Покоренный электрон

Ивановский Михаил Петрович

Глава четвертая. Пленники невидимой крепости

 

 

Открытие мирового значения

В 1869 году великий русский ученый Дмитрий Иванович Менделеев совершил открытие мирового значения.

Изучая различные особенности химических элементов — их способность вступать в соединение друг с другом, их плотность, электропроводность и прочее— Менделеев обратил внимание, что среди них встречаются элементы, очень похожие друг на друга. Медь по своим свойствам родственна серебру — оба эти металла хорошо проводят тепло и электрический ток. А у серебра есть сходство с золотом.

Легкоплавкое и мягкое олово напоминает легкоплавкий и мягкий свинец.

Всем известный иод с его характерным запахом, фиолетовый в парообразном состоянии и буро-коричневый в растворе, похож на бром — вещество буро-красного цвета, очень едкое, с неприятным удушливым запахом, которому оно обязано своим названием (бром в переводе с греческого означает зловонный). Ближайшими родственниками брома являются — хлор, удушливый ядовитый газ зеленовато-желтого цвета и двойник хлора — фтор, газ желтовато-зеленого цвета с резким и неприятным запахом.

Таким образом у каждого химического элемента имеются по два-три (а иногда и больше) «родственника». Но эти «родственники» сильно отличаются друг от друга по одному признаку — по атомному весу.

Если же взять элементы близкие друг другу по атомному весу, то опять наблюдается несомненная закономерность. Вот, например, натрий — это очень горючий металл. Он горит даже в воде, отнимая у нее кислород.

Его сосед по весу — магний — тоже горючий металл, его употребляют фотографы в качестве осветительного материала. Но магний загорается гораздо хуже натрия. Горюч и алюминий, сосед магния по весу, но спичкой его уже не подожжешь. Его приходится предварительно измельчать в порошок. В таком виде он входит в состав «термита», которым сваривают трамвайные рельсы.

Д. И. Менделеев с гениальной прозорливостью понимал, что сходство элементов не может быть случайным. В этом сходстве несомненно скрывается важная закономерность, и великий химик занялся поисками природы этой закономерности.

Для удобства работы ученый выписал названия химических элементов, их атомные веса и основные свойства на небольших кусочках картона. У него получилось 63 карточки, по числу известных в то время химических элементов.

Хотя многие из элементов тогда еще не были открыты, но закон, по которому повторяются сходные свойства, Менделеев установил.

В настоящее время известно сто элементов. Первым в списке стоит самый легкий элемент — водород, за ним следуют все остальные элементы, расположенные в порядке возрастающих атомных весов. К концу 1951 года список элементов замыкал уже вновь открытый элемент № 100 — центурий.

Для примера рассмотрим группу лития — натрия— калия. Все эго легкие, блестящие металлы. Если кусок калия или натрия бросить в воду, вспыхивает пламя. Металл разлагает воду на водород и кислород, жадно соединяясь с кислородом. Его окисел, растворяясь в воде, образует щелочь. Реакция идет так бурно, с таким выделением тепла, что и металл и водород загораются и пылают над водой. По своим химическим свойствам литий, натрий и калий необычайно похожи друг на друга. И в списке элементов они занимают определенные места: литий — третье, натрий — одиннадцатое, калий — девятнадцатое, то есть их разделяют восемь номеров.

Члены другого семейства химических элементов — фосфор, мышьяк и сурьма — ядовиты, хрупки, и в списке они отделены друг от друга восемнадцатью номерами. Точно также восемнадцатью номерами отделены хлор от брома и бром от иода. Между этими элементами также есть много общего.

Свойства более тяжелых элементов повторяются не через 8 или 18 номеров, а через 32 номера. На тридцать втором месте от олова стоит свинец. Золото от серебра отделено также 32 номерами.

8, 18, 32 — числа, явно связанные со свойствами элементов. Каждый восьмой, или восемнадцатый, или тридцать второй повторяют некоторые особенности своих более легких предшественников по списку. При этом следует обратить внимание, что и в этих числах 8, 18, 32 скрыта своя определенная математическая закономерность. 8 — это дважды два, помноженное на два. 18 — трижды три, помноженное на два. 32 — это четырежды четыре, помноженное на два.

Тут есть над чем призадуматься. Даже в порядковых номерах элементов, если они расположены по атомным весам, таится какой-то определенный и точный закон.

