Искать, дерзать и пробовать — должен человек.Д. Менделеев
Солнце — член Галактики
Глава американской астрономической науки Генри Ресселл в самом начале своей книги о происхождении солнечной системы писал: «Первым характерным свойством нашей системы является ее крайняя изолированность».
В этом суждении, как в зеркале, отразилась философия ученого, воспитанного буржуазным обществом. В Америке и в Западной Европе все — школа, семья, религия, весь уклад жизни — учит человека мыслить о себе не в связи с обществом, с природой, а, наоборот, — противопоставляя себя обществу, природе, окружающим условиям. В буржуазных странах каждый человек, даже живущий в центре густонаселенного города, чувствует себя Робинзоном, который должен полагаться только на самого себя, на свои силы. И это миропонимание перенесено в науку.
По мнению буржуазных астрономов Солнце тоже подобно Робинзону, оно расположилось в необитаемом пространстве, а связь его с окружающим звездным миром исчезающе мала. Буржуазные ученые рассматривают солнечную систему, как нечто обособленное, самодовлеющее и ни от чего не зависимое, они пытаются доказать ее изолированность, и эту изолированность даже выдают как ее свойство.
Все это в корне неверно «…диалектика рассматривает природу не как случайное скопление предметов, явлений, оторванных друг от друга, изолированных друг от друга и независимых друг от друга, — а как связное, единое целое, где предметы, явления органически связаны друг с другом, зависят друг от друга и обусловливают друг друга.
Поэтому диалектический метод считает, что ни одно явление в природе не может быть понято, если взять его в изолированном виде, вне связи с окружающими явлениями, ибо любое явление в любой области природы может быть превращено в бессмыслицу, если его рассматривать вне связи с окружающими условиями, в отрыве от них, и, наоборот, любое явление может быть понято и обосновано, если оно рассматривается в его неразрывной связи с окружающими явлениями, в его обусловленности от окружающих его явлений».
Советские ученые понимают, что если рассматривать солнечную систему вне связи со всем звездным миром, с Галактикой, членом которой она является, если не учитывать историю развития Солнца и звезд, то нельзя создать подлинно-научную космогоническую гипотезу.
Чтобы найти решение вопроса — как образовалась Земля, пытливая человеческая мысль должна охватить весь окружающий нас звездный мир, его прошлое и настоящее, а буржуазное учение об изолированности отбросить, как ненужный и вредный хлам.
Против буржуазной ограниченности в астрономии подняли свой голос передовые советские ученые, и первым среди них был Герой Советского Союза академик Отто Юльевич Шмидт.
В 1944 году он, продолжая дело, начатое еще Ф. А. Бредихиным и В. И. Вернадским, выдвинул новую гипотезу об образовании Земли из твердых частиц. А основанием этой гипотезы послужила идея о связи между Галактикой и Солнцем.
Захват пылевого облака
По гипотезе О. Ю. Шмидта Солнце вначале было одиночной звездой, почти столь же яркой, как сейчас. Оно мчалось по своей галактической орбите, которая, как это установлено учеными, расположена очень близко от средней плоскости Галактики.
И в этой же плоскости сосредоточены также крупные массы темной космической пыли.
Примерно 6 или 7 миллиардов лет назад Солнце нагнало одну из таких туманностей и пролетело сквозь нее, как бы пробивая в ней туннель.
Средние размеры пылевых облаков составляют, примерно, 10 световых лет, то есть они имеют в поперечнике около 95·1012 километров. Возможно, что скорость Солнца по сравнению со скоростью туманности равнялась, примерно, 30 километрам в секунду или 950 миллионам километров в год.
При такой скорости путешествие Солнца внутри туманности длилось около ста тысяч лет.
Пролетая сквозь газово-пылевое облако, Солнце своими лучами отметало прочь самую мелкую пыль и молекулы газов, а более крупные частицы-песчинки своим тяготением захватывало «в плен» и заставляло обращаться вокруг себя.
Этим сразу объясняется коренное противоречие солнечной системы — странное распределение моментов количества движения между планетами и Солнцем.
Момент количества движения, которым владеют в настоящее время планеты, принесен в солнечную систему роем твердых частиц, захваченных Солнцем. Он заимствован из того запаса, которым обладает Галактика.
