Развитие жизни на Земле

Иорданский Николай Николаевич

ГЛАВА 2. РАЗВИТИЕ ЖИЗНИ В КРИПТОЗОЕ

 

 

Эры, относящиеся к криптозою, — археозойская и протерозойская — вместе продолжались более 3,4 млрд. лет; три эры фанерозоя — 570 млн. лет, т. е. криптозой составляет не менее 7⁄8 всей геологической истории. Однако, как мы упоминали в предыдущей главе, в отложениях криптозоя сохранилось чрезвычайно мало ископаемых остатков организмов, поэтому наши представления о первых этапах развития жизни в течение этих огромных промежутков времени в значительной степени гипотетичны.

 

ПАЛЕОНТОЛОГИЧЕСКИЕ ДАННЫЕ О РАЗВИТИИ ЖИЗНИ В КРИПТОЗОЕ

Мы начнем с рассмотрения имеющихся палеонтологических документов.

Древнейшие остатки организмов были найдены в кремнистых сланцах системы Свазиленд (серии Онвервахт и Фиг-Три), в районе Барбертона (Восточный Трансвааль). Сланцевые пояса системы Свазиленд представляют собой древнейший комплекс осадочных пород, относительно мало затронутых метаморфизмом. Изверженные породы образуют мощные толщи в составе серии Онвервахт, а также в верхней и нижней части более молодой серии Фиг-Три. Абсолютный возраст системы Свазиленд составляет 3,1–3,3 млрд. лет.

По данным Д. Шопфа, Э. Баргхоорна, Б. и Л. Нэджи (1967–1974), в кремнистых сланцах Онвервахта и Фиг-Три встречаются различные микроскопические структуры, которые рассматриваются этими учеными как ископаемые остатки одноклеточных сине-зеленых водорослей (Archaeosphaeroides barbertonensis) и бактерии (Eobacterium isolatum). Первые имеют сфероидную форму диаметром 17–20 мкм, вторые — палочковидную длиной 0,5–0,7 мкм и толщиной 0,2–0,3 мкм. Отмечены также нитчатые формы длиной до 100 мкм, напоминающие нитчатые сине-зеленые водоросли. Тонкими геохимическими методами показано наличие в осадочных породах, вмещающих эти ископаемые остатки, ряда органических веществ, которые, судя по содержанию в них разных изотопов углерода, могут иметь биогенное происхождение (т. е. возникли из веществ, входивших в состав организмов) и представляют собой молекулярные ископаемые. Это некоторые углеводороды, в том числе изопреноидные алканы фитан и пристан (последние могут быть производными хлорофилла, что указывает на возможность существования фотосинтезирующих организмов уже 3,2 млрд. лет назад), а также ряд аминокислот.

Рис. 3. Ископаемые остатки организмов из формации Ганфлинт (по материалам Э. Баргхоорна, П. Клауда, С. Тайлера, Г. Лайкери):

а — Gunflintia; б — Huroniospora; в — Eosphaera; г — Eoastrion; д Kakabekia.

Необходимо отметить, что принадлежность указанных остатков из системы Свазиленд к ископаемым организмам не может пока считаться вполне доказанной. Некоторые ученые полагают, что это псевдоископаемые, образовавшиеся абиогенным путем (включая и молекулярные ископаемые, которые, например, могли возникнуть под действием ультрафиолетового облучения из тиоцианата аммония NH4SCN, присутствующего в вулканических газах). Структурно ископаемые остатки из Трансвааля очень просты, поэтому пока нет оснований утверждать, что эти образования не могли возникнуть абиогенно.

Однако в осадочных толщах Родезии (серия Булавайо), имеющих возраст 2,9–3,2 млрд. лет (т. е. геологически ненамного моложе, чем породы серии Свазиленд), обнаружены древнейшие строматолиты — следы жизнедеятельности водорослей (вероятно, сине-зеленых). Если бы даже свазилендские остатки оказались псевдоископаемыми, эти строматолиты убедительно свидетельствуют, что около 3 млрд. лет назад на Земле уже существовали фотосинтезирующие организмы — водоросли. Очевидно, появление жизни на Земле должно было произойти значительно раньше, — может быть, 3,5–4 млрд. лет назад.

В отложениях среднего криптозоя (возраст 2,5–1,7 млрд. лет) ископаемых остатков организмов несколько больше, а главное — их природа не вызывает таких сомнений, как в случае древнейших микроископаемых из Свазиленда. Наиболее известна среднепротерозойская флора, остатки которой были обнаружены в Канаде — в кремнистых сланцах формации Ганфлинт на северном берегу озера Верхнего. Возраст этих отложений составляет около 1,9 млрд. лет. В строматолитовых кремнистых породах здесь встречаются ископаемые остатки довольно разнообразных микроорганизмов (рис. 3). Обычны нитчатые формы длиной до нескольких сотен микрометров и толщиной 0,6-16 мкм, имеющие различное строение: простые и ветвистые, нечленистые и разделенные по длине на сегменты (клетки?), причем последние могут быть разной формы — округлые и удлиненные. Строение некоторых нитевидных организмов (Gunflintia), по мнению Э. Баргхоорна (1971), напоминает таковое современных сине-зеленых водорослей, другие же сходны с железобактериями. Имеются и одноклеточные микроорганизмы диаметром 1-16 мкм, также различного строения, от простых, округлых, снабженных толстой оболочкой Huroniospora до сложных, причудливой формы Eoastrion и Kakabekia. В породах системы Ганфлинт обнаружены и молекулярные ископаемые — органические вещества, подобные найденным в более древней формации Свазиленд.

В осадочных породах, образовавшихся в промежутке времени между 2 и 1 млрд. лет назад, часто встречаются строматолиты, что говорит о широком распространении и активной фотосинтезирующей и рифостроительной деятельности сине-зеленых водорослей в этот период.

Следующий важнейший рубеж в эволюции жизни документируется рядом находок ископаемых остатков в отложениях, имеющих возраст 0,9–1,3 млрд. лет. Среди них наиболее известна ископаемая флора, обнаруженная в углистых кремнистых сланцах формации Биттер-Спрингс (возраст 0,9 млрд. лет) в Центральной Австралии. Помимо одноклеточных и нитчатых форм сине-зеленых водорослей (которые, по мнению Д. Шопфа, уже относятся к семействам, существующим и в настоящее время), здесь найдены прекрасной сохранности остатки одноклеточных организмов размером 8-12 мкм, в которых удалось различить внутриклеточную структуру, похожую на ядро (рис. 4); обнаружены также стадии деления одного из видов этих одноклеточных организмов (Glenobotrydion aenigmaticus), напоминающие стадии митоза — способа деления эукариотических (т. е. имеющих ядро) клеток. Сходные ископаемые остатки содержащих ядро клеток и стадий митоза были найдены также в доломитах местонахождения Бек-Спрингс в Калифорнии, имеющих возраст 1,3 млрд. лет, на реках Мироедихе (Туруханский район) и Мае (юго-восток Якутии) в отложениях возрастом 0,9–1 млрд. лет (Г. Лайкэри, Б. Троксел, 1973; Б. В. Тимофеев, Т. Н. Герман, 1974).