 

Периодическая система элементов

Менделеев открыл существование этого закона и доказал, что химические свойства элементов повторяются периодически, то есть через определенное число элементов, и образуют отдельные группы.

Чтобы значение установленного закона было очевидным и наглядным, Менделеев расположил все элементы в виде таблицы. Получилась знаменитая, всемирно известная «таблица периодической системы элементов».

В горизонтальных рядах таблицы элементы размещены в порядке последовательного изменения их свойств от металлов к металлоидам. В вертикальных столбцах они стоят по родственным признакам. Натрий расположился под литием, калий под натрием. Фосфор, мышьяк и сурьма сошлись в пятом столбце, а фтор, хлор, бром, иод — в седьмом.

Размещая карточки с названиями элементов в найденном порядке, Менделеев убедился, что атомные веса, которые были определены другими химиками, не всегда верны.

Атомный вес бериллия был указан — 13,5. Это невозможно! Бериллий по своим свойствам родственен магнию. Он должен стоять в вертикальном столбце над магнием. Следовательно, бериллий легче бора. И Менделеев, не прикасаясь к весам или к каким-либо приборам, действуя только на основании открытого им закона, зачеркивает 13,5 и пишет — 9.

Точно так же Менделеев исправил атомные веса урана, ванадия, церия, титана.

При размещении всех известных тогда элементов некоторые клетки Менделееву пришлось оставить не занятыми. Значит еще не все элементы обнаружены — сделал вывод Менделеев. Со временем «хозяева» пустующих клеточек найдутся!

И хотя никто в мире даже не подозревал о существовании новых элементов, Менделеев заранее указал их свойства и атомные веса.

Многие ученые встретили установленный Менделеевым закон с явным недоверием. Русский химик, открывает новые элементы вне лаборатории, взвешивает их без весов! Он предсказывает свойства элементов без анализа, даже не видя их!

В 1875 году поступило первое сообщение: нашелся один из предсказанных Менделеевым элементов. Его свойства и атомный вес почти в точности соответствовали предначертаниям Менделеева.

Тогда химики стали проверять атомные веса элементов. Опять оказалось, что Менделеев прав, действительно атомный вес бериллия равен 9, а уран должен занять свое место не в середине списка, как раньше, а в самом конце его.

В 1879 году открыли еще один менделеевский элемент. Затем нашли третий элемент!

Это была замечательная победа русского ученого и всей русской науки! Слава Менделеева прогремела по всему миру. Ученые оценили все величие и значение трудов Менделеева.

Менделеев помог разоблачить гнилое идеалистическое учение о непознаваемости природы. Своим открытием Менделеев доказал, что настоящий ученый обязан не только видеть, но и предвидеть факты.

Именно поэтому Фридрих Энгельс оценил открытие Менделеева как «великий научный подвиг».

Таблица Менделеева стала настольным пособием всех химиков, физиков, геологов. С ее помощью стали искать новые элементы и не наугад, а заранее зная не только их свойства, но даже горные породы, в которых они могут содержаться.

Закон Менделеева признали все. Его изучали, применяли, постоянно убеждались в его непреложности. И вместе с тем — это был закон-загадка. Почему свойства элементов повторяются с математической правильностью? В чем скрыта причина периодичности?

 

Планетарная модель атома

Через 15 лет после опубликования закона Менделеева, известный русский ученый и революционер Н. А. Морозов указал, что причину периодичности свойств элементов следует искать в числе электрических зарядов, заключенных в атоме. Это замечательное предвидение оправдалось только в начале нашего столетия, когда ученые получили некоторое представление об устройстве атома.

Атомы чрезвычайно малы. В пяти каплях воды содержится атомов больше, чем капель в Черном море. Чтобы напечатать в этой книге только одну точку, был израсходован миллиард атомов углерода, входящего в состав типографской краски.

Несмотря на столь незначительные размеры атом имеет весьма сложное строение.

Первая разведка внутриатомного мира была сделана в начале нашего века. Ученые старались придумать модель атома, которая позволила бы наглядно представить его строение.

Самая первая из моделей атома была крайне проста. Атом — это шарик заряженный положительно, внутри которого, как семечки в огурце, расположены электроны, — утверждал автор этой гипотезы. Однако были обнаружены явления, которые никак не согласовались с такой моделью. Было найдено, что альфа-частица из радиоактивного вещества, пролетая в воздухе, пронизывает сотни тысяч атомов, почти не отклоняясь от своего пути. И только изредка она резко меняет направление, как бы натолкнувшись на что-то непроницаемое. Значит, атом нельзя представлять себе как шарик, сплошь заполненный веществом.