Частицы, плененные Солнцем, обращались возле него по самым различным и, конечно, очень вытянутым «кометным» орбитам. Но направление движения у подавляющего большинства этих частиц было одинаковым, потому что все они принадлежали одному облаку и унаследовали от него свое движение.
Если какие-либо частицы двигались в противном направлении, то они неизбежно сталкивались со встречными песчинками и камешками, разбивались, теряли скорость и гибли, падая на Солнце.
Точно так же большинство частиц, пойманных тяготением Солнца, держалось в основном той плоскости, в какой двигалось все облако. Эта плоскость приблизительно совпадала с плоскостью солнечного экватора.
Пути пылинок, кружившихся вокруг Солнца, пересекались. Пылинки постоянно сталкивались между собой, некоторые из них отскакивали друг от друга, другие слипались вместе, но так или иначе после каждого столкновения пути частиц изменялись.
В результате непрестанных соударений частицы, летавшие по пересекающимся орбитам, постепенно выходили из строя или же вливались в общий круговой поток, двигавшийся вокруг Солнца. Песчинки, державшиеся в одной — центральной плоскости, сохранились, а число их увеличивалось за счет песчинок, свернувших со своего прежнего пути после столкновений.
Беспорядочно роившееся вокруг Солнца скопище понемногу устраивалось — возникало сравнительно организованное, упорядоченное сгущение пылевого вещества, которое охватывало Солнце наподобие кольца Сатурна, но оно было несравненно более толстое.
Здесь в этом первобытном скоплении пылинок началось образование зародышей будущих планет. Мелкие пылинки слипались друг с другом, падали на более крупные, и так возникали ядра, вокруг которых сгущалось космическое вещество, давая начало будущим планетам.
Эти зародыши планет первоначально обращались вокруг Солнца по сильно вытянутым эллиптическим орбитам, подобно нынешним кометам. Но на них непрерывным дождем сыпались песчинки. Каждое падение, каждый толчок, который испытывала юная планета, заставлял ее слегка отклоняться от прежнего пути и двигаться по новой орбите.
Закон планетных расстояний
Планеты росли, накапливали вещество и вместе с тем суммировали орбиты всех падающих на них частиц. В результате — эллиптичность их собственных орбит уменьшалась. И чем больше планеты накапливали материала, тем округленнее становились их орбиты.
При этом О. Ю. Шмидт указывает, что зародыши будущих планет могли возникнуть в любом месте пылевого сгущения, но сохранились они только на строго определенных расстояниях от Солнца и друг от друга.
Ядра планет формировались в областях устойчивых орбит, то есть там, где мешающее действие соседних ядер было наименьшим.
Вообразим для примера, что два планетных ядра сложились слишком близко друг от друга. Разумеется, они быстро подберут весь космический материал, находящийся между их орбитами. В дальнейшем им волей-неволей придется довольствоваться частицами со стороны.
Ядро планеты, расположенное ближе к Солнцу, сможет захватывать песчинки, летающие между ним и Солнцем. Более далекое от Солнца ядро будет вынуждено собирать космический материал со своей теневой стороны.
Иначе говоря, ближайшая к Солнцу планета начнет расти за счет частичек, летающих слева от нее, а более далекая планета — за счет частичек, летающих справа от нее.
Непрерывные толчки песчинок и камешков, падающих на поверхность юных планет, приведут к тому, что более близкое к Солнцу планетное ядро отойдет влево, в сторону своего «пастбища» — приблизится к Солнцу, а более далекое отойдет вправо, поближе к своему «пастбищу» — удалится от Солнца. Ядра планет разойдутся и в конце концов займут строго определенные устойчивые орбиты.
Может быть и другой случай. Между двумя планетными ядрами, расположенными на достаточном удалении друг от друга, возникнет третье промежуточное ядро. Это третье — лишнее — ядро быстро исчерпает запас космического материала в окружающем пространстве, останется малорослым «недомерком» и поэтому не сможет округлить свою орбиту Обращаясь вокруг Солнца, оно будет поочередно приближаться то к более близкой от Солнца планете, то к более далекой и, в конце концов, под действием их тяготения развалится, а ее вещество станет добычей соседей.