Рис. 4. Ископаемые остатки организмов из формации Биттер-Спрингс (по Д. Шопфу):

а — Caryosphaeroides pristina; б — Glenobotrydion aenigmaticus.

Если интерпретация описанных ископаемых остатков правильна, это означает, что около 1,6–1,35 млрд. лет назад эволюция организмов прошла важнейший рубеж — был достигнут уровень организации эукариот (Б. С. Соколов, 1972, 1975). Различия прокариот (не имеющих клеточного ядра низших организмов сине-зеленых водорослей и бактерий) и эукариот, к которым относятся все остальные группы растений и животных, будут рассмотрены в следующем разделе этой главы.

Д. Шопф (1970) считает, что остатки различных эукариот из Биттер-Спрингс и других местонахождений того же возраста принадлежат к разным типам низших растений: зеленых, бурых и красных водорослей, а также, возможно, грибов.

Следует оговориться, что С. Френсис, Л. Маргулис и Э. Баргхоорн (1976) подвергают сомнению надежность выводов о принадлежности различных докембрийских микроископаемых к эукариотам. В экспериментах этих авторов по искусственному окремнению различных организмов (с получением искусственных микроископаемых) оказалось, что темные пятна, принимавшиеся за остатки ядра, и другие «признаки эукариотности» могут быть получены и при окремнении клеток прокариот.

Обращает на себя внимание отсутствие ископаемых остатков животных в отложениях большей части криптозоя. Остатки некоторых одноклеточных простейших (радиолярий и, может быть, фораминифер) и ряда групп многоклеточных животных появляются лишь в вендских отложениях. Это может быть связано и с более поздним возникновением животных (ответвившихся, вероятно, от примитивных одноклеточных жгутиконосных форм среди водорослей-эукариот), и с худшими возможностями фоссилизации клеток животных, лишенных, в отличие от растительных клеток, прочной целлюлозной оболочки. Скелета же протерозойские животные не имели.

Рис. 5. Реконструкция фауны Эдиакары (по М. Глесснеру и М. Уэйду):

1–10 — кишечнополостные (?) (1 — Ediacara; 2 — Beltanella; 3 Medusinites; 4 — Mawsonites; 5–6 — Cyclomedusa; 7 — Conomedusites; 8 — Rangea; 9 — Arborea; 10 — Pteridinium); 11–14 — плоские и кольчатые черви (?) (11 — Spriggina; 12–14 — Dickinsonia); 15–16 — членистоногие (?) (15 — Parvancorina; 16 — Praecambridium); 17 — иглокожее (?) Tribrachidium; 18 — шарообразные студенистые организмы.

Первые следы жизнедеятельности червеобразных многоклеточных животных известны из позднерифейских отложений. В вендское время (650–570 млн. лет назад) существовали уже разнообразные животные, вероятно, принадлежавшие к различным типам (Б. С. Соколов, 1972, 1975, 1976). Немногочисленные отпечатки мягкотелых вендских животных известны из разных районов земного шара. Ряд интересных находок был сделан в позднепротерозойских отложениях на территории СССР (в Прибалтике, на Кольском полуострове, в районе Яренска в Архангельской области, на реке Мае и на Оленёкском поднятии в Якутии и т. д.).

Наиболее известна богатая позднепротерозойская ископаемая фауна, обнаруженная Р. Сприггом в 1947 г. в Центральной Австралии, в районе Эдиакары (к северу от Аделаиды). Исследовавший эту уникальную фауну М. Глесснер считает, что она включает примерно три десятка видов очень разнообразных многоклеточных животных, относящихся к разным типам (рис. 5). Большинство форм принадлежит, вероятно, к кишечнополостным. Это медузоподобные организмы, вероятно «парившие» в толще воды (Ediacara flindersi, Beltanella gilesi, Medusinites asteroides и др.), и прикрепленные к морскому дну полипоидные формы, одиночные или колониальные, напоминающие современных альционарий, или морские перья (Rangea longa, Arborea arborea, Pteridinium simplex и др.). Замечательно, что все они, как и другие животные эдиакарской фауны, лишены твердого скелета.

Кроме кишечнополостных, в кварцитах Паунд, вмещающих эдиакарскую фауну, найдены остатки червеобразных животных, причисляемых к плоским и кольчатым червям (Spriggina flounderi и разные виды Dickinsonia). Некоторые виды организмов интерпретируются как возможные предки членистоногих (Praecambridium sigillum, напоминающий по характеру сегментации тела трилобитов и хелицеровых) и иглокожих (Tribrachidium heraldicum дисковидной формы, с 3 валиками на плоской поверхности). Наконец, имеется целый ряд ископаемых остатков неизвестной таксономической принадлежности.

Ряд эдиакарских форм был обнаружен также в вендских отложениях разных районов нашей страны: медузоподобная бельтанелла в Прибалтике, эдиакария и медузина на полуострове Рыбачьем, птеридиниумы на севере Якутии, напоминающая сприггину Vendia в районе Яренска и т. д. В 70-е годы на реке Сюзьма (Онежский полуостров) и на Зимнем берегу Белого моря севернее Архангельска были найдены местонахождения вендской фауны, по богатству не уступающие эдиакарской. Это указывает на огромное распространение фауны многоклеточных мягкотелых животных в вендское время.

Поскольку вендская фауна столь разнообразна и включает довольно высокоорганизованных животных, очевидно, что до ее возникновения эволюция Metazoa продолжалась уже достаточно долго. Вероятно, многоклеточные животные появились значительно раньше — где-то в промежутке 700–900 млн. лет назад.

Граница между протерозойской и палеозойской эрами (т. е. между криптозоем и фанерозоем) отмечается поразительным изменением в составе и богатстве ископаемой фауны. Внезапно (другого слова здесь, пожалуй, и не подберешь) после «немых» толщ верхнею протерозоя, почти лишенных следов жизни, в осадочных породах кембрия (первого периода палеозойской эры), начиная с самых нижних горизонтов, появляется огромное разнообразие и обилие остатков ископаемых организмов. Среди них остатки губок, плеченогих, моллюсков, представителей вымершего типа археоциат, членистоногих и других групп. К концу кембрия появляются почти все известные типы многоклеточных животных. Этот внезапный «взрыв формообразования» на границе протерозоя и палеозоя — одно из самых загадочных событий в истории жизни на Земле. Благодаря этому начало кембрийского периода является столь заметной вехой, что нередко все предшествующее время в геологической истории (т. е. весь криптозой) именуют «докембрием». Проблема раннекембрийской биологической революции требует специального рассмотрения, которому будет посвящен следующий раздел.

