В конце XIX века в области физики произошла настоящая революция, которой способствовало появление, с одной стороны, теории относительности, содержавшей новую концепцию времени и пространства, и с другой — квантовой теории со странными и поразительными законами. Самые ранние годы Дирака совпали с этими глубокими изменениями.

В первые годы жизни Поля Дирака в физике произошли невероятные события. До этого времени (до конца XIX века) классическая физика опиралась, главным образом, на механику Ньютона и электромагнетизм Максвелла. Однако ей пришлось уступить место «современной физике», которая предлагала новое видение мира, новые понятия и удивительные законы. Потрясения, вызванные теорией относительности и квантовой физикой, были столь глубокими, что затронули все области знания.

Биография ученого разворачивалась параллельно развитию двух этих новых теорий. Поль Адриен Морис Дирак родился 8 августа 1902 года в Бристоле (Англия). Его имя ясно говорит о французских корнях: отец, Шарль Адриен Л. Дирак, появился на свет в 1866 году в городе Монте франкоязычного кантона Вале в Швейцарии. Шарль начал учебу в университете Женевы, потом из-за напряженных отношений с родственниками оставил отчий дом. Он порвал все отношения с семьей, которая долгие годы не получала от него никаких известий. Его родители не узнали ни о его женитьбе, ни о рождении двух первых детей; только в 1905 году Шарль навестил мать в Женеве вместе с женой и двумя сыновьями. Около 1890 года он обосновался в Бристоле, где начал преподавать французский язык.

В 1896 году Шарля взяли на работу в Технический колледж (Merchant Venturers’ Technical College), а через три года он женился на Флоренс Ханне Холтен, уроженке Бристоля. В 1900 году родился их первый ребенок: Реджинальд Шарль Феликс. Через два года появился на свет Поль, а в 1906 году — дочь, Беатрис Изабель Маргерит. Поль получил среднее образование в школе Технического колледжа, который стал частью университета Бристоля в 1906 году.

Уже будучи взрослым, Дирак вспоминал, что поездка в Женеву в 1905 году совпала по времени с кульминацией творческого гения Эйнштейна в Берне, неподалеку от Женевы. В тот год Эйнштейн, используя только что появившуюся квантовую теорию, опубликовал пять статей, среди которых были статьи о специальной теории относительности и объяснение фотоэффекта. Через 23 года Дирак первым из физиков объединил эти две теории.

ОБРАЗОВАНИЕ И ЛИЧНОСТЬ

Шарль Дирак не отказался от своего женевского культурного наследия. В 1919 году он и его дети получили британское гражданство, а до этого сохраняли швейцарское. В его доме говорили, кстати, только по-французски, что являлось обязательным правилом. Авторитарная личность отца и уединенность, навязанная им своей семье, социальная жизнь которой была крайне ограничена, превратили дом Дирака в тюрьму, где не было места праздным разговорам. Это наложило значительный отпечаток на жизнь детей Шарля. В 1962 году Поль Дирак вспоминал:

«В детстве у меня не было никакой социальной жизни. Отец заставлял меня говорить с ним по-французски. Он считал, что это благоприятным образом скажется на моем воспитании. Поскольку я был не способен объясняться по-французски, то предпочитал молчать, нежели говорить по-английски. Именно так я стал очень молчаливым человеком».

По словам Дирака, семейные трапезы выглядели следующим образом: отец и сын сидели за столом в тишине, а мать, которая не говорила по-французски, оставалась на кухне с двумя другими детьми. Мы не знаем причин таких странных отношений, но точно известно, что семья редко собиралась за общим столом (Дирак неоднократно рассказывал об этом).

С самого начала все способствовало тому, чтобы я стал очень замкнутым человеком.

Поль Дирак

На всю жизнь Поль сохранил эту замкнутость и всегда с чрезвычайным трудом выстраивал отношения с окружающими. Товарищи по начальной школе рассказывали о его скрытности и необщительности. Юный Дирак мало с кем разговаривал и избегал игр, в том числе и спортивных. Его внимание было сосредоточено на собственном внутреннем мире, а также на изучении природы и математики, которая стала центром его жизни. Детство Поля, в частности его отношения с отцом, наложили неизгладимый отпечаток на всю дальнейшую судьбу ученого. Замкнутость и скрытность превратили Дирака в тяжелого человека, который порой мог демонстрировать полное отсутствие интереса к окружающим и даже нехватку такта.