Таким образом, сам процесс роста молодых планет за счет падающего на них материала заставляет их не только округлять свои орбиты, но и занимать «законные» места в солнечной системе, где можно было бы расти без особых помех.
Академик О. Ю. Шмидт решил вычислить на основе своей гипотезы, каковы должны быть эти «законные» устойчивые орбиты планет, образовавшихся из скопления твердых частиц, летавших возле Солнца. Эта задача поддается математическому решению.
Расчеты О. Ю. Шмидта привели к весьма важному выводу: расстояния между планетами могут быть представлены некоторой математической формулой, в которой как частный случай заключается правило Боде-Тициуса.
Следовательно, таинственное правило Боде-Тициуса, смущавшее всех ученых и казавшееся необъяснимым совпадением чисел, получило простое и естественное объяснение. Планеты могли образоваться на тех орбитах, на каких они сейчас находятся. Планеты-неудачницы, почему-либо возникавшие в неустойчивых зонах, были вынуждены либо развалиться, либо упасть на другие планеты, либо отодвинуться на законное место.
Из этой таблички видно, что числа, полученные О. Ю. Шмидтом, даже больше соответствуют действительности, чем числа, даваемые правилом Боде-Тициуса.
Образование планет-великанов
Марс — последний из четверки планет земной группы. Дальше от Солнца, за роем астероидов, о которых речь будет впереди, находятся четыре планеты-гиганта— Юпитер, Сатурн, Уран и Нептун.
Почему эти члены солнечной семьи так резко отличаются от планет земной группы, почему их размеры огромны, а плотности малы — не могла объяснить ни одна из прежних гипотез. Это были планеты-загадки. И верно, — наша Земля и ее соседи выглядят самыми нормальными планетами, они сложены из обычных материалов. Плотность Земли — 5,52.
Но как образовался Юпитер и из чего он сложен, если его масса в 318 раз больше массы Земли, объем в 1345 раз больше Земли, а плотность вещества лишь немногим отличается от плотности таких веществ, как глицерин или желатин?
Что это за вещество и как могла возникнуть эта рыхлая планета-громадина — совершенно неясно.
Гипотеза О. Ю. Шмидта дает объяснение.
Планеты формировались в борьбе двух сил: тяготения Солнца и давления солнечных лучей.
Давление солнечных лучей могло действовать только в той части пылевого облака, которая была прозрачна. Солнечные лучи тормозили пылинки в ближайших окрестностях Солнца и вызывали их падение на Солнце или же отбрасывали их далеко в сторону. Но влияние света по мере удаления от Солнца быстро ослабевало. На некотором расстоянии от Солнца толща пылевого облака оказывалась совершенно непроницаемой для света. Действие лучевого давления и торможения на этом расстоянии полностью прекращалось. Начиналась зона непрозрачности — зона мрака.
Там, где сквозь пылевое облако пробивались световые лучи и самые легкие частицы почти дочиста были выметены, — образовывались небольшие планеты земной группы.
Иное дело, — в зоне непрозрачности. Там во мраке клубились газовые облака, там находилось бесчисленное множество льдинок — замерзшей воды, замерзших газов: углекислоты, аммиака, метана; там на твердых частицах оседали в виде инея все легкие вещества, которые испарялись в околосолнечной области и были изгнаны оттуда солнечными лучами. И, разумеется, в зоне непрозрачности планеты слагались из тех материалов, какие там имелись — из замерзших газов, мелкой пыли и других легких веществ.
Планеты-гиганты — это дети мрака.
Густота облака в зоне непрозрачности, а также то, что Юпитер находился в центре захваченного Солнцем кольца космической пыли, создавали для Юпитера наиболее благоприятные условия. Он рос быстрее всех и вырос больше всех.
Крупная масса Юпитера, в свою очередь, помогала ему собирать вещество — к большой массе и мелочи притягивалось больше. Могучее тяготение Юпитера подчищало пространство на огромном расстоянии от него, а это обездоливало его ближайшего соседа. Марс мог бы стать более массивной планетой, но он не стал ею — помешало тяготение Юпитера.
Сатурн меньше Юпитера. Видимо рой частиц в районе его образования был реже, чем возле Юпитера. Кроме того, большая часть вещества, изгоняемого солнечными лучами из области формирования планет земной группы, рассеивалась в пространстве. Она достигала орбиты Сатурна в сильно разреженном состоянии — ведь Сатурн расположен почти вдвое дальше Юпитера. Все это привело к тому, что Сатурн собрал материала в три с лишним раза меньше, чем Юпитер.