Вторая модель атома называется планетарной.

Еще в сороковых годах прошлого столетия профессор М. Г. Павлов в своих лекциях по физике утверждал, что строение вещества связано с электрическими зарядами и что химические элементы имеют строение, подобное, устройству солнечной системы.

Впоследствии эта забытая гипотеза была воссоздана и разработана англичанином Резерфордом и датчанином Бором. Их модель изображала атом в виде крохотной планетной системы. В центре атома находится маленькое, но массивное, положительно заряженное ядро, представляющее собой «солнце» атомного мира. Вокруг ядра, как планеты вокруг Солнца, обращаются по своим орбитам электроны.

Планетарная модель атома больше похожа на действительный атом, чем первая.

Однако, наряду с некоторым сходством в устройстве атома и солнечной системы, между ними существует большая разница.

В солнечной системе действует сила тяготения. В атоме действуют иные силы. Ядро атома несет положительный заряд, а электроны являются простейшими отрицательными зарядами.

В солнечной системе планеты обращаются вокруг Солнца почти в одной плоскости. В атоме электроны вьются вокруг ядра по всем направлениям, охватывая ядро со всех сторон.

Планеты не могут переходить с одной орбиты на другую или, покинув солнечную систему, перекочевывать в другие планетные системы. Электроны же под влиянием внешнего воздействия — ударов других частиц материи — могут перескакивать с орбиты на орбиту и даже совсем, покидать атом, превращаясь в «вольных путешественников».

Наконец, атом в 1022 раз меньше солнечной системы. Такая огромная разница в масштабах обусловливает глубочайшие качественные различия между солнечной системой и атомом. Механика атома настолько отличается от механики больших тел, что, в сущности, вообще нельзя говорить об орбитах электронов. Мы можем только сказать, что ядро атома окружено электронным облачком или электронной оболочкой.

Электроны внутри оболочки размещены слоями, на определенных расстояниях или уровнях от ядра атома, и современная физика позволяет только указать, сколько электронов находится в каждом слое электронной оболочки атома данного элемента.

Следует, однако, сказать, что для наглядного объяснения многих явлений можно все же представлять атом в виде ядра, окруженного электронами, движущимися по определенным орбитам. Нужно только помнить, что в действительности атом гораздо сложней такой упрощенной модели.

 

Устройство электронных оболочек

Самый простой и легкий из атомов — это атом водорода. Водородный атом состоит из ядра, несущего один положительный заряд, и одного единственного электрона. Ядро атома водорода получило особое название — протон, что значит первичный.

Следующий за водородом в системе Менделеева элемент — гелий. Ядро атома гелия примерно вчетверо тяжелее протона. Оно состоит из двух протонов и двух частиц, которые почти равны протонам по массе, но лишены электрического заряда. Такие, не имеющие заряда, нейтральные частицы названы нейтронами.

Вокруг ядра атома гелия движутся два электрона.

Третью клеточку в таблице Менделеева занимает щелочной металл литий. Вокруг его ядра обращаются три электрона.

Элемент № 4 — бериллий. Его ядро содержит четыре положительные заряда, и окружено оно четырьмя электронами.

Если мы возьмем наугад какой-либо элемент из середины менделеевской таблицы, то убедимся, что этот порядок соблюдается везде. У элемента № 6 — углерода — 6 электронов. У азота — 7, у кислорода— 8, у фтора — 9 и у неона — 10. Номер элемента в системе Менделеева, количество положительных зарядов в ядре и количество электронов в оболочке всегда выражается одним и тем же числом. Например, олово: номер — 50, положительных зарядов ядра — 50, электронов в оболочке — 50.

Вот это число, выражающее одновременно и порядковый номер, и количество положительных зарядов, и количество электронов, называется числом Менделеева.

Посмотрим теперь, как располагаются электроны внутри электронных оболочек различных атомов.

Единственный электрон водородного атома обычно находится очень близко от ядра — на минимальном расстоянии, которое возможно по законам атомной механики. Принято называть этот низший уровень первым.

В атоме существует еще несколько определенных уровней, на которых могут находиться электроны.