В 1914 году, в начале Первой мировой войны, Поль Дирак получал среднее образование в Техническом колледже, где его отец преподавал французский. Некоторые воспоминания студентов того времени свидетельствуют о педантизме и строгости отца Дирака, который часто прибегал к наказаниям во имя дисциплины. Образование в колледже концентрировалось в основном на науках, современных языках и практических предметах. Гуманитарных дисциплин было очень мало.

С самого начала обучения Дирак продемонстрировал врожденный талант к наукам, особенно к математике. Он также интересовался техническим рисунком и геометрическим изображением трехмерных фигур. Гораздо позже он объяснял, что именно способность представлять проблемы геометрически позволила ему развить некоторые из самых важных его идей. Дирак быстро стал одним из самых блестящих учеников колледжа и достиг гораздо более продвинутого уровня в изучении математики и химии, нежели другие студенты его возраста. Отец и учителя Поля с самого начала поняли, что молодой человек интересуется наукой, обладает огромной работоспособностью и вниманием. Разумеется, это открытие привело к еще большему ужесточению и без того строгого режима, который Шарль Дирак навязал своему сыну в те годы, что лишь усилило его одиночество и замкнутость.

Поль Дирак посвятил себя исключительно науке и совершенно не интересовался другими областями знания, такими как литература или музыка. В то же самое время его школьные успехи, трудности в общении и отсутствие интереса к проблемам и чувствам других со временем сказались на его отношениях с братом, сошедших практически на нет.

В 1918 году Дирак получил аттестат о среднем образовании с самыми высокими оценками, но у него не было никакого представления о том, чем он хочет заниматься в жизни. Несмотря на математические таланты, Поль последовал примеру старшего брата, которого отец заставил получать инженерное образование в университете Бристоля вопреки его интересу к медицине.

КЛАССИЧЕСКАЯ И СОВРЕМЕННАЯ ФИЗИКА

В конце XIX века физика считалась прекрасно структурированной наукой, способной описать мир. Механика Ньютона объясняла движение тел; теория электромагнетизма Максвелла позволяла точно объяснить электрические и магнетические явления; развитие атомной теории и статистической механики, равно как и применение этих теорий в области термодинамики, дали химии, науке XX века, осуществить необычайный прорыв. В связи с этим легко можно понять слова лорда Кельвина: «В физике нечего открывать, можно лишь осуществлять все более точные измерения».

Уильям Томсон (лорд Кельвин), 1906 год.

Новые вызовы

И тем не менее ученые прекрасно осознавали, что оставалось два не проясненных вопроса. Первый был связан с некоторыми противоречиями между механикой и электромагнетизмом; второй вытекал из невозможности объяснения с помощью существовавших теорий «излучения черного тела». Первый вопрос привел к появлению теории относительности Эйнштейна — с новой концепцией пространства и времени и принципом эквивалентности массы и энергии. Второй вызвал появление и развитие квантовой теории с ее странными законами. Изменения были столь существенными, что затронули все области знания. Физика до конца XIX века называется классической, а в XX столетии началась эра «современной физики».

Альберт Эйнштейн во время конференции в Вене, 1921 год.

МЕХАНИКА ПРОТИВ ЭЛЕКТРОМАГНЕТИЗМА

Чтобы понять научные труды и открытия Дирака, надо хорошо понимать контекст физики во времена, когда он был студентом: в ней происходила настоящая революция вместе с расцветом новых теорий, радикально менявших преобладавшее до этих пор видение природы.

Галилей и Ньютон сформулировали законы, позволявшие объяснить движение тел. Одним из главных понятий этих теорий была «система отсчета», в рамках которой рассматривалось движение одного или нескольких тел. До XVI века считалось, что Земля как особая система отсчета находится в состоянии абсолютного покоя. Галилей (1564-1642) первым заявил, что никакой особой системы отсчета не существует. Кстати, одним из основных принципов физики был «принцип относительности» Галилея — Ньютона, согласно которому все законы физики (механики) одинаковы для всех инерциальных систем — систем отсчета, движущихся равномерно и прямолинейно относительно друг друга. Преобразования, позволяющие описать положения тел в разных инерциальных системах, называются «преобразованиями Галилея». Время во всех таких системах отсчета являлось абсолютным, то есть одинаковым для всех наблюдателей.