 

ЗАГАДКА РАННЕГО КЕМБРИЯ И ПОПЫТКИ ЕЕ РАЗРЕШЕНИЯ

Находки вендской фауны и некоторые другие данные по докембрийским организмам говорят о том, что эволюция многоклеточных животных началась задолго до нижнего рубежа кембрия и привела к формированию разнообразных групп. Есть основания считать, что в позднем протерозое уже сложились такие типы, как губки, кишечнополостные, плоские и кольчатые черви, членистоногие, моллюски, иглокожие и, вероятно, многие другие. Крайняя редкость захоронения представителей этих групп в отложениях позднего протерозоя объясняется, вероятно, отсутствием твердого скелета у докембрийских животных. «Революция» раннего кембрия прежде всего проявилась в появлении такого скелета у самых различных групп животных. При этом скелетные ткани и анатомия скелета были совершенно различны у разных групп: от гибких членистых хитиновых панцирей членистоногих до монолитных известковых раковин моллюсков и плеченогих. Однако едва ли будет правильно сводить раннекембрийскую революцию только к скелетизации организмов. Вероятно, на рубеже криптозоя и фанерозоя значительно возросли обилие, разнообразие и распространение различных форм жизни.

Среди предлагавшихся решений загадки раннего кембрия самым простым было предположение, что загадка эта кажущаяся, что в действительности организмы были столь же (или почти столь же) разнообразны и многочисленны и в криптозое, но остатки их не дошли до нас в достаточном количестве из-за большой древности и метаморфизма осадочных пород. Однако такая гипотеза совершенно не объясняет ни внезапности появления в осадочных породах нижнего кембрия столь обильных ископаемых остатков организмов (можно было бы ожидать постепенного нарастания количества ископаемых остатков по мере приближения к современности), ни факта отсутствия скелета у докембрийских животных и его наличия у многих кембрийских форм.

Было высказано предположение, что причиной появления большого количества ископаемых остатков организмов в раннекембрийских отложениях было изменение гидрохимического режима водоемов, благоприятствующее скелетообразованию на чисто химической основе (в частности, указывают на усиленное отложение фосфатов в морских осадках раннего кембрия). Но такое предположение не увязывается с указанным выше разнообразием форм и химического состава скелета у кембрийских животных (сохраняющимся, кстати, и до современности). Как могло благоприятствовать повышение содержания фосфатов в воде образованию, например, кремниевой раковины или хитина, который представляет собой комплекс азотсодержащих полисахаридов?

Для объяснения резких изменений состава и общего облика фауны и флоры в определенные моменты истории Земли, одним из которых и является нижнекембрийский рубеж, некоторые авторы (например, немецкий палеонтолог О. Шиндевольф) привлекают «взрыв мутаций», т. е. значительное возрастание по сравнению с обычным средним уровнем частоты и размаха изменений аппарата наследственности, вызванное какими-то внешними факторами и затронувшее одновременно все (или почти все) виды организмов. Подавляющее большинство мутаций снижает жизнеспособность мутантных особей, чем пытаются объяснить массовое вымирание видов прежней фауны и флоры; общее усиление мутационного процесса, по мысли Шиндевольфа, приводит к возникновению и быстрому распространению новых форм. При этом сразу возникают новые типы организации путем крупных мутаций, так сказать, скачкообразно. В качестве причины такого «мутационного взрыва» Шиндевольф привлекает повышение уровня жесткой космической радиации в результате вспышки Сверхновой звезды на достаточно близком расстоянии от Солнца.

К сожалению, эта концепция не может объяснить ни одного конкретного случая изменений фауны и флоры: почему вымерли одни группы организмов, а выжили и преуспели другие, прежде сосуществовавшие с первыми?

В сущности, концепция «мутационного взрыва» просто подменяет анализ конкретных ситуаций постулированием универсальной причины для объяснения любого крупномасштабного эволюционного изменения. Совершенно несостоятельно привлечение крупных мутаций для объяснения значительных и быстрых преобразований организмов. В действительности основой эволюционного процесса являются малые мутации, и эволюционные перестройки большого масштаба складываются под контролем естественного отбора из серий малых мутаций. Крупные мутации приводят к резкому нарушению функционирования аппарата наследственности, к разладу сложнейших, тонко скоординированных систем морфогенеза и, в итоге, к гибели мутантного организма. Далее, расчеты ряда авторов показали, что вспышки Сверхновых звезд не могут вызвать такого повышения радиации на поверхности Земли, которое имело бы предполагавшийся Шиндевольфом мутагенный эффект.

Вообще всегда кажется более предпочтительным искать объяснения событиям, происходящим на Земле, по возможности не прибегая к таким гипотезам, которые постулируют универсальное влияние некоего космического фактора, никак не опосредованное конкретными земными условиями.

В этом отношении от многих других концепций выгодно отличается гипотеза Л. Беркнера и Л. Маршалла (1965, 1966), объясняющая многие важнейшие события в ходе докембрийской и послекембрийской эволюции, так же как и на рубеже криптозоя и фанерозоя, опираясь на закономерные изменения условий в среде обитания древних организмов. В центре внимания гипотезы Л. Беркнера и Л. Маршалла стоит анализ зависимости развития жизни на Земле от изменений содержания кислорода в земной атмосфере.

В современной атмосфере Земли содержится около 21 % кислорода, что соответствует его парциальному давлению 159 мм рт. ст. Нам, современным обитателям Земли, это представляется совершенно естественным: ведь свободный кислород атмосферы необходим для подавляющего большинства организмов как окислитель в процессах дыхания. Первичноводные животные (например, рыбы) дышат кислородом, растворенным в воде, но этот последний образует с атмосферным кислородом единую систему: избытки кислорода, выделяющегося в воде (в результате фотосинтеза водных растений), поступают в атмосферу, а кислород атмосферы растворяется в поверхностном слое воды, по тем или другим причинам обедненной растворенным кислородом.

Однако кислородная атмосфера, столь богатая этим элементом, среди всех планет солнечной системы присуща только Земле. Это не случайно. Высокая химическая активность кислорода приводит к тому, что в условиях планет кислород в свободном состоянии долго существовать не может. Участвуя в различных химических реакциях, он оказывается связанным в виде оксидов и других соединений. Обилие кислорода в атмосфере современной Земли — результат фотосинтеза, осуществляемого в течение 3 млрд. лет зелеными растениями:

6СО2 + 6Н2О → С6Н12О6 + 6О2 − 2,62 кДж энергия солнечного света

Первичная атмосфера Земли, существовавшая во времена зарождения жизни (3,5–4 млрд. лет назад), имела восстановительный характер и состояла, вероятно, из водорода, азота, паров воды, углекислого газа, аммиака, метана, аргона и небольших количеств других газов, в том числе и кислорода. Количество свободного кислорода в первичной атмосфере не могло превышать 0,001 от современного его содержания (это небольшое количество кислорода выделялось в результате фотодиссоциации воды ультрафиолетовыми лучами; кислород быстро входил в различные химические реакции и вновь оказывался в химически связанном состоянии).

Зарождение жизни произошло в бескислородной среде, и кислород в силу своей высокой окислительной способности первоначально был ядовит для протоорганизмов из-за отсутствия у них соответствующих защитных биохимических систем. Вероятно, протоорганизмы по способу питания являлись гетеротрофами, использовавшими в пищу различные органические соединения абиогенного происхождения, которыми, по мнению большинства авторов, были обогащены водоемы раннего археозоя (состояние «первичного бульона», по А. И. Опарину) и на базе которых возникла и сама жизнь. Для освобождения энергии, необходимой в жизненных процессах, использовалась анаэробная диссимиляция (брожение):

С6Н12О6 → 2СН3СН2ОН + 2СО2 + 0,209 кДж/моль

С появлением фотосинтеза (первыми фотосинтезирующими организмами были сине-зеленые водоросли) в атмосферу стал выделяться кислород.