В атоме гелия на первом уровне два электрона. Оказывается, что два электрона полностью заполняют первый уровень. Больше электронов на нем поместиться не может.

Поэтому у лития два электрона занимают первый уровень, а третий электрон помещается уже на втором уровне.

На втором уровне могут находиться восемь электронов. Поэтому у следующих за литием семи элементов электроны постепенно заполняют, как бы «достраивают» свой второй уровень. У бериллия там 2 электрона, у бора — 3, у углерода — 4, у азота — 5, у кислорода — 6, у фтора — 7, у неона — 8.

У неона второй уровень заполнен, — больше на нем свободной «жилплощади» нет. И одиннадцатый элемент — натрий помещает свой одиннадцатый электрон уже на третьем уровне.

Этим-то и объясняется то, что натрий и литий но химическим свойствам так похожи друг на друга. И у них обоих по одному электрону на верхнем уровне, то есть во внешнем электронном слое. Также сходны бериллий и магний — у них по два электрона во внешнем слое, и углерод с кремнием, — у которых по четыре внешних электрона и т. д.

Наконец у гелия, неона и аргона внешние слои заполнены целиком — и эти элементы тоже сходны между собой, — они ни в какие соединения не вступают.

У более тяжелых атомов строение электронных оболочек усложняется. Максимальное число электронов: на первом уровне — 2, на втором — 8, на третьем—18, на четвертом — 32. Эти числа и определяют постепенно усложняющуюся для более тяжелых элементов периодичность системы Менделеева.

 

Движение свободных электронов

Движение электронов в атоме подчинено весьма строгим законам, которые обусловлены характером сил, действующих в атоме.

Ни один электрон не может забраться на чужой «уровень» и быть девятым там, где полагается находиться восьмерым. Ни один электрон не может занять место между слоями, так же, как человек не может встать на лестнице между двумя ступеньками.

Если электрон покидает свою орбиту и переходит на другую орбиту, то он делает это только скачком, только сразу, а не постепенно. Всякое перемещение электронов с одного уровня на другой внутри атома может происходить исключительно скачками и на целое число ступеней.

В некоторых случаях электроны могут не только перескакивать с орбиты на орбиту, но и совсем покидать атом. Такие «свободные» электроны ведут самостоятельное существование, путешествуя в междуатомном пространстве, а иногда и вообще далеко, на миллиарды километров, уходят от атомов.

Особенно «непоседливы» электроны атомов металлов, и причиной этого являются некоторые особенности строения металлов.

Атомы в металлах расположены очень тесно, их оболочки почти соприкасаются. Внешние «пограничные» электроны оказываются не только иод воздействием положительного заряда атома-хозяина, их почти с той же силой притягивают заряды атомов-соседей. «Недостроенные» внешние слои атомов металлов прочностью не отличаются — их внешние электроны пристают то к одному, то к другому атому и кочуют в междуатомных промежутках.

Внутри металла эти почти свободные электроны образуют так называемый электронный газ. Сравнение с газом оправдывается тем, что эти электроны совершают беспорядочное «тепловое» движение и мечутся между атомами металла примерно так же, как мечутся молекулы обычного газа.

Существование в металле свободных электронов было доказано простым и остроумным опытом, в котором кусок проволоки исполнял роль «трамвая», а электроны служили «пассажирами».

Известно, что когда вагоновожатый резко и внезапно тормозит трамвай, то пассажиры, стоящие в проходе, продолжают движение по инерции и падают друг на друга.

Два советских ученых, академики Л. И. Мандельштам и Н. Д. Папалекси сделали такой опыт. Они с большой скоростью завертели медное кольцо, а затем его быстро остановили, и тотчас чувствительные приборы отметили возникновение в кольце кратковременного электрического тока. Это — свободные электроны меди, как пассажиры в трамвае, продолжая движение по инерции, ринулись вперед и образовали электрический ток, создавший в свою очередь магнитное поле (рис. 41).

Рис. 41. Когда кольцо остановили, электроны по инерции продолжали движение вперед, образуя электрический ток и сопровождающее его магнитное поле.

 

Черепашьим шагом

Электрический ток в проводах — это упорядоченное движение электронов. Когда светит лампочка, то это не значит, что в ней пробегают именно те электроны, которые пригнаны с электрической станции.

