Установив закон рычага, Архимед утверждал, что любую тяжесть можно приподнять малой силой, если только возможно взять соответствующей длины рычаг. Говорят, будто бы он воскликнул:

— Дайте мне точку опоры, и я приподниму Землю!

Современные ученые сомневаются в справедливости этой легенды. Архимед был хорошим математиком, и он должен был представлять, какой примерно понадобится рычаг для того, чтобы шевельнуть Землю.

Для опыта попробуем мысленно приподнять рычагом не весь земной шар и даже не гору высотой 5 или 6 километров, а только гранитный холм, имеющий коническую форму и высоту 540 метров.

Объем гранитного конуса такого размера равен округленно 165 миллионам кубических метров, а вес —445 миллионам тонн.

Сила, с какой человек может нажать на рычаг, не превышает его веса, то есть примерно 75 килограммов.

Значит, на одно плечо рычага будет действовать сила в 75 килограммов, а на другое — в 445 миллионов тонн, то есть в 5,9 миллиарда раз больше.

Плечи рычага обратно пропорциональны силам. Поэтому, если одно плечо возьмем равным километру, те другое должно быть в 5,9 миллиарда раз длиннее. Иначе говоря, длинное плечо Архимедова рычага, приподнимающего гору, выдвинулось бы за пределы солнечной системы. Силачу, орудующему этим рычагом, пришлось бы перебраться на планету Плутон, чтобы оттуда «нажимать» на рычаг.

Слово «нажимать» взято в кавычки по необходимости: ведь выигрыш в силе неминуемо связан с потерей в расстоянии. Пути, проходимые концами рычага, обратно пропорциональны силам.

Чтобы приподнять гранитный холм всего лишь на метр, другому концу рычага придется описать в пространстве гигантскую дугу в 5,9 миллиона километров!

Воображаемому силачу нужно было бы не нажимать на рычаг, а терпеливо тянуть или толкать его. Если при этом он вышагивал бы в сутки по 80 километров, то всю работу закончил бы только в том случае, если дожил бы до 200-летнего возраста!

Не только сдвинуть земной шар, но даже приподнять небольшую горку не мог бы человек, пользуясь рычагом. Правда, Архимед не знал, какова масса земного шара. Но расчет веса горы он уже мог сделать. Конечно, он понимал, что в действительности невозможно переместить такую большую массу.