В условиях бескислородной атмосферы распространение жизни было гораздо более ограниченным, чем ныне. Дело в том, что организмы не имеют никакой защиты от гибельной для них жесткой ультрафиолетовой части излучения Солнца (с длиной волны менее 250 нм). В современной атмосфере жесткая ультрафиолетовая радиация поглощается так называемым озоновым экраном — слоем озона О3, образующегося на высоте около 50 км из кислорода О2 под действием солнечного излучения и распределяющегося в основном в 15–60 км от земной поверхности. Озоновый экран надежно защищает живые организмы, которые могут существовать как в водоемах, так и на поверхности суши и в нижних слоях атмосферы. В бескислородной атмосфере раннего докембрия озоновый экран отсутствовал и жизнь могла развиваться только под защитой слоя воды толщиной около 10 м. Поверхностные слои водоемов, получающие наибольшее количество энергии солнечного излучения, были недоступны для организмов. Совершенно безжизненны были и материки криптозоя.

Однако фотосинтез, осуществлявшийся в озерах, морях и океанах планеты сине-зелеными водорослями (а позднее и различными группами эукариотических водорослей), в течение 2 млрд. лет медленно, но неуклонно повышал содержание свободного кислорода в атмосфере. Когда содержание кислорода достигло 0,01 от современного (так называемая точка Пастера, соответствующая парциальному давлению кислорода 1,59 мм рт. ст.), у организмов впервые появилась возможность использовать для удовлетворения своих энергетических потребностей аэробную диссимиляцию; другими словами, после достижения точки Пастера стало возможно дыхание, которое энергетически выгоднее брожения почти в 14 раз:

С6Н12О6 + 6О2 → 6СО2 + 6Н2О + 2,88 кДж/моль

(Вспомним, что при брожении освобождается всего лишь 0,209 кДж/моль.) Это был важнейший переломный момент в развитии жизни.

Среди современных организмов так называемые факультативные аэробы, каковыми являются многие бактерии и некоторые дрожжевые грибы, при уменьшении содержания кислорода ниже точки Пастера используют брожение, при поднятии содержания кислорода выше указанной точки — дыхание (эффект Пастера).

Переход к аэробной диссимиляции в эволюции древних организмов произошел, разумеется, не сразу. Для этого необходимо развитие соответствующих ферментативных систем, но линии, приобретшие способность к дыханию, получили огромный энергетический выигрыш и в результате возможность резко интенсифицировать метаболизм и все жизненные процессы. Это явилось предпосылкой к дальнейшей прогрессивной эволюции и, вероятно, способствовало ускорению эволюционного процесса.

Но достижение пастеровской точки в развитии атмосферы Земли ознаменовалось не только появлением возможности аэробной диссимиляции организмов. При содержании кислорода в атмосфере в количестве 0,01 от современного формирующийся озоновый экран может защитить от жесткой ультрафиолетовой радиации уже и верхние слои воды в водоемах (требуется «помощь» слоя воды толщиной примерно 1 м). Это, во-первых, позволяет организмам подниматься в поверхностные слои водоемов, наиболее богатые солнечной энергией; в результате резко усиливается эффективность фотосинтеза, увеличиваются биопродукция (синтез растениями органических веществ) и выделение свободного кислорода. Во-вторых, чрезвычайно расширяется арена жизни, малые глубины водоемов представляют огромное разнообразие условий по сравнению со средними и большими глубинами. Освоение этого разнообразия условий в богатой энергией среде обитания неминуемо должно привести к резкому повышению разнообразия форм жизни, подлинному взрыву формообразования.

По расчетам Л. Беркнера и Л. Маршалла, точка Пастера в эволюции атмосферы Земли была пройдена примерно 620 млн. лет назад; по мнению некоторых других ученых, возможно, значительно раньше — в промежутке 700–1000 млн. лет назад. Но, во всяком случае, точка Пастера была пройдена в позднем протерозое, незадолго (в геологическом смысле слова) до нижнего рубежа кембрия. Здесь Л. Беркнер и Л. Маршалл видят ключ к решению загадки раннего кембрия: взрыв формообразования в конце протерозоя — начале палеозоя последовал за достижением точки Пастера в атмосфере и логически совершенно неизбежно вытекает из указанных выше последствий этого (интенсификация метаболизма, убыстрение эволюции, освоение множества новых разнообразных местообитаний на мелководье, усиление фотосинтеза, возрастание биопродукции).

После достижения содержания кислорода в атмосфере, равного 0,1 от современного, озоновый экран уже в состоянии полностью защитить организмы от действия жесткой ультрафиолетовой радиации. С этого момента организмы могут приступить к освоению суши как среды обитания. По расчетам Л. Беркнера и Л. Маршалла, это должно было произойти в конце ордовика (около 420 млн. лет назад). Действительно, примерно к этому времени относится появление первых наземных организмов (см. главу 3). Современное содержание кислорода в атмосфере было достигнуто в конце пермского периода.

Гипотеза Л. Беркнера и Л. Маршалла привлекательна не только своей логичностью и последовательностью в объяснении докембрийской эволюции, но и перспективностью в отношении дальнейшего развития этих идей.

Как мы упоминали выше, на рубеже протерозоя и раннего кембрия у самых различных групп организмов развивается твердый скелет, облегчающий их фоссилизацию. Некоторые ученые склонны видеть сущность загадки раннего кембрия именно в скелетизации организмов. Однако сама эта скелетизация может быть непосредственным следствием повышения содержания кислорода в атмосфере. По мнению Р. и Е. Раффов (1970), при низком содержании кислорода в окружающей среде размеры тела многоклеточных животных не могли быть большими (вследствие низкого уровня метаболизма и энергетики организма), газообмен с внешней средой, вероятно, осуществлялся диффузно через поверхность тела, при этом толщина стенок тела не могла превышать нескольких миллиметров. Для таких организмов не возникало необходимости в опорном внутреннем скелете, а защитные наружные скелетные образования препятствовали бы газообмену. К. Тоув (1970) пришел к выводу, что у докембрийских животных в условиях малого содержания кислорода в окружающей среде не могло быть хорошо развитых соединительнотканных образований, формирующих основу для развития скелета. Прочность соединительнотканных образований базируется в основном на содержании в них белка коллагена, в состав которого входит аминокислота оксипролин. Оксипролин коллагена образуется посредством гидроксилизации другой аминокислоты — пролина с помощью фермента оксигеназы. Эта реакция возможна только при наличии достаточно большого количества кислорода в окружающей среде. Следовательно, при низком содержании кислорода синтез коллагена был биохимически затруднен и организмы не могли иметь прочных соединительнотканных образований, а поэтому и скелета, и сильно развитой мышечной системы, работа которой эффективна лишь при наличии соответствующих опорных структур.