К середине XIX века британский физик Джеймс Клерк Максвелл (1831-1879) разработал свою теорию электромагнетизма. Ее основу составляли четыре уравнения, называемых «уравнениями Максвелла». В них учитывалась скорость света. Следовательно, возникал вопрос: в какой системе отсчета рассматривать скорость света? Согласно принципу относительности Галилея — Ньютона скорость зависит от выбранной системы отсчета. Однако изменение скорости света, в свою очередь, меняет уравнения Максвелла. Другими словами, законы электромагнетизма меняются, когда сталкиваются с преобразованиями Галилея. И это очевидным образом свидетельствует о том, что законы электромагнетизма и механики противоречат друг другу.

К XX веку все физики были убеждены: свет, как и любое другое волновое явление, для распространения нуждается в материальной среде, которая была названа «эфиром». Предполагалось, что он заполняет собой все пространство. Таким образом, эфир составлял особую систему отсчета (абсолютную), что противоречило принципу относительности Галилея. Главной задачей стало измерить скорость света по отношению к эфиру, именно это являлось целью опыта, осуществленного Альбертом А. Майкельсоном (1852-1931) и Эдвардом Морли (1838-1923) в 1887 году. Их опыт показал, что измеряемая скорость света всегда одинаковая, каким бы ни было ее направление в пространстве. Объяснения данного факта давались очень разные, и все они были связаны с возможными изменениями уравнений электромагнетизма. На самом деле большинство ученых оставались убеждены в релевантности уравнений Ньютона и преобразований Галилея — до тех пор, пока специальная теория относительности полностью не перевернула подход к проблеме и ее решению.

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Альберт Эйнштейн (1879-1955) полагал, что противоречия между электромагнетизмом и механикой вытекают из законов Ньютона. Он отказался от идеи эфира и возможного существования абсолютной системы отсчета. Эйнштейн разработал теорию относительности, исходя из двух основополагающих постулатов.

1. Принцип относительности. Все законы физики одинаковы для всех инерциальных систем отсчета.

2. Принцип постоянности скорости света. Скорость света в вакууме всегда одинакова, независимо от рассматриваемой инерциальной системы отсчета.

Первый постулат представляет собой обобщенный принцип Галилея — Ньютона и демонстрирует невозможность различать инерциальные системы. Второй постулат гораздо более странный, он очевидным образом противоречит преобразованиям Галилея, согласно которым скорость предмета зависит от системы отсчета, в которой эта скорость измеряется. Как это возможно, чтобы наблюдатели, двигающиеся по отношению друг к другу, видели одно и то же световое мерцание, перемещающееся с одинаковой по отношению ко всем скоростью? Поиски ответа на данный вопрос вели к совершенно новому восприятию таких основополагающих понятий, как пространство и время.

Рассмотрим понятие одновременности в свете специальной теории относительности. В механике Ньютона время абсолютно и, следовательно, одинаково для всех наблюдателей. В схеме Эйнштейна, напротив, одновременные события в одной системе отсчета обычно не одновременны в другой системе отсчета; другими словами, одновременность событий зависит от системы отсчета. Это означает, что время протекает (и измеряется) по-разному в зависимости от системы.

Из постулатов Эйнштейна следует, что измеряемое время может замедляться в движущихся инерциальных системах; иначе говоря, оно течет быстрее, когда мы измеряем его в той же системе отсчета, в которой и находимся (в «собственной» системе). Наконец, и длина предмета зависит от системы, в которой он измеряется, поскольку определить длину означает определить одновременно края этого предмета. Эйнштейн осуществил множество «мысленных экспериментов», чтобы данный аспект стал очевидным. И если релятивистские эффекты — сокращение длины и замедление времени — незаметны в повседневном мире, для которого механика Ньютона является достаточно точной, то они играют ключевую роль в объяснении субатомных процессов.

Еще один важный принцип, следовавший из теории относительности и оказавший серьезное влияние на квантовую теорию, — принцип эквивалентности массы и энергии. В релятивистской теории масса тела зависит от системы отсчета, она увеличивается вместе со скоростью и тяготеет к бесконечности, когда скорость тела приближается к скорости света. Соотношение между массой и общей энергией тела выражается знаменитым уравнением Эйнштейна: Е = mc2. Оно описывает эквивалентность массы и энергии и означает, что излучение или взаимодействие, то есть энергия, могут переходить в массу (в частицы), и наоборот, что частицы (масса) могут разрушаться, производя энергию. Это уравнение сыграло огромную роль

Дирак в учебной аудитории.