Ток в городской сети — переменный, он меняет свое направление 100 раз в секунду. Поэтому в лампочке взад и вперед пробегают одни и те же электроны, которые находились в металлическом волоске лампочки тогда, когда она бездействовала.

А электрическая станция по сути дела служит не поставщиком электронов, а только их толкачом.

Даже при постоянном токе, который течет в одном направлении, электроны перемещаются из одного участка провода в следующий очень медленно, примерно со скоростью миллиметра в секунду, часто и того медленнее. Электроны в металле неторопливы — их движение по проводнику похоже на движение воды в трубе, забитой песком, — настолько сильно им мешают атомы металла.

Конечно, возникает законное недоумение: телеграфный сигнал, посланный из Москвы во Владивосток на расстояние в 10 тысяч километров, прибывает на станцию назначения через 1/30 долю секунды, а электрон, посланный по проводу из Москвы, достигнет Владивостока только через триста с лишком лет. Проворством электроны в металлах не отличаются, но… почему же телеграммы идут так быстро?

 

Скорость сигнала

Когда телеграфист в Москве нажимает на ключ, то на концы проводов, находящихся в телеграфном аппарате, от батареи подается напряжение, и в этот момент по всей длине проводника от Москвы и до ближайшей станции возникает электрическое поле. Это поле распространяется очень быстро, почти со скоростью света, то есть около 300 000 километров в секунду.

Как приказ командующего приводит в движение сразу всю его армию, так и электрическое поле приводит в движение все электроны, находящиеся в тысячекилометровом участке провода. Хотя сами электроны движутся медленно, но зато всякие изменения электрического поля распространяются очень быстро, почти мгновенно. И через приемный аппарат проходят не те электроны, какие посланы из Москвы, а те, какие находились в приемном аппарате до получения сигнала. Телеграфный сигнал только привел их в движение. Следовательно, телеграммы и телефонные разговоры передаются по проводам не столько электронами, сколько колебаниями электрического поля, созданного в проводах.

Поворачивая выключатель или замыкая рубильник, мы тем самым даем толчок всем электронам в проводах и как бы командуем им: «Ток! Марш вперед!». И в то же мгновение все свободные электроны металла, как солдаты по команде, делают первый шаг и начинают свое медленное, неуклонно-дружное движение вперед.

Так возникает в проводнике электрический ток.

 

Ток, теплота и свет

Однако движение электронов в проводнике нельзя представить себе, как четкий размеренный марш колонны солдат. Свободные электроны металла по-прежнему сохраняют суетливость мошкары, роящейся в вечерней прохладе летнего дня. Они перескакивают от атома к атому, прыгают вправо и влево, вверх и вниз, вперед и назад.

Разность потенциалов только отчасти упорядочивает движение электронов, она хотя и понемногу, но постоянно и непрерывно отклоняет, «гонит» суетливый рой электронов в проводнике в ту сторону, в какую направлены силы поля, то есть вдоль проводника.

Толчки, которые электроны щедро раздают атомам, не остаются без последствий. Атомы металла начинают сильней раскачиваться, их колебательные движения становятся более размашистыми, увеличивается тепловое движение частиц, иначе говоря, металл, из которого сделан провод, начинает нагреваться.

Так движение электронов в проводнике — электрическая энергия — преобразуется в колебательное движение атомов — в тепловую энергию.

Но при движении потока электронов по проводнику не только может выделяться тепло.

Пока нагрев не очень велик, оболочки атомов как бы пружинят, и атомы, столкнувшись, отскакивают друг от друга, подобно мячикам. Чем температура выше, тем соударения становятся более резкими, более энергичными.

Некоторые электроны из внешних слоев не выдерживают слишком сильных толчков, они вылетают из своих орбит и попадают на другие орбиты, более удаленные от ядра.

Когда электрон поднялся на более высокий уровень, атом, поглотивший энергию удара, приходит в возбужденное состояние. Но такое состояние длится недолго. Электрон снова соскакивает на свой обычный уровень, а атом лишается избытка энергии.

Избыточная энергия атома не исчезает. Возвращаясь в нормальное состояние, атом излучает небольшую порцию света, которая называется световым квантом. Энергия кванта в точности равна тому избытку энергии, которого лишился атом.

Каждый «прыжок» электрона «вниз», к ядру атома, сопровождается излучением кванта.

Кванты, выбрасываемые возбужденными атомами, различаются друг от друга своими энергиями.