Д. Роудс и Дж. Морзе (1971) предприняли попытку своего рода экспериментальной проверки гипотезы Л. Беркнера и Л. Маршалла. Они исследовали распространение беспозвоночных животных в современных водоемах с пониженным содержанием кислорода в воде: в Калифорнийском заливе, на грабенах континентального склона Южной Калифорнии и в Черном море. Была обнаружена отчетливая корреляция между содержанием кислорода в воде и характером донной фауны (бентоса). При содержании кислорода менее 0,1 мл на 1 л воды многоклеточные животные в составе бентоса отсутствуют; при содержании кислорода 0,3–1 мл на 1 л воды встречаются небольшие мягкотелые (бесскелетные) животные, зарывающиеся в ил; наконец, в более поверхностных слоях с содержанием кислорода более 1 мл/л обитают самые разнообразные животные, обладающие известковым скелетом. Эти данные представляют как бы живую иллюстрацию гипотезы Л. Беркнера и Л. Маршалла.

 

РАЗВИТИЕ ЖИЗНИ В ДОКЕМБРИИ

В двух заключительных разделах этой главы мы вкратце рассмотрим общую картину развития жизни в течение криптозоя, коснувшись попутно некоторых биологических проблем, связанных с ранними этапами эволюции растений и животных (возникновение эукариот, полового процесса, многоклеточного уровня организации).

Анализ основных этапов эволюции органического мира в докембрии был проделан Б. С. Соколовым (1972, 1975, 1976).

Время появления жизни на Земле различными учеными оценивается по-разному. Можно указать на обширный промежуток между 3,5–4,25 млрд. лет назад. Как упоминалось выше, протоорганизмы были, вероятно, гетеротрофными формами, питавшимися готовыми высокомолекулярными органическими соединениями, которые содержались в «первичном бульоне» и имели абиогенное происхождение. В археозое жизнь существовала в условиях бескислородной восстановительной атмосферы, вероятно в водоемах на глубине порядка 10–50 м. Десятиметровый слой воды защищал протоорганизмы от губительного действия жесткого ультрафиолетового излучения Солнца.

В промежутке времени между 3 и 3,5 млрд. лет назад какая-то форма (или формы) протоорганизмов приобрела способность к фотосинтезу. Вслед за этим произошла дивергенция прокариот на два главных ствола их эволюции: 1) бактерии (тип Bacteriae), в большинстве сохранившие в той или иной форме гетеротрофный способ питания и совершенствовавшие его применительно к новым условиям существования; 2) сине-зеленые водоросли (тип Cyanophyta), развившие автотрофное питание посредством фотосинтеза. Бактерии от использования органических веществ абиогенного происхождения по мере уменьшения их содержания в окружающей среде и распространения фотосинтезирующих организмов все в большей степени переходили к питанию органическими веществами, синтезированными водорослями.

В течение последующих 1,5–2 млрд. лет — на протяжении большей части криптозоя — происходила медленная эволюция прокариот, в целом оказавшихся весьма консервативными (по крайней мере в морфологическом отношении, т. е. в сохранении основных особенностей строения). Вероятно, около 2,8–3 млрд. лет назад появились нитчатые формы сине-зеленых водорослей. Нитчатый тип строения представляет собой цепочку клеток, возникшую путем их последовательного деления в одном направлении. Клетки в цепочке связаны друг с другом лишь механически — разрыв цепочки никак не сказывается на жизнедеятельности и жизнеспособности составляющих ее клеток. Поэтому нитчатые формы нельзя приравнивать к многоклеточному состоянию, при котором обязательны дифференциация и интеграция многоклеточного организма, различные части которого выполняют разные функции и подчинены целому.

Средний докембрий с полным основанием называют «веком сине-зеленых водорослей», получивших самое широкое распространение; это было время их расцвета. Благодаря их фотосинтетической деятельности, постепенно повышалось содержание кислорода в атмосфере. Первоначально свободный кислород быстро использовался как окислитель в различных химических реакциях, в частности в процессах отложения осадочных железных руд при участии ферробактерий. Основная масса железорудных толщ на всей Земле сформировалась в промежутке 2,2–1,9 млрд. лет назад. После завершения этих процессов, радикально изменивших геохимический облик поверхностных слоев земной коры, кислород стал накапливаться в атмосфере во все более заметных количествах. Большие масштабы в это время приобрела и строматолитообразующая деятельность нитчатых сине-зеленых водорослей, которая привела к образованию огромных толщ карбонатных пород.

Возможно, около 1,1–1,4 млрд. лет назад возникли первые эукариоты. Это следующий важнейший рубеж в докембрийской эволюции организмов после возникновения фотосинтеза и обособления сине-зеленых водорослей. Эукариоты обладают значительно более сложной и совершенной организацией клетки, чем прокариоты. Протоплазма эукариотической клетки сложно дифференцирована; в ней обособлены ядро и другие органоиды (хондриосомы, пластиды, комплекс Гольджи, центриоли и др.), отделенные от цитоплазмы полупроницаемыми мембранами и выполняющие различные функции; снаружи клетка окружена клеточной мембраной. Наружная и внутренние клеточные мембраны образуют единый мембранный комплекс. Мембраны имеют сложное молекулярное строение (липидная «пленка», пронизанная белковыми «каналами»), обусловливающее избирательное проникновение веществ.

У прокариот вместо клеточной мембраны клетка обволакивается единственной гигантской молекулой мукопептида (вещество, состоящее из аминокислот, углеводов и липидов). В ядре — интегрирующем центре клетки эукариот локализован хромосомный аппарат, в котором сосредоточена основная часть кода наследственной информации. У прокариот нет такого интегрирующего центра и подобной упорядоченности наследственной информации; элементы аппарата наследственности отчасти включены в единственную, так называемую «хромосому» бактериальной клетки, отчасти находятся в цитоплазме. Упорядоченность аппарата наследственности и сложность организации клетки у эукариот требуют такой же упорядоченности в передаче наследственной информации при клеточном делении. В связи с этим у эукариот развился весьма совершенный механизм клеточного деления (митоз), обеспечивающий точное и эквивалентное распределение наследственной информация в обе дочерние клетки. У прокариот митоза не наблюдается. Митоз возник, вероятно, около 1 млрд. лет назад (см. выше). Эукариотный уровень организации клетки обеспечивает более совершенное выполнение всех клеточных функций и открывает перспективы для дальнейшей прогрессивной эволюции.

Имеются две основные точки зрения на проблему происхождения эукариотической клетки (и, соответственно, эукариот как таксономической группы). Первая из них (так называемая аутогенная концепция) предполагает постепенную дифференциацию прокариотической клетки, в ходе которой развился мембранный комплекс (сначала могла возникнуть наружная клеточная мембрана, затем ее локальные впячивания внутрь клетки образовали внутриклеточные мембраны). На основе мембранного комплекса структурно оформились клеточные органоиды. Согласно аутогенной концепции, эукариоты возникли от одной из групп прокариот (от какой именно, сказать сейчас невозможно).

Вторая точка зрения (симбиогенная концепция) получила широкую известность после работ Л. Маргулис (Саган) (1967–1971), которая обосновала гипотезу о возникновении эукариотической клетки из симбиоза разных прокариот: крупной клетки — хозяина и более мелких организмов, поселившихся в цитоплазме первого. Последние дали начало различным органоидам. Аргументы в пользу этой точки зрения сводятся к фактам наличия в таких органоидах эукариотической клетки, как хондриосомы и пластиды, собственной дезоксирибонуклеиновой кислоты (носителя наследственной информации), а также существования весьма сложных симбиотических комплексов среди современных организмов. Согласно симбиогенной концепции, предками эукариот должны быть сразу несколько групп прокариот.