Поль Дирак (четвертый слева) с коллегами во время VII Сольвеевского конгресса, который был организован в 1933 году и посвящен структуре и свойствам атомного ядра. в открытии взаимодействия излучения с веществом в рамках квантовой теории. Дирак стал первым ученым, сумевшим логично соединить релятивистскую теорию с квантовой моделью. Постулирование неинерциальных систем отсчетов привело Эйнштейна к разработке общей теории относительности, он опубликовал ее в 1916 году.

РЕЛЯТИВИСТСКИЕ ЭФФЕКТЫ В КВАНТОВОМ МИРЕ

Время, в которое происходит какое-либо событие, так же как и длина предмета, зависят от инерциальной системы отсчета, в которой они измеряются. В свете теории относительности эти эффекты выражаются следующими уравнениями:

Δt = γΔt 0 ; L = L 0 /γ

где Δt 0 и L 0 означают измеряемые время и длину в движущейся системе отсчета, а Δt и L показатели, измеряемые в неподвижной системе. Член уравнений у, называемый «фактором Лоренца», выражается так:

γ = 1/(√(1-(v/c)2)

В обычной жизни скорость предметов (V) слишком мала по отношению к скорости света (с). В этой ситуации фактор Лоренца практически равен 1. Таким образом, нет никакой разницы между длиной или временным интервалом, измеряемыми разными наблюдателями. Принципиально иная ситуация наблюдается в субатомном мире, где скорости сопоставимы со скоростью света. Фактор у там значительно больше 1, что влечет за собой растяжение времени (Δt > Δt 0 и сокращение длины (L < L 0 ). Данные эффекты хорошо заметны в случае мюонов. Эти элементарные частицы образуются, когда космические лучи (лучи из внешнего пространства) проникают в земную атмосферу. Как показано на схеме, мюоны появляются приблизительно на высоте 15 км от поверхности Земли. В среднем они распадаются за 2·10 -6 секунд, если измерять время в их собственной системе. В механике Ньютона мюон, перемещаясь со скоростью, близкой к скорости света, мог пройти расстояние в 600-700 м до своего распада и, следовательно, никогда не мог достигнуть земной поверхности. Однако значительное количество мюонов достигало земли. Как такое возможно? Теория относительности объясняет данное явление. В инерциальной системе Земли средняя жизнь мюонов приблизительно в 20 раз дольше, чем в их собственной системе. Это означает, что мюон может преодолеть расстояние в 15 км (измеряемых в земной системе), совпадающее с толщиной атмосферы, через которую он должен пройти до своего распада на земной поверхности. Теория относительности предлагает похожее объяснение сокращения длины. В системе мюона в состоянии покоя толщина атмосферы значительно меньше, она уменьшается до 600-700 м (то самое расстояние, которое мюон проходит за свою среднюю жизнь, измеряемую в его собственной системе).

ПЕРВЫЕ ШАГИ КВАНТОВОЙ ТЕОРИИ

Второй революцией в области физики, имевшей еще более серьезные последствия, нежели теория относительности, стало рождение квантового мира. Квантовая теория позволила объяснить поведение субатомного мира. Применение законов механики и электромагнетизма к таким системам было невозможно, все расчеты полностью опровергались результатами опытов.

ТРИ ПОРАЗИТЕЛЬНЫХ ОТКРЫТИЯ

В конце XIX века произошли три поразительных и неожиданных открытия; пришлось ждать многие годы, прежде чем удалось понять и объяснить их благодаря рождению и развитию квантовой теории. Эти открытия ознаменовали начало новой эры в физике, называемой с тех пор «современной физикой». Первым из них стало открытие в 1895 году икс-излучения немецким ученым Вильгельмом Рентгеном (1845-1923), которое было способно проходить сквозь предметы и позволяло получать изображение костей. Открытие вызвало большой энтузиазм, и Х-лучи стали использовать, не поняв их природы. В следующем 1896 году французский физик Анри Беккерель (1852-1908) случайно открыл новый тип излучения — радиоактивное излучение, понимание которого требовало глубоких знаний о внутренней структуре вещества. Наконец, в 1898 году британец Джозеф Джон Томсон (1856-1940) открыл электроны, носители электрического заряда и главные составляющие вещества. Три данных открытия, вместе с многолетними исследованиями Макса Планка (1858-1947) излучения черного тела, стали почвой, на которой взросла несколькими годами позже новая революционная квантовая теория.

Первая рентгенограмма, сделанная Рентгеном. Снимок руки его жены.