Уран и Нептун — сравнительно небольшие планеты. Уран в 15 раз массивнее Земли, а Нептун массивнее ее в 17 раз.
В районе образования этих планет рой частиц безусловно был гораздо разреженнее, чем возле Сатурна и Юпитера.
Тут столкновения песчинок и камешков зачастую приводили к тому, что песчинка, ударившись о другую песчинку, отскакивала от нее, приобретала повышенную скорость и вырывалась из-под влияния солнечного тяготения. Такие частицы вылетали за пределы роя и навсегда покидали солнечную систему. Рой редел, и окраинным планетам оставалось мало материала.
Кроме того О. Ю. Шмидт предполагает, что вследствие огромных расстояний, которые разделяют окраинные планеты, Уран и Нептун еще не закончили сбор материала. Эти планеты продолжают расти и в наши дни.
Небольшое несоответствие между массами Нептуна и Урана отнюдь не противоречит гипотезе Шмидта. Нельзя представлять себе, что облако, встреченное Солнцем, и рой частиц, захваченный им, были совершенно однородными, несомненно в нем имелись и более плотные сгустки и разреженные места.
Точно также нельзя думать, что ядра всех планет сложились одновременно, как по команде. Несомненно, одни образовались чуть раньше, другие — позже. Те, что возникли раньше, совершенно естественно, использовали первенство и собрали больше материала.
Неоднородностью роя и разновременностью образования ядер планет объясняются их небольшие отклонения от нормы.
На самой границе роя, где вещества было совсем мало, образовался Плутон. Этому обитателю околицы солнечной системы пришлось довольствоваться только остатками строительных материалов. Он вырос такой же маленькой планетой, как и Марс. Его орбита тоже не смогла округлиться, а масса осталась примерно равной массе Марса.
Из гипотезы Шмидта следует, что Плутон — последняя планета солнечной системы. Возможно, что за орбитой Плутона летают небесные тела, подобные астероидам, но для образования настоящей планеты там материала недостаточно. Поэтому десятой крупной планеты в солнечной системе нет и быть не может.
Вращение планет
Все без исключения космогонические гипотезы не могли объяснить, почему планеты вращаются вокруг своих осей в ту же сторону, в какую они движутся по орбитам. Эта задача была тем препятствием, на котором опрокидывались все рассуждения, и авторы гипотез обычно умалчивали о вращении планет.
Лаплас, как известно, никакого объяснения не дал, полагая, что вращение планет должно быть понятно и без объяснения. Его последователи с горечью убедились, что Лаплас ошибся. Вращение планет по его гипотезе обязательно должно быть обратным — если планета, обращаясь вокруг Солнца, движется против часовой стрелки, то вращаться вокруг оси она должна по часовой стрелке.
В самом деле, по законам Кеплера каждое тело солнечной системы — все равно планета, метеор, пылинка или молекула, — обращаясь вокруг Солнца, имеет строго определенную скорость движения по орбите. Эта орбитальная скорость зависит от размеров орбиты. Чем дальше от Солнца расположена планета, тем меньше ее скорость.
Это наблюдается и в действительности. Меркурий движется по орбите со скоростью в 49 километров в секунду. Более далекая от Солнца Венера имеет орбитальную скорость в 35 километров в секунду. Скорость Земли еще меньше — 30 километров, Марса — 24, Юпитера — 13 и так далее.
Следовательно, — рассуждали ученые, — в эпоху образования планет каждая песчинка, летевшая немного дальше от Солнца, чем Земля, двигалась со скоростью около 29 километров в секунду, то есть медленнее Земли.
Частицы, летевшие с подсолнечной стороны Земли, то есть слева от нее и ближе к Солнцу, двигались со скоростью около 31 километра в секунду — быстрее Земли.
И те и другие частицы падали на растущую Землю.
Пылинки и камешки, летевшие с подсолнечной дневной стороны Земли и, следовательно, догонявшие ее, подталкивали Землю.
Пылинки и камешки, двигавшиеся с ночной стороны, то есть правее и дальше Земли, и отстававшие от нее, падая, притормаживали Землю.