В целом аутогенная (классическая) точка зрения представляется в настоящий момент лучше обоснованной и согласующейся с современными данными о сущности прогрессивной эволюции организмов.

Для всех современных эукариот характерен в той или иной форме половой процесс, сущностью которого является обмен наследственной информацией между разными организмами, принадлежащими к одному биологическому виду. В результате полового процесса наследственная информация перекомбинируется в каждом следующем поколении, что резко повышает изменчивость данного вида (комбинативная форма изменчивости). Вторая важнейшая функция полового процесса — объединение наследственной информации, присущей разным индивидам, в единый видовой генофонд. При наличии полового процесса отдельные особи объединяются в целостную систему — биологический вид, который как целое неизмеримо устойчивее по отношению ко всем неблагоприятным изменениям внешней среды, чем генетически обособленные линии, размножающиеся бесполым путем (клоны).

Половой процесс известен и у некоторых прокариот (бактерии), но у них он неупорядочен и не обеспечивает эквивалентного обмена разных особей наследственной информацией. Вероятно, характерная для эукариот упорядоченность полового процесса, связанная со структурой эукариотической клетки, сложилась вскоре после их возникновения.

В результате присущего эукариотам полового процесса в одной клетке объединяются два генома, т. е. два полных набора наследственной информации (диплоидное состояние). В диплоидном наборе все хромосомы парные. Чтобы в дальнейшем не происходило новых удвоений числа геномов (что затруднило бы нормальное функционирование клетки), необходимо развитие особого механизма клеточного деления (мейоза), посредством которого каждая из дочерних клеток получает лишь один (гаплоидный) набор хромосом. Вероятно, мейоз появился практически одновременно с развитием у эукариот полового процесса. В процессе мейоза хромосомы из разных пар диплоидного набора распределяются в дочерние клетки независимо и случайно, что приводит к возникновению новых комбинаций хромосом в гаплоидных наборах и еще более увеличивает комбинативную изменчивость вида. Таким образом, половой процесс и мейоз обеспечивают резкое возрастание внутривидовой изменчивости, способствующее значительному убыстрению эволюции (что и наблюдается у эукариот).

Примерно 0,9 млрд. лет назад произошло разделение эволюционного ствола древнейших эукариот на ряд ветвей, давших начало разным типам водорослей: зеленых (Chlorophyta), бурых (Phaeophyta), красных (Rhodophyta) и др., а также грибам (тип Fungi). Вероятно, в это время существовали уже и одноклеточные животные — простейшие (тип Protozoa), либо возникшие от общего предкового ствола всех эукариот, либо обособившиеся от ранних представителей одной из групп растений (какой именно, с уверенностью сказать сейчас невозможно). Разные исследователи связывали происхождение животных с каждой из названных выше групп растений. По всей совокупности данных, к предкам Protozoa наиболее близкими кажутся некоторые одноклеточные зеленые водоросли. Не случайно таких жгутиконосных одноклеточных, как Euglenoidea, Volvocales и др., способных и к фотосинтезу, и к гетеротрофному питанию, ботаники рассматривают в составе типа зеленых водорослей, а зоологи — в составе типа простейших животных.

 

ПРОИСХОЖДЕНИЕ МНОГОКЛЕТОЧНЫХ ОРГАНИЗМОВ

Вероятно, 700–900 млн. лет назад на Земле появились первые многоклеточные животные и растения. У растений возникновение многоклеточного уровня организации, по-видимому, произошло на основе дифференциации лентообразных колоний, возникших путем бокового срастания прикрепленных нитчатых форм или благодаря делению клеток последних в двух взаимно перпендикулярных направлениях (в одной плоскости). У прикрепленных колоний различные участки находились в разных условиях по отношению к солнечному свету, субстрату и водному окружению. В связи с этим естественный отбор должен был благоприятствовать возникновению определенной дифференциации частей колонии. Первым шагом было возникновение полярности колонии: на одном ее конце выделялись клетки, служившие для прикрепления к субстрату (для них характерны ослабление фотосинтеза, потеря способности к делению), на другом — верхушечные клетки, интенсивно делившиеся и образовавшие своего рода точку роста колонии. Естественный отбор благоприятствовал приобретению клетками колонии способности делиться в разных направлениях; это содействовало ветвлению, что увеличивало поверхность колонии. Деление клеток в трех плоскостях или переплетение отдельных нитей вело к возникновению многослойного, объемного тела. В ходе его дальнейшей дифференциации сформировались многоклеточные органы, выполнявшие разные функции (фиксация на субстрате, фотосинтез, размножение). Одновременно между разными клетками растения складывалась определенная взаимозависимость, что, собственно говоря, и знаменует достижение многоклеточного уровня организации.

У животных активный образ жизни требовал более совершенной и сложной дифференциации организма, чему растений. Сложность организации многоклеточных животных (Metazoa) и разнообразие ее конкретных форм стимулировали разработку различных гипотез о происхождении Metazoa. Эти гипотезы для упрощения изложения можно свести к двум основным концепциям — колониального и неколониального происхождения многоклеточных животных.

Первая концепция берет начало в работах Э. Геккеля, который в создании известной теории гастреи основывался на сформулированном им биогенетическом законе (см. «Введение»), Геккель исходил из того, что филогенез древнейших Metazoa в определенной степени повторяется в онтогенезе современных многоклеточных животных (рис. 6). В соответствии с этим он видел предков Metazoa в колониальных простейших, обладавших сферическими колониями с однослойной стенкой, подобными бластуле — одной из ранних стадий эмбрионального развития современных многоклеточных животных. Геккель назвал эту гипотетическую предковую форму бластеей. При направленном плавании сферическая колония — бластея — ориентировалась одним полюсом вперед (как это наблюдается и у современных колониальных простейших, например у Volvox). Согласно Геккелю, на переднем полюсе колонии возникло впячивание ее стенки внутрь, подобно тому как это происходит при инвагинационной гаструляции в онтогенезе некоторых современных Metazoa. В результате образовался многоклеточный организм — гастрея, стенка тела которого состоит из двух слоев — эктодермы и энтодермы. Энтодерма окружает внутреннюю полость, первичный кишечник, открытый наружу единственным отверстием — первичным ртом. Организация гастреи соответствует принципиальному плану строения кишечнополостных (тип Coelenterata), которых Э. Геккель и рассматривал как наиболее примитивных многоклеточных животных.

Рис. 6. Ранние стадии онтогенеза кораллового полипа Monoxenia (по Э. Геккелю):

а — бластула; б — гаструляция; в, г — гаструла (внешний вид и продольный разрез).