Годом рождения квантовой теории принято считать 1900 год: именно тогда Макс Планк опубликовал статью об излучении абсолютно черного тела. Классическая теория излучения не позволяла объяснить результаты экспериментов при высоких частотах. Планк смог дать приемлемое объяснение результатам опытов с помощью следующей гипотезы:

«Излучение испускается или поглощается целыми кратными числами некоторого ограниченного количества энергии — квантами».

Его объяснение, которое с трудом допускал и сам Планк, означало новый взгляд по сравнению с предшествующими теориями. Впервые допускалось, что излучение (или, другими словами, энергия) может просто периодически выпускаться или поглощаться. Несколько лет спустя, в 1905 году, Эйнштейн распространил гипотезу Планка на все виды энергии и все процессы вообще и смог объяснить фотоэлектрический эффект. Именно поэтому мы можем наблюдать высвобождение электронов, когда воздействуем излучением на определенные вещества. Это испускание (или отсутствие) зависит, однако, не от интенсивности применяемого излучения, как в классической теории, но от его частоты. Согласно гипотезе Эйнштейна свет состоит из частиц определенной энергии, называемых «фотонами» (кванты Планка). Эйнштейн получил Нобелевскую премию в 1921 году за свои работы в этой области.

Несмотря на простое объяснение Эйнштейна, его гипотеза означала возврат к корпускулярной теории света. Казалось, это противоречит волновой теории, которая была широко распространена. Как объяснить интерференцию света с помощью корпускулярной теории? В то время в данном вопросе царила путаница, и в этом смысле понятно утверждение американского физика Роберта Э. Милликена (1868-1953) по поводу объяснения Эйнштейном фотоэлектрического эффекта:

«Я посвятил десять лет своей жизни проверке теории Эйнштейна. Вопреки моим ожиданиям, в 1915 году я вынужден был однозначно признать ее справедливость, хотя казалось, что она противоречит всем известным свойствам интерференции света».

Открытие электрона Томсоном в 1898 году сразу же вызвало следующий вопрос: из чего состоят атомы? Их нейтральность вынуждала предположить существование внутри каждого атома равного числа положительных частиц и электронов (с отрицательным зарядом), которые уравновешиваются. На вопрос о структуре атома смог ответить Эрнест Резерфорд (1871-1937) благодаря своим знаменитым опытам по рассеянию альфа-частиц, осуществленным в 1911-1912 годах. Эти опыты были основаны на радиоактивности, открытой Беккерелем.

Анализ результатов экспериментов приводил к очевидному, но поразительному выводу: практически вся масса атомов сосредоточена в центре, и размер этого пространства в 105 раз меньше размера самого атома. Так родилось понятие атомного ядра, содержащего все положительные заряды (протоны), уравновешивающие отрицательный заряд электронов. Сами же электроны находятся на орбите вокруг атомного ядра. Однако такая «планетарная» модель представляла одну важную проблему: она не позволяла объяснить стабильность атомов. Каждая заряженная частица в круговом движении испускает энергию. Следовательно, электроны на орбите должны были бы постепенно приближаться к ядру и в итоге исчезать. Но в природе этого не происходило.

Датский физик Нильс Бор (1885-1962) предложил первое решение этой проблемы, разработав квантовую модель атома. Она опиралась на два следующих постулата.

1. Электрон находится только на «стационарных» орбитах, каждой из которых соответствует определенная энергия и на которых он не излучает электромагнитных волн.

2. Энергия, выделяемая при переходе с одной стационарной орбиты на другую, определяется формулой = где А — постоянная Планка, выведенная в 1900 году, а V — частота излучения.

Первый постулат позволял объяснить стабильность атомов, второй объяснял фотоэлектрический эффект. Модель Бора, приложенная к самому простому атому (водорода), смогла объяснить и прекрасно воспроизвести его энергетический спектр. Кстати, она представляла собой первое применение только что появившейся квантовой теории к структуре вещества. Эту модель ждал бесспорный успех, несмотря на значительные лакуны, содержавшиеся в ней. Работы Бора ознаменовали первый этап квантовой теории. Его постулаты были основополагающими, ибо позволяли объяснить некоторые явления атомного мира. Однако многие результаты опытов в то время оставались необъяснимыми, и ни модель Бора, ни изменения, которые внес в нее немецкий физик Арнольд Зоммерфельд (1868-1951), не позволяли найти ответы на многие вопросы. Физика зашла в тупик, нужны были молодые и блестящие ученые, которые осмелились бы предложить новое видение природного мира, совершенно иное и даже противоречившее здравому смыслу.