Если какую-либо вертушку или колесо слева подталкивать в одну сторону, а справа в другую, то вертушка неминуемо завертится. И, очевидно, что земной шар тоже должен был завертеться волчком и именно слева направо — по часовой стрелке и ни в коем случае не наоборот.
Этот вывод казался ученым настолько очевидным, закономерным и безусловно правильным, что оспаривать его никто не осмеливался. Бессмысленно опровергать основные законы движения небесных тел.
Земля же и все остальные планеты наперекор здравому смыслу вращаются вокруг оси именно наоборот, справа налево — против часовой стрелки.
И это было удивительной, необъяснимой загадкой.
Некоторые ученые время от времени пытались придумать какое-либо мало-мальски сносное объяснение, почему планеты вращаются не так, как следовало бы. Но доводы выглядели искусственными и неубедительными. Вопрос оставался открытым.
О. Ю. Шмидт нашел ошибку в рассуждениях ученых, искавших причину прямого вращения планет. Он доказал, что земной шар ни в коем случае нельзя уподоблять вертушке, которую падающие песчинки заставили вертеться своими толчками. О. Ю. Шмидт исключительно просто и убедительно объяснил вращение планет в прямом направлении.
Физическое явление, которое легло в основу объяснения Шмидта, случалось наблюдать каждому человеку.
Темной безоблачной ночью высоко над Землей проносятся яркие искорки метеоров. Метеоры вторгаются в земную атмосферу с огромными скоростями, иногда превышающими 40 километров в секунду. При такой скорости метеорная частица уже на высоте 120–150 километров от поверхности Земли сталкивается с молекулами воздуха. Несмотря на крайнюю разреженность воздуха, на большой высоте перед метеором образуется воздушная «подушка», которая разогревается до нескольких тысяч градусов и начинает испускать ослепительный свет. Вследствие сопротивления воздуха метеорит теряет скорость, его поверхность раскаляется, вещество начинает испаряться, и за метеоритом тянется тонкий светящийся след, образованный раскаленными частицами воздуха и метеорного тела. Почти вся кинетическая энергия метеорита в это время преобразуется в теплоту и свет.
Это и есть то явление, которое упускали из виду.
В первые тысячелетия своего существования юная Земля уже обладала атмосферой. Конечно, газовая оболочка новорожденной планеты имела ничтожную толщину и плотность. Но чтобы затормозить падение метеорита, достаточно очень небольшой плотности воздуха — такой, какую мы имеем в настоящее время на высоте 120 километров от поверхности Земли.
Частички, падавшие на Землю, встречая резкое сопротивление газовой оболочки, раскалялись, их кинетическая энергия переходила в теплоту и свет, а свет и теплота тут же рассеивались в пространстве. Падающие частички теряли свою кинетическую энергию раньше, чем успевали «толкнуть» Землю. Они испарялись, превращались в пыль, и эта пыль уже спокойно оседала на Землю.
Даже песчинки и камешки, достигавшие поверхности Земли, большую часть кинетической энергии расходовали на нагревание и механическое дробление.
Кроме того, юную планету в то время окружал довольно плотный рой частиц, делавших свои последние круги перед тем, как приземлиться. Эти частицы постоянно сталкивались между собой, раскалывались, разогревались от ударов друг о друга и тоже теряли свою кинетическую энергию.
Следовательно, «толчки», которые испытывала Земля от падения песчинок и камешков, были ничтожно малы. Существенного значения они не имели. И вращение Земли нельзя объяснить разностью скоростей частиц, летавших справа и слева от Земли. Их кинетическая энергия почти полностью излучалась в пространство в виде света и теплоты.
При образовании планет, указывает О. Ю. Шмидт, происходило не сложение кинетических энергий падающих частиц, а сложение моментов количества движения, которыми обладали эти частицы.
Момент количества движения в мире небесных тел отчасти можно уподобить нашим деньгам. Деньги тоже переходят из рук в руки, в бухгалтериях их переписывают со счета на счет, но сами по себе деньги не исчезают, не расходуются, они только передаются.
Момент количества движения не может превращаться в свет и теплоту, не может расходоваться на трение. Он только передается от одного тела к другому.