И. И. Мечников обратил внимание на то, что у примитивных кишечнополостных гаструляция происходит не путем инвагинации (впячивания одного полюса однослойного зародыша — бластулы), что характерно для более высокоорганизованных групп, а посредством миграции некоторых клеток (рис. 7) из однослойной стенки тела внутрь. Там они образуют рыхлое скопление, позднее организующееся в виде стенок гастральной полости, которая прорывается наружу ротовым отверстием. Такой способ гаструляции гораздо проще, чем инвагинация, так как не требует сложного направленного и координированного смещения целого пласта клеток и, вероятно, примитивнее инвагинации. В связи с этим И. И. Мечников модифицировал теорию Э. Геккеля следующим образом. В сфероидной колонии простейших — жгутиконосцев — клетки ее однослойной стенки, захватывавшие (фагоцитировавшие) пищу, мигрировали для ее переваривания внутрь, в полость колонии (подобно миграции клеток будущей энтодермы в процессе гаструляции кишечнополостных). Эти клетки образовали рыхлое внутреннее скопление — фагоцитобласт, функцией которого стало обеспечение всего организма пищей, включая ее переваривание и распределение, тогда как поверхностный слой клеток — кинобласт — осуществлял функции защиты и движения организма. Для захвата новых пищевых частиц клеткам фагоцитобласта, по мысли И. И. Мечникова, не было необходимости возвращаться в поверхностный слой: располагаясь непосредственно под кинобластом, клетки фагоцитобласта захватывали пищу псевдоподиями, выдвигаемыми наружу в промежутках между клетками кинобласта. Эта гипотетическая стадия эволюции Metazoa была названа Мечниковым фагоцителлой (или паренхимеллой); ее строение соответствует таковому паренхимулы — личинки некоторых кишечнополостных и губок. В дальнейшем (как приспособление к повышению активности питания) у потомков фагоцителлы произошла эпителизация фагоцитобласта в виде первичного кишечника с образованием ротового отверстия в том месте, где происходила преимущественная миграция клеток внутрь. По мнению некоторых ученых, это место, вероятно, соответствовало заднему по направлению движения полюсу тела, где при плавании возникают завихрения воды и поэтому условия наиболее благоприятны для захвата (фагоцитоза) пищевых частиц. Теория И. И. Мечникова, как и теория Э. Геккеля, принимает происхождение Metazoa от колониальных простейших и рассматривает в качестве наиболее примитивных многоклеточных животных типы кишечнополостных и губок.

Рис. 7. Гаструляция зародыша гидроидного полипа Stomateca (из Н. А. Иоффа).

Теория неколониального происхождения Metazoa была разработана сербским ученым Й. Хаджи. Хаджи обратил внимание на некоторое сходство между инфузориями — высшими простейшими, обладающими наиболее сложно дифференцированным клеточным телом, и турбелляриями — примитивной группой плоских червей (тип Plathelminthes). Некоторые инфузории и турбеллярии обладают близкими размерами и одинаковой формой тела, сходным положением ротового отверстия на брюшной стороне тела и расположением ряда внутренних структур. Нужно отметить, что это сходство имеет условный характер, поскольку многоклеточные органы турбеллярии сравниваются с органоидами — частями клетки инфузорий.

Й. Хаджи высказал предположение, что многоклеточное строение могло возникнуть путем целлюляризации, т. е. разделения на отдельные клетки сложно устроенного многоядерного клеточного тела каких-то инфузорий. Согласно этой гипотезе, наиболее примитивной группой Metazoa являются низшие черви турбеллярии, а кишечнополостные возникли от них, перейдя к прикрепленной жизни на дне водоемов, что и вызвало вторичное упрощение их организации.

Гипотеза неколониального происхождения многоклеточных (или гипотеза целлюляризации) по-своему логична и остроумна и поэтому получила признание со стороны ряда ученых. Однако эта концепция построена главным образом умозрительно и не основана на серьезных фактах. Явление целлюляризации никогда не наблюдалось ни у каких инфузорий (тогда как колониальные формы широко распространены среди жгутиковых). Внутриклеточные механизмы передачи информации и принципы интеграции одноклеточного тела инфузории принципиально отличаются от соответствующих процессов в многоклеточном организме, основанных на межклеточных взаимодействиях. Превратить одно в другое путем целлюляризации не представляется возможным. Специфический тип полового процесса инфузорий (конъюгация, при которой две особи обмениваются своими так называемыми блуждающими ядрами) не имеет ничего общего с половым процессом многоклеточных животных. Концепция целлюляризации никак не увязана с данными эмбриологии: ход онтогенеза многоклеточных животных необъясним с ее позиций.

Рис. 8. Трихоплакс Trichoplax adhaerens):

а — изменения формы тела одной особи (по Ф. Шульце); б — разрез, перпендикулярный краям тела (по А. В. Иванову):

1 — амебоидные клетки; 2 — спинной эпителий; 3 — веретеновидные клетки; 4 — липидные включения; 5 — пищеварительные вакуоли; 6 — брюшной эпителий.

Важные сведения для понимания ранних этапов эволюции Metazoa были получены при изучении Trichoplax adhaerens — крайне примитивного многоклеточного организма, обнаруженного в Красном море Ф. Шульце еще в 1883 г., но детально исследованного лишь в 70-е годы нашего века К. Греллом (1971) и А. В. Ивановым (1973, 1976). Трихоплакс (рис. 8) имеет уплощенное тело, лишенное полярности. Поверхность тела, обращенная вверх, выстлана плоским, а нижняя цилиндрическим мерцательным эпителием. Внутри, между эпителиальными слоями, соответствующими кинобласту, находится полость с жидким содержимым, в которой располагаются веретеновидные и звездчатые клетки. Эти последние можно рассматривать в качестве фагоцитобласта. Размножается трихоплакс бесполым способом: делением и почкованием. А. В. Иванов указал, что трихоплакс представляет собой как бы живую модель фагоцителлы, и предложил выделить эту форму в особый тип животных Phagocytellozoa. По-видимому, трихоплакс подкрепляет позиции теории фагоцителлы И. И. Мечникова и, следовательно, колониальной теории происхождения Metazoa.

Как указывалось выше, в позднем протерозое (600–650 млн. лет назад) уже существовали такие группы многоклеточных животных, как губки, кишечнополостные, плоские и кольчатые черви и даже, возможно, предки членистоногих. Судя по общему уровню организации соответствующих групп, можно предполагать, что к этому времени обособились также эволюционные стволы нитчатых червей (тип Nemathelminthes), предков моллюсков и предков вторичноротых животных — олигомерных червей.

Докембрийский филогенез Metazoa можно гипотетически представить следующим образом (рис. 9). От колониальных жгутиковых (по мнению ряда авторов, от гетеротрофных форм, принадлежавших к отряду Protomonadida) путем дифференциации и интеграции колонии, с миграцией внутрь клеток фагоцитобласта на заднем полюсе тела возникли первые многоклеточные животные, организация которых соответствовала фагоцителле (по И. И. Мечникову). Мало изменившимися потомками этих древнейших многоклеточных являются современные Phagocytellozoa (Trichoplax adhaerens). Примитивные многоклеточные были свободноплавающими (за счет работы мерцательного эпителия — кинобласта) животными, питавшимися различными микроорганизмами (простейшими и одноклеточными водорослями).