УНИВЕРСИТЕТ БРИСТОЛЯ

Поль Дирак начал обучение инженерному делу в университете Бристоля. Казалось, склонность к математике явно указывала на то, что именно с математикой и связана его судьба, однако нехватка инициативы и особенно давление отца заставили его последовать по пути старшего брата. Три года обучения на инженерном факультете университета были сконцентрированы главным образом на изучении прикладных дисциплин: анализ вещества, токи, электрические устройства, электромагнитные волны и так далее. Эти предметы позволили Дираку получить глубокие знания в области математики и естественных наук, однако программа инженерного факультета не предусматривала изучение новых теорий физики (теории относительности или только что появившейся квантовой теории).

В 1919 году, когда Дирак был на втором курсе обучения, одно событие оказало сильное влияние на его дальнейшую карьеру. Некоторые газеты опубликовали 7 ноября результаты, полученные британской научной экспедицией под руководством астрономов Фрэнка У. Дайсона и Артура С. Эддингтона в Бразилии и на африканском острове Принсипи. Во время солнечного затмения ученые специально исследовали положение на небе одной звезды. Анализируя полученные результаты, они обнаружили, что те не соответствуют законам механики Ньютона, но прекрасно вписываются в общую теорию относительности Эйнштейна, согласно которой свет, излучаемый звездой, должен отклоняться из-за гравитационного поля Солнца таким образом, чтобы казалось, будто звезда смещена.

Новость быстро распространилась, превратив автора теории относительности Альберта Эйнштейна в настоящую знаменитость. Все заговорили о научной революции. Но в чем она на самом деле состояла? Мало кто мог ответить на данный вопрос — и Дирак не больше, чем все остальные. Однако молодой человек с самого начала был очарован теорией относительности. С тех пор он начал мечтать о том, чтобы изучить и понять ее. Это было непросто. В то время мало кто действительно знал теорию относительности, ей было посвящено не так много научных текстов. Прошел не один месяц, прежде чем Дирак вновь близко соприкоснулся с данной теорией.

Во время учебного года (1920-1921) Дирак слушал курс философа Чарли Данбара Броуда, преподававшего в то время в университете Бристоля, об общей и специальной теории относительности. В курсе рассматривались главным образом философские аспекты теории, а не математические описания, как предпочел бы Поль; однако эта теория быстро стала настоящей страстью Дирака. В последующие месяцы будущий физик внимательно изучил книгу, опубликованную в том же году Эддингтоном под названием «Пространство, время и тяготение». Год за годом Дирак все глубже погружался в теорию и осваивал ее. Теория относительности не шла у него из головы: она оказала влияние на всю его научную карьеру и присутствует во всех его трудах.

Дирак получил диплом инженера в области электричества в 1921 году с наивысшими баллами по теоретическим предметам. Зато его оценки по прикладным дисциплинам были далеко не столь хороши. Поль получил самый низкий балл за практику, которую он проходил на заводе города Рагби летом 1920 года.

ОТКРЫТИЯ ГАМИЛЬТОНА

Уильям Роуэн Гамильтон (1805-1865), ирландский математик, физик и астроном, переформулировал уравнения механики Ньютона, основываясь на вариационном исчислении и принципе наименьшего действия: в любом природном явлении количество «действия» тяготеет к минимальному; другими словами, предмет перемещается из одной точки в другую по траектории, при которой действие принимает стационарное значение. Действие определяется через «плотность лагранжиана», заданного разницей между кинетической и потенциальной энергиями наблюдаемой системы. Гамильтонова механика стала полезным инструментом для изучения уравнений движения и оказалась востребована при анализе квантовых систем.

Кватернионы

Гамильтон придумал также кватернион — состоящую из четырех элементов систему чисел, выражаемую в виде q = a + bi + cj + dk. Прогуливаясь по Королевскому каналу в Дублине 16 октября 1846 года, Гамильтон обнаружил основополагающее отношение, позволяющее определить правило умножения кватернионов: i 2 = j2 = k 2 = jk = -1. Умножение кватернионов не коммутативно; иначе говоря, результат зависит от порядка факторов. Гамильтон был убежден в важности кватернионов как базовых инструментов и для физики, и для математики, и потому посвятил свою карьеру практически исключительно применению кватернионов в динамике, оптике и астрономии. Они были забыты вместе с развитием векторного анализа. Формулировка квантовой механики Гейзенбергом с помощью некоммутирующих операторов, казалось, была напрямую связана с кватернионами; и тем не менее почти во всех исследованиях использовался язык матрицы (на самом деле эти системы эквивалентны). Дирак создал свою релятивистскую теорию электрона, ни разу не упомянув о кватернионе, хотя прекрасно знал о его существовании уже со времен учебы в университете Бристоля. Однажды один из студентов спросил его: «Профессор Дирак, Вы думали использовать кватернион, когда работали над релятивистской теорией электрона?» Несколько бесконечных секунд, казалось, Дирак был погружен в воспоминания и, наконец, ответил: «Нет». Разговор был закончен. Очень по-дираковски.