В рое мелких частиц или в планетной системе момент количества движения распределяется по иному закону, чем орбитальные скорости. Вот для примера Марс и Плутон. Они почти равны друг другу по массе: орбитальная скорость Марса равна 24 километрам в секунду; а орбитальная скорость Плутона составляет всего лишь 4,75 километра в секунду. Но Плутон в 26 раз дальше от Солнца, чем Марс. Поэтому, несмотря на большую разницу в скоростях, момент количества движения, принадлежащий Плутону, почти в 5 раз больше момента количества движения, которым обладает Марс. Чем дальше обращается планета или частичка от Солнца, тем ее момент больше.
А это означает, что все частички роя, летавшие за пределами земной орбиты с ночной стороны Земли (справа от нее) обладали большим моментом количества движения, чем частички, летавшие внутри земной орбиты, слева от Земли — с ее дневной стороны.
Падая на Землю и те и другие частички передавали ей и свою массу и свой момент количества движения. Падавшие справа — на ночную сторону Земли, приносили с собой больший момент количества движения, падавшие слева — меньший. Суммирование моментов подталкивало Землю, заставляло ее вращаться справа налево, то есть против часовой стрелки, — так, как она вращается в действительности. Объяснение прямого вращения является большой заслугой О. Ю. Шмидта. Ученому удалось решить задачу, перед которой, как перед крепостной стеной, наука стояла в течение целого столетия.
Закономерность, открытая О. Ю. Шмидтом, позволяет сделать важные выводы. Планеты-гиганты, накопившие большие массы, а вместе с тем и большие моменты количества движения, должны вращаться быстрее планет земной группы.
И действительно, на величайшей из планет — на Юпитере — сутки длятся только 9 часов и 50 минут. Сатурн вращается вокруг оси медленнее — за 10 часов и 14 минут. Уран — за 10 часов и 48 минут. Нептун— за 15 часов и 40 минут. Продолжительность суток на Плутоне еще не установлена. Но, основываясь на законе сложения моментов количества движения, можно предположить, что маленький Плутон вращается гораздо медленнее Нептуна и может быть даже медленнее Марса.
Меркурий, как самый маленький среди планет и самый близкий к Солнцу, даже в годы юности не мог вращаться быстро. Приливное действие Солнца окончательно затормозило его вращение вокруг оси. Теперь Меркурий обращается вокруг Солнца так же, как Луна вокруг Земли, обернувшись к нему одной стороной.
Другой малыш среди планет земной группы — Марс вращается немного медленнее, чем Земля. Но медлительность вращения Марса нельзя объяснить исключительно тормозящим действием приливного трения. Марс далек от Солнца. Солнечные приливы на Марсе неуловимо малы. Действие их ничтожно. Марс вращается медленно, потому что размеры его невелики. Если бы он смог накопить большую массу, то и вращался бы гораздо быстрее Земли.
Длительность суток на Венере до сих пор неизвестна. Эта планета окутана густыми белоснежными облаками. На ее поверхности нет ни одного устойчивого пятнышка, проследив за которым можно было бы определить скорость ее вращения. Предполагают, что Венера вращается очень медленно и ее сутки длятся примерно 30 наших суток. Но так ли это в действительности, — еще никем не доказано.
Раньше, до работ О. Ю. Шмидта, длительность суток на планетах казалась чем-то обособленным, независимым и даже случайным. Ученые полагали, что время вращения планеты вокруг оси можно узнать только наблюдением. Это не так. Закономерность, открытая О. Ю. Шмидтом, позволяет определять длину суток на планетах математическим путем.
Наклоны осей Юпитера, Сатурна и Урана.
В солнечной системе все связано друг с. другом. И плотность планет, и округленность их орбит, и наклоны их осей, и продолжительность суток — зависят в той или иной степени от массы планет и от расстояния, на котором они находятся от Солнца.
В солнечной системе нет обособленных, изолированных явлений.
Рождение лун
Луны образовывались одновременно с планетами и вместе с ними. В клубке твердых частиц, из которого формировалась будущая планета, кроме центрального сгущения, возникало много других сгустков — ядер будущих спутников. Сначала они обращались вокруг центра тяжести сгустка по различным и по-кометному вытянутым орбитам.