Наш глаз способен улавливать это различие. Кванты малой энергии дают ощущение красного света. Несколько большей энергией обладают кванты оранжевого света. Еще больше энергия квантов желтого, зеленого, голубого, синего и, наконец, фиолетового света. Смесь этих квантов в определенной пропорции дает ощущение белого света (рис. 42).

Рис. 42. Схема уровней энергии водородного атома. При переходе электрона с какого-нибудь уровня на другой, более низкий уровень, атом испускает квант, соответствующий излучению определенного цвета.

Пока тело нагрето слабо, оно не светится: сила толчков недостаточна для возбуждения атомов, и тело не излучает даже квантов красного света. При повышении температуры атомы прежде всего начнут испускать кванты красного света, и мы тогда говорим: тело нагрелось до красного каления.

Дальнейшее повышение температуры влечет за собой излучение квантов большей энергии. Цвет раскаленного предмета меняется. Он начинает светиться желтовато-золотистыми лучами, так называемое соломенно-желтое каление, а при температуре около 6000° свечение тела становится почти белым. При таком нагреве тело испускает примерно такие же световые кванты, что и Солнце. Температура солнечной поверхности — 6000°.

Так движения электронов в оболочках атомов, их «прыжки» с высоких уровней на более близкие к ядру атома, — порождают свет.

 

Способы освобождения электронов

Само собой разумеется, что толчки, испытываемые атомами при сильном нагреве, могут вызвать не только прыжки электронов с уровня на уровень. Достаточно энергичный толчок может выбросить электрон на такое расстояние, что притяжение ядра атома уже будет не в силах возвратить его обратно.

Электрон, выбитый из оболочки атома, перестает быть его «пленником». Электрон начинает самостоятельно странствовать. Это странствование продолжается до тех пор, пока он не попадет «в плен» к какому-либо другому атому.

Нагревание заставляет некоторые электроны вылетать за пределы раскаленного вещества.

Еще в 1733 году ученые заметили, что воздух вблизи раскаленного металла становится проводником электричества. С этим явлением ученые сталкивались постоянно, но объяснения ему не находили. Слишком мало тогда знала наука об электричестве.

То же самое приходилось наблюдать во время опытов с катодными трубками. Раскаленный катод выбрасывает значительно больше электронов, чем холодный.

Все эти наблюдения доказывают, что нагревание заставляет электроны двигаться быстрее, а большая скорость и, следовательно, большая энергия помогает им вылетать за пределы металла. Раскаленный металл всегда окружен легким, невидимым облачком электронов.

Бегство электронов из нагретого тела получило название термоэлектронного эффекта, или термоэлектронной эмиссии. Слово эмиссия означает — выход, выпуск.

Электроны освобождаются из оболочек атомов не только при воздействии высокой температуры. Опытами Столетова доказано, что и свет освобождает электроны.

В приборе Столетова ультрафиолетовые лучи, обрушиваясь на цинковый кружок, выбивали электроны за пределы металла. Совершив воздушный полет, они «приземлялись» на сетчатом электроде.

Это действие света на электроны получило название фотоэлектронной эмиссии или фотоэлектронного эффекта. Но эти термины употребляются сравнительно редко. Физик Казанского университета профессор В. А. Ульянин, который исследовал фотоэлектронную эмиссию одновременно со Столетовым, предложил другое, более короткое и простое название — фотоэффект; оно и получило общее признание.

Прибор Столетова, усовершенствованный другими физиками (рис. 43), называется теперь фотоэлементом.

Рис. 43. Схема фотоэлемента. Свет, падая на поверхность фотокатода, выбивает из нее электроны, и в цепи прибора возникает ток.

Таким образом люди научились освобождать электроны из невидимой крепости атома. Тем самым был совершен переворот, положивший начало новой эре в истории науки и техники.

Было установлено, что электроны могут двигаться не только по проводам (там они движутся очень медленно).

В предельно разреженных газах (в высоком вакууме) электроны при определенных условиях развивают скорости, немногим отличающиеся от скорости света.

Именно здесь они могут полностью проявить свои замечательные свойства.

Управление движением электронов по проводам дало человечеству телеграф, телефон, электрические двигатели, электрическое освещение (лампами накаливания).

Уменье использовать для практических целей различных областей техники движения электронов в разреженных газах составило новую эпоху в развитии электротехники. Эту молодую отрасль электротехники назвали электронной техникой или электроникой.