Брат Дирака жил в этом городе и работал на заводе. Некоторые его коллеги подчеркивали, что после данного инцидента отношения между двумя братьями сильно испортились.

Глубокий экономический кризис, поразивший Великобританию после Первой мировой войны, не позволил Полю Дираку найти работу по специальности. В сентябре 1921 года он приступил к изучению математики в университете Бристоля. Следующие два года, до лета 1923-го, Дирак посвятил себя исключительно наукам, в частности математике и физике. Врожденный талант и страсть к работе позволили ему закончить обучение за два года. Он получил возможность осуществить свое желание и изучить начертательную геометрию, а также механику Ньютона и электромагнетизм Максвелла. Также Поль изучил новую формулировку классической механики Уильяма Р. Гамильтона. Гамильтонова механика стала для Дирака основой при создании квантовой механики. Он также прослушал немало курсов о теории относительности и атомной теории.

Летом 1923 года Поль закончил обучение в университете Бристоля и получил стипендию, позволившую ему поступить в Кембриджский университет. Так начался новый этап в его жизни — как в личной (он впервые покидал родной дом и выходил из-под влияния отца), так и в профессиональной, поскольку Дирак обратился к карьере исследователя.

УНИВЕРСИТЕТ КЕМБРИДЖА

Узнав о своем принятии в Кембридж, Дирак сразу же попросил о работе под руководством профессора Эбенезера Каннингема (1881-1977), специалиста в области электромагнетизма и теории относительности. Поль вынашивал мысль развить теорию Эйнштейна. Однако Каннингем в тот год не брал студентов, и ему был назначен другой руководитель, профессор Ральф Фаулер (1889-1944). Это непредвиденное обстоятельство оказало серьезное влияние на жизнь Дирака и на развитие физики того времени. Каннингем был профессором старой школы, а Фаулер, зять Резерфорда, являлся основным представителем теоретической физики в Кембридже. Кроме того, он был единственным, кто поддерживал регулярные контакты с главными немецкими и датскими исследовательскими центрами, в частности с Нильсом Бором, который активно работал над развитием квантовой теории.

В отличие от Бристоля, у Кембриджа были серьезные научные традиции, университет являлся важным центром науки, в нем работали уважаемые исследователи и профессора, такие как Лармор, Томсон, Резерфорд, Эддингтон и Фаулер. Кроме того, теперь Дирак получил возможность общения с молодыми студентами (спустя несколько лет они стали знаменитостями): Чедвик, Блэкетт, Хартри, Капица, Леннард, Джонс, Томас, Слейтер, Леметр... В то время университет Кембриджа был эпицентром науки. В нем существовало множество клубов, и в каждом из них кипела научная деятельность: организовывались собрания, где обсуждались последние открытия, приглашались блестящие ученые для чтения лекций, посещались лаборатории, в которых проводились важные опыты. Дирак являлся завсегдатаем двух подобных клубов. Первый назывался

и был посвящен вопросам математической физики; второй основал молодой советский физик Петр Капица (1894— 1984), ученик Резерфорда. Позже Капица стал одним из самых близких Дираку людей и одним из очень немногих его друзей.

Профессора Фаулера в Кембридже не очень ценили в качестве научного руководителя; он много разъезжал, и студенты жаловались на то, что работать с ним трудно. Для Дирака же такой проблемы не существовало, поскольку он давно воспитал в себе привычку работать в одиночестве. Поль с самого начала оценил предоставленную ему автономность в изучении вопросов, которые он сам ставил перед собой. Дирак редко беседовал с Фаулером по поводу своих работ, зато часто обращался к нему, стремясь уведомить об их окончании.