Массы лун росли, а орбиты соответственно округлялись. Одновременно шел естественный процесс отбора устойчивых образований. Спутники, возникавшие на орбитах, которые пересекали центральную — экваториальную плоскость сгустка, чаще других сталкивались со своими сверстниками и, разумеется, разваливались.
Луны, которые, обращаясь вокруг планеты, входили в зону Роша, тоже рассыпались на мелкие частицы. Остатки развалившихся спутников служили добычей планеты и других лун.
Сохранились ядра спутников, которые обращались в экваториальной плоскости, то есть в наиболее плотной части сгустка. Их массы росли быстрее, чем у остальных лун, их орбиты скорее округлялись.
Словом, тут действовал тот же самый закон, какой определил расстояние планет от Солнца. И, действительно, спутники разместились возле планет в определенной закономерной последовательности, установленной еще в 1937 году С. С. Петровым. Луны, накопившие наибольшие массы, приобрели наиболее округленные орбиты.
Все главные спутники планет, то есть наиболее массивные и близкие к планете, обращаются в ту же сторону, в какую вращаются планеты. Очевидно, что иначе и быть не могло. Закон сложения моментов количества движения действителен не только для планет, но и для спутников.
Луны, наиболее удаленные от планеты и небольшие по массе, возникали там, где сгусток был разрежен и столкновения частиц происходили значительно реже, чем вблизи планеты. Потери кинетической энергии на дробление и нагревание тут были невелики. Толчки падающих частиц оказывали существенное влияние. Вступало в действие «правило вертушки», то есть сумма кинетических энергий, приносимых частицами, имела большее значение, чем сумма моментов количества движения. И эти спутники были вынуждены вращаться в ту сторону, в какую их подталкивали падающие на них частицы. Поэтому три крайних спутника Юпитера и спутник Сатурна — Феба обращаются навстречу вращению планеты.
Отсюда следует вывод: между спутниками, обращающимися в прямом направлении, и спутниками, которые движутся им навстречу, должен существовать обширный промежуток — зона, где движение невозможно ни в ту, ни в другую сторону и, следовательно, невозможно образование спутников.
Действительность подтверждает существование такой «пустой» зоны. Между орбитой последнего «прямого» спутника Юпитера и орбитой его первого «обратного» спутника лежит промежуток в 10,8 миллиона километров. От Япета и Фебы в системе Сатурна — 9,4 миллиона километров. Между орбитами спутников, имеющих одинаковое движение, таких разрывов нет.
Луны росли в борьбе двух противоположных явлений. Суммирование кинетических энергий падающих частиц противодействовало накапливанию моментов количества движения — одно тянуло влево, а другое — вправо. Поэтому луны с самого рождения вращались вокруг оси довольно медленно.
Одновременно сказывалось влияние приливного трения. Приливные силы тормозили вращение спутников вокруг осей, и луны замирали, повернувшись к планетам одной стороной. Все спутники Юпитера и Сатурна, так же как и Луна, никогда не оборачиваются к своим планетам «спиной».
Зачатки лун, по всей вероятности, возникали не там, где они находятся сейчас, а на больших расстояниях от планет. Массы планет и лун росли, сила тяготения между ними увеличивалась. По мере увеличения массы, спутники приближались к планетам. Возможно, что системы спутников были прежде более многочисленны, чем теперь. Но ближние луны, притянутые планетой, вступали в пределы зоны Роша и гибли, разорванные приливными силами. Их остатки поглотили планеты.
Когда запасы вещества, захваченного Солнцем, были исчерпаны, рост планет замедлился и практически совсем прекратился. Луны тоже перестали подтягиваться к планетам. И возможно, что именно в этот переломный момент рыхлый, неустойчивый, еще не успевший уплотниться и окрепнуть, комок космической пыли, который должен был превратиться в одну из лун Сатурна, проник в опасную зону и был разорван приливными силами, и вокруг образовалось кольцо.
Такова гипотеза Шмидта в ее первоначальном варианте. Она привлекла к себе пристальное внимание ученых, ведь это была первая попытка вывести космогонию из того тупика, в какой ее завели буржуазные ученые. Самым ценным в новой гипотезе было то, что она объяснила те закономерности солнечной системы, которые до ее появления оставались без объяснения.
Гипотезе О. Ю. Шмидта пришлось выдержать суровую критику и встретить много серьезных возражений.