При дальнейшем развитии приспособлений к активному питанию происходила постепенная эпителизация фагоцитобласта, т. е. преобразование рыхлого скопления клеток в орган с эпителизованными стенками. Эпителизация фагоцитобласта, вероятно, началась с развития на заднем по движению полюсе постоянного ротового отверстия. Как отметил К. В. Беклемишев (1974), на этой стадии филогенеза организм стал питаться как целое, а не как совокупность отдельных самостоятельно фагоцитирующих клеток. Вероятно, к этому времени появилась и интегрирующая организм нервная система в виде эпителиального нервного сплетения. Активное плавание требовало способности ориентироваться в пространстве и координировать работу всех органов. Для осуществления этих функций на аборальном (противоположном ротовому отверстию) полюсе тела животного возник нейрорецепторный комплекс, включавший нервный ганглий, осязательные щетинки и статоцист (орган равновесия). Подобный аборальный орган имеется у современных гребневиков (тип Ctenophora), а также у свободноплавающих личинок очень многих групп животных (плоских и кольчатых червей, моллюсков, членистоногих, полухордовых, иглокожих и др.). Эту гипотетическую стадию филогенеза древних Metazoa можно назвать «стомофагоцителлой» (подчеркивая эпителизацию лишь ротового отдела фагоцитобласта).

Рис. 9. Схема филогенеза основных групп многоклеточных животных.

Гипотетические группы отмечены символом (?).

Возможно, на этой стадии эволюции произошла первая крупная дивергенция филогенетического ствола древних многоклеточных, связанная с тем, что некоторые группы этих животных перешли к освоению морского дна, другие же продолжали совершенствовать приспособления к активной жизни в толще воды.

Современные низшие плоские черви — бескишечные турбеллярии (Acoela) — в целом сохранили тот уровень организации, который, вероятно, был характерен для древнейших многоклеточных, впервые перешедших к освоению подвижного образа жизни на поверхности субстрата. От вендских представителей этих турбеллярий могли возникнуть филогенетические стволы, ведущие к другим группам плоских червей, к нитчатым червям и к предкам кольчатых червей (протоаннелидам). От протоаннелид обособились, с одной стороны, предки моллюсков, с другой — предки членистоногих. У всех этих групп произошла дальнейшая эпителизация фагоцитобласта. У низших червей эпителизировалась лишь центральная часть фагоцитобласта, что привело у плоских червей к формированию разветвленного кишечника с единым отверстием («рот»), ведущим во внешнюю среду, а у нитчатых червей — к образованию сквозного кишечника с ротовым и анальным отверстиями. У высших групп (кольчатые черви, моллюски и членистоногие) эпителизировался весь фагоцитобласт: не только его центральная часть (энтодермальный кишечник), но и периферическая (мезодерма и ее производные). Последнее привело к развитию вторичной полости тела (целома), стенки которой образованы мезодермальным целомическим эпителием. Более примитивные представители кольчатых червей, моллюсков и членистоногих обладают характерной личиночной стадией трохофорой. В связи с этим указанные группы иногда объединяют под названием Trochozoa.

У тех потомков стомофагоцителлы, которые продолжали совершенствовать адаптацию к жизни в толще воды, также произошла эпителизация центрального и отчасти периферического фагоцитобласта: возникла гастральная полость (первичный кишечник) и ее периферические ветви (гастроваскулярные каналы). К этому уровню организации среди современных животных ближе всего стоят гребневики (тип Ctenophora), вероятно, сохранившие примитивный образ жизни в толще воды. От их позднепротерозойских предков (которых можно назвать «проктенофорами») с переходом к прикрепленной жизни на морском дне возникли стрекающие кишечнополостные (тип Coelenterata, или Cnidaria).

Другие филогенетические линии, ответвившиеся от проктенофор, также осваивали морское дно, но с развитием приспособлений к активному передвижению по субстрату (подобно турбелляриям и их потомкам, но на другом исходном уровне организации). У этих форм в результате завершения эпителизации периферического фагоцитобласта также образовалась вторичная полость тела — целом, но возникла она совершенно другим способом, чем у Trochozoa. В онтогенезе животных, происходящих от проктенофор, вторичная полость тела обособляется от первичного кишечника, как его боковые карманообразные выпячивания (первоначально, вероятно, было 3 пары таких выпячиваний), которые затем отшнуровываются от стенок кишки (рис. 10). Такой способ развития целома получил название энтероцельного, в отличие от схизоцельного способа, характерного для Trochozoa, у которых целом возникает в результате появления полостей внутри скоплений мезодермальных клеток, без всякой связи с первичным кишечником.

Рис. 10. Энтероцельное развитие целома в онтогенезе ланцетника (4 последовательные стадии):

1 — эктодерма; 2 — энтодерма; 3 — мезодерма; 4 — первичный кишечник; 5 целомические карманы; 6 — нервная пластинка; 7 — целом; 8 — вторичный кишечник; 9 — нервная трубка; 10 — хорда.

О. и Р. Гертвиги и И. И. Мечников обосновали гипотезу, согласно которой энтероцельный целом возник в эволюции из гастроваскулярных каналов проктенофорных предков (так называемая энтероцельная теория происхождения целома). Энтероцельный целом характерен для типов Pogonophora, Chaetognatha, Brachiopoda, Bryozoa и ряда других, в том числе группы так называемых вторичноротых животных (Deuterostomia), объединяющей типы Chordata, Echinodermata и Hemichordata. У вторичноротых животных имеется много общего, в частности особое положение дефинитивного (присущего взрослым организмам) рта, возникающего на полюсе тела, противоположном первичному эмбриональному рту (бластопору). На месте же этого последнего развивается анальное отверстие. Вторичноротые, несомненно, имеют общее происхождение; в качестве их предков указывают гипотетическую группу олигомерных червей, тело которых было разделено на три отдела, имелся вторичный рот и энтероцельный целом. Среди современных вторичноротых к уровню организации олигомерных червей всего ближе, по-видимому, стоят свободноживущие полухордовые, представителем которых является желудевый червь (Balanoglossus).

Особое положение среди многоклеточных животных занимают губки (тип Porifera, или Spongia). Эта группа характеризуется очень примитивным общим уровнем организации. Губки, по существу, не имеют эпителизованного фагоцитобласта, упорядоченного внутреннего строения, настоящего кишечника, нервной системы, рецепторов и т. д. Губки отличаются от всех остальных Metazoa чрезвычайно своеобразным онтогенезом, в ходе которого происходит инверсия зародышевых листков (эктодермы и энтодермы, так сказать, меняющихся местами). Происхождение губок остается дискуссионным: их выводят либо отдельным стволом непосредственно от колониальных жгутиковых, либо от общего корня с другими многоклеточными, как раннюю боковую ветвь от уровня фагоцителлы.

Вероятно, обособление всех основных типов животных произошло в верхнем протерозое, в промежутке времени 600–800 млн. лет назад. Примитивные представители всех групп многоклеточных животных были небольшими лишенными скелета организмами. Продолжавшееся накопление кислорода в атмосфере и увеличение мощности озонового экрана к концу протерозоя позволили животным, как указано выше, увеличить размеры тела и приобрести скелет. Организмы получили возможность широко расселиться на малых глубинах различных водоемов, что повело к значительному повышению разнообразия форм жизни.