Как бы то ни было, но под руководством Фаулера Дирак начал погружаться в новую квантовую теорию, о которой до сих пор имел лишь поверхностное представление. Он изучал атомные модели, разработанные несколькими годами ранее Бором и Резерфордом. Параллельно молодой человек продолжал углублять собственные знания математики с помощью «Аналитической динамики» Эдмунда Т. Уиттекера (1873-1956), ставшей для него одной из главных книг. В первые годы в Кембридже Дирак посещал также занятия Эддингтона по общей теории относительности и тензорному исчислению и курс Каннингема по электромагнетизму и специальной теории относительности. Даже если изначально исследования Поля были связаны с областью квантовой теории, очарование теории относительности не оставляло его.

Плодотворная научная среда Кембриджа и участие в разных видах деятельности помогли Дираку стать немного менее замкнутым, несмотря на то что он оставался закрытым человеком и поддерживал отношения лишь с немногими из студентов. Томас, один из его товарищей по Кембриджу, описывал Дирака следующим образом:

«Это был неразговорчивый человек. Когда его спрашивали о чем- то, он мог ответить: «О, это очень сложно», а через неделю появлялся с проработанным ответом».

Жизнь Дирака заключалась в работе и исследованиях. Большинство времени, с понедельника по субботу, он проводил в библиотеке, а по воскресеньям совершал длинные прогулки за городом, как всегда в одиночестве, чтобы, по его собственным словам, набраться сил перед новой рабочей неделей. Именно во время таких воскресных прогулок ученого посетили некоторые из самых блестящих его идей.

Усилия Дирака быстро начали приносить плоды. Через шесть месяцев после поступления в Кембридж он опубликовал свою первую статью в журнале «Записки Кембриджского философского общества» (Proceedings of the Cambridge Philosophical Society). В последующие два года также появилось шесть его статей на различные темы.

Я брал общую проблему, которую физика формулировала в нерелятивистской форме, и старался переформулировать ее согласно принципам теории относительности. Это напоминало игру. Иногда результат казался достаточно интересным для публикации.

Поль Дирак

Международное значение его статей было достаточно ограниченным, однако имя Дирака начало распространяться внутри сообщества британских ученых в области теоретической физики. В те же годы Дирак выработал свой стиль работы, которому следовал всю жизнь. Его статьи, созданные большей частью без соавторов и подписанные только его именем, характеризуются краткостью и прямотой изложения, концептуальной ясностью и логичностью. Дирак однажды сказал, что он всегда начинал писать только в том случае, когда в его голове складывалась общая и полная схема всей работы.

Такой системный подход, сильно отличавшийся от используемого другими великими учеными того времени, объясняет, почему Дирак практически никогда не правил свои труды.

Русский физик Игорь Тамм (1895-1971), один из самых близких коллег Поля, вспоминал о разговоре, состоявшемся после прочтения Нильсом Бором черновика одной из статей Дирака.

Датский физик спросил его: «Почему ты исправил лишь несколько мелких ошибок и ничего не добавил в текст? Ты написал его давно — неужели с того времени у тебя не появилось новых идей?» На что Дирак просто ответил: «Мать всегда говорила мне: сначала думай, а потом пиши».

За первые два года в Кембридже Дирак превратился в многообещающего ученого, демонстрирующего блестящие способности к решению проблем физики. Тем временем квантовая теория зашла в тупик. Модель Бора и Зоммерфельда давала результаты, релевантные только для атома водорода, и не могла объяснить результатов многочисленных опытов, полученных в то время. Кроме того, видимое несоответствие заключалось в корпускулярном поведении света, которое позволяло объяснить фотоэлектрический эффект, и его волновом поведении, необходимом для объяснения явления интерференции. Как объединить их? Французский физик Луи де Бройль (1892— 1987) предложил революционное объяснение:

«Подобно тому как фотоны обладают волновыми и корпускулярными свойствами, так, возможно, и любые частицы материи обладают этими характеристиками».

Это свойство вещества известно под названием «корпускулярно-волнового дуализма»; оно означает, что оба поведения не исключают, а дополняют друг друга. Согласно гипотезе Луи де Бройля, такие частицы, как электрон, обладают обоими свойствами: волновым и корпускулярным. Интерференционный спектр, рассматривавшийся только как волновой эффект, должен был также присутствовать и в случае с электроном. Правда, прошли многие годы, прежде чем результаты опытов подтвердили это. Квантовая теория и физика вообще были на пороге самой большой революции в их истории, которая влекла за собой философские идеи, с трудом воспринимаемые в то время.

Для Дирака 1925 год стал особенным. Родилась новая квантовая теория, и весь свой творческий гений и внимание он посвятил ее основополагающим проблемам. В том же году в семье ученого случилась страшная трагедия: его старший брат покончил с собой.