Физика

Каплун С. В.

VI. Электромагнитные явления

 

 

 

История развития представлений об электромагнитных явлениях

Когда-то известный изобретатель и электротехник Н. Тесла написал:

«Кто действительно хочет понять все величие нашего времени, тот должен ознакомиться с историей науки об электричестве. И тогда он узнает сказку, какой нет и среди сказок ”Тысячи и одной ночи”».

Первые исследования: от Гилберта и Мушенбрука до Франклина и Кулона

Впервые явления, которые сейчас называют электрическими, были замечены в Древнем Китае, Индии, а позже и в Древней Греции. Сохранившиеся предания говорят о том, что древнегреческому философу Фалесу Милетскому было уже известно свойство янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря – «электрон» – это явление позже получило название электризации.

О янтаре в «Сказке об электричестве» Теслы можно найти такие поэтические строки: «Рассказ начинается задолго до начала нашей эры, в те времена, когда Фалес, Теофраст и Плиний говорили о чудесных свойствах «электрона» (янтаря), – этого удивительного вещества, возникшего из слез Гелиад, сестер несчастного юноши Фаэтона, который пытался овладеть колесницей Феба и едва не сжег всю Землю».

Фалес Милетский

Однако, создав поэтические легенды о янтаре, греки не продолжили изучение его свойств. Пушинки ничего не добавили к знаниям древних греков, а в средние века было забыто и то, что знали о янтаре в древности.

Только в конце XVI в. придворный врач английской королевы Елизаветы Уильям Гилберт (1544–1603) изучил все, что было известно о свойствах янтаря древним народам, и сам провел немало опытов с янтарем и магнитами. В 1600 г. он издал большой труд «О магните, магнитных телах и о самом большом магните – Земле» – настоящий свод знаний того времени об электричестве и магнетизме.

Гилберт первым обнаружил, что электризация присуща не только янтарю, но и алмазу, сере, смоле. Он заметил также, что некоторые тела, например металлы, камни, кости, не электризуются. Гилберт распределил все тела, встречающиеся в природе, на те, что электризуются, и те, которые не электризуются. Обратив особое внимание на первые, он проводил много опытов по изучению их свойств.

В середине XVII в. известный немецкий ученый, о котором мы уже упоминали, бургомистр города Магдебурга, изобретатель воздушного насоса и других приборов Отто фон Герике (1602–1686) построил специальную «электрическую машину», представлявшую собой шар из серы, насаженный на ось. Если при вращении шара его натирали ладонями рук, он вскоре приобретал способность притягивать и отталкивать легкие тела.

Машину Герике впоследствии значительно усовершенствовали англичанин Хоксби, немецкие ученые Бозе, Винклер и другие. Опыты с этими машинами привели к важным открытиям: в 1707 г. французский физик Шарль Дюфе (1698–1739) нашел разницу между электричеством, полученном от трения стеклянного шара, и электричеством, получаемым от трения диска из древесной смолы. Он даже название дал им «смоляное электричество» и «стеклянное электричество». Дюфе установил два вида электрического взаимодействия: притяжение и отталкивание.

В 1729 г. англичанин Стефан Грей (1670–1736) заметил способность некоторых тел проводить электричество и впервые указал на то, что все тела можно разделить на проводники и непроводники электричества.

В опытах Грей брал стеклянную трубку и закрывал ее пробкой, в которую втыкал металлический стержень с шариком из слоновой кости. Затем, когда трубку натирали сукном (сейчас мы называем это электризацией), оказывалось, что шарик становился заряженным.

При испытании различных веществ Грей открыл существование электропроводности, которая была присуща металлическим проводам, угольным стержням, веревке из пеньки. Хорошими проводниками являются ткани тела человека и животных. В то же время электричество не передавалось через каучук, шелк, фарфор.

В своих опытах Грей, чтобы обеспечить изоляцию от земли, электризовал тела, сидя на качелях, подвешенных на волосяных веревках.

Опыт Герике с электрической машиной

Но гораздо более важное открытие было описано в 1745 г. Питером ван Мушенбруком (1692–1761) – голландским профессором математики и философии в городе Лейдене. Он определил, что стеклянная банка, оклеенная с обеих сторон оловянной фольгой (листочками станиоля), способна накапливать электрический заряд. Хорошо заряженное, это устройство могло быть затем разряженным со значительным эффектом – большой искрой, сопровождающейся сильным треском, подобным разряду молнии.

