающиеся представлены лишь мелкими видами (как правило, менее 1 м), которые могут успешно выдержать зимовку с использованием различных убежищ. Все крупные современные виды рептилий — крокодилы, достигающие больших размеров виды змей, ящериц и черепах — тропические животные.

Упомянутые выше данные Р. Слоуна (1976) о ходе вымирания трицератопсовой фауны в Северной Америке, по-видимому, также говорят в пользу этой гипотезы: в начале палеогена влажные и теплолюбивые субтропические леса, в которых преобладали покрытосеменные растения, постепенно сменились более холодолюбивыми хвойными лесами, в которых быстро распространились млекопитающие.

С данной гипотезой можно согласовать и наблюдения французских палеонтологов об аномалиях скорлупы яиц, часто встречающихся в ископаемых кладках динозавров из верхнемеловых отложений Прованса. М. Аллен-Рено (1963) высказал предположение, что эти аномалии были результатом повторных прижизненных приостановок процесса формирования скорлупы во время развития яиц в яйцеводах самок динозавров, которые могли быть вызваны похолоданиями.

Достоинствами разбираемой гипотезы является, во-первых, согласование ряда достаточно разнообразных и достоверных данных, во-вторых, признание постепенности происходивших на Земле изменений (и самого процесса вымирания). Однако и эта гипотеза оставляет открытыми несколько серьезных вопросов: почему динозавры и летающие ящеры не выжили в тропиках, где даже при некотором понижении средней температуры сохранялись в целом теплые и ровные климаты на протяжении всего фанерозоя и где выжили, например, крокодилы, которые, вероятно, физиологически близки к динозаврам? Почему повсеместно вымерли морские рептилии и ряд других групп морских животных (ведь в океане, особенно в низких широтах, не могло возникнуть температурной неравномерности, сравнимой с таковой на суше)?

Возможно, удовлетворительный ответ на последний вопрос дает гипотеза французского палеонтолога Л. Гинзбурга (1965), также опирающаяся на геологический факт поднятия материков к концу мела, с которым была связана значительная морская регрессия. В ходе этой регрессии акватория эпиконтинентальных морей (покрытых морем частей континентальных платформ) уменьшилась примерно в 50 раз. Мелкие и теплые эпиконтинентальные моря представляли во все времена фанерозоя наиболее благоприятную для организмов зону Мирового океана, наиболее обильную жизнью как в качественном (по разнообразию видов), так и в количественном (по биомассе) отношении. Вероятно, столь значительное сокращение их акватории не могло не сказаться на самых различных группах морских организмов, хотя в данном случае остается непонятной выборочность вымирания: почему вымерли морские рептилии, моллюски рудисты, аммониты, белемниты, многие наутилоидеи и т. д. (см. выше), но совершенно не пострадали, например, костистые и пластинчатожаберные рыбы?

Таким образом, вымирание как наземных, так и морских групп организмов в конце мелового периода могло быть в конечном итоге следствием горообразовательных процессов и поднятия континентов во второй половине мезозоя. Эти постепенно происходившие преобразования земной поверхности медленно, но неуклонно нарастали, приводя к изменениям морских течений и преобладающих направлений атмосферных потоков. Воздействие этих изменений на флору и фауну было чрезвычайно сложным и многообразным, как непосредственным, так и косвенным.

Изменения условий существования, вызвавшие упадок и вымирание определенных видов и групп организмов, неизбежно должны были привести к нарушению равновесия в природных сообществах организмов — биоценозах, в которых разные виды живых существ связаны тесной зависимостью. Биоценозы обладают определенной устойчивостью, способностью к саморегуляции, но устойчивость эта имеет свои пределы. Как мы уже упоминали, если нарушения структуры биоценоза выходят за эти пределы, начинается распад всей экосистемы. При этом нарушаются сложившиеся пути передачи органических веществ и энергии в биосфере. Тогда вымиранию могут подвергнуться новые виды, которые раньше были мало затронуты непосредственно изменениями абиотических факторов. Этот процесс будет нарастать, напоминая цепную реакцию, пока тем или иным путем не будет достигнуто новое равновесие между биосинтезом и потреблением, между видами растений, растительноядных животных, хищников и микроорганизмов, т. е. пока не сформируются новые устойчивые и способные к саморегуляции экосистемы биоценозы.

Можно сказать, что великое вымирание представляет собой видимый в далекой исторической перспективе внешний результат сложнейших перестроек биоценозов и биосферы в целом, которые могли начаться задолго до великого вымирания и, постепенно нарастая, достигли в нем своей кульминации.