Питер ван Мушенбрук

Кстати, поговаривают, что это изобретение было сделано ученым в какой-то степени случайно. Мушенбрук проводил опыты, в которых пытался «задержать» полученное им электричество, заряженные им тела другими – которые состоят из веществ, не проводящих электричество. Однажды он опустил провод от электрической машины в графин с водой. Держа графин в руках, он прикоснулся к проводу и получил сильный электрический удар – электрический разряд, как мы говорим сейчас.

От названия города, где проводились эти опыты, прибор, созданный Мушенбруком, был назван лейденской банкой. Это был первый конденсатор – устройство, без которого сегодня трудно представить современную технику!

Лейденская банка

Исследования свойств лейденской банки проводились в разных странах и вызвали появление большого количества гипотез, пытавшихся объяснить обнаруженное явление накопления заряда банкой. Одна из теорий этого явления была предложена выдающимся американским ученым и общественным деятелем Бенджамином Франклином (1706–1790), который указал на существование положительного и отрицательного электричества. Исходя из своей теории, Франклин объяснил процесс заряда и разряда лейденской банки.

Б. Франклин был не только выдающимся ученым-исследователем, но и общественным деятелем, много сделавшим для развития просвещения в США: организовал Филадельфийскую библиотеку, основал Пенсильванский университет, Филадельфийское философское общество.

Бенджамин Франклин

Большую роль сыграл Франклин в борьбе за независимость американских колоний в 1775–1783 гг. Он участвовал в работе континентального конгресса и созданного им комитета по подготовке Декларации независимости, а также в подготовке Конституции Соединенных Штатов; боролся за демократические принципы управления государством. Таким образом,

Франклин был одним из основателей США, основателем науки этого государства и его первого научного общества. Он внес большой вклад в американскую и мировую науку.

Среди его научных трудов ведущее место занимают исследования именно по электричеству. Эти исследования составляют содержание знаменитых «Опытов и наблюдений за электричеством», составленных из писем члену Лондонского Королевского общества П. Коллинсону. Именно там Франклин ввел понятие о положительном и отрицательном электричестве (то, что мы сейчас называем двумя видами электрических зарядов). Предвестниками современного закона сохранения электрического заряда были идеи, которые также сформулировал Франклин.

Б. Франклин, так же как и русские ученые М. В. Ломоносов и Г. Рихман, большое внимание уделил и изучению атмосферного электричества, грозового разряда (молнии). Он провел знаменитые опыты с воздушным змеем, запуская его при приближении грозы. К верхнему концу крестовины змея он прикреплял заостренный провод, а к веревке, на которую привязывали змея – ключ и шелковую ленту. В письме Коллинсону в октябре 1752 г. Франклин писал: «Когда грозовая туча окажется над змеем, заостренная проволока будет добывать из нее электрический огонь, и змей наэлектризуется… А когда дождь смочит змея вместе с веревкой, предоставив им возможности свободно проводить электрический огонь, Вы увидите, как он обильно стекает с ключа при приближении Вашего пальца».

Легко заметить, что здесь действительно была предложена идея первого «громоотвода» (сейчас мы знаем, что точнее его следует называть молниеотводом, потому что грома не следует бояться).

Опыты Франклина и его громоотвод вызвали большой интерес, многие ученые стали проводить аналогичные исследования. К сожалению, не все эти эксперименты закончились счастливо: как известно, коллега М. В. Ломоносова Г. Рихман погиб, ставя во время грозы 26 июля 1753 г. опыт по изучению молнии.

Кстати, «электрические воздушные наблюдения» проводил и сам Михаил Ломоносов. Он смог с помощью электрического указателя определить электрическое состояние атмосферы в отсутствие грома и молнии. Ломоносов разрабатывал собственную теорию электрических явлений, которые он объяснял движением эфира.

Работы русских академиков Ф. Эпинуса, Г. Крафта и других выявили целый ряд весьма важных свойств электрического заряда, но все они изучали электричество «неподвижных зарядов». Об электрическом токе им ничего не было известно.

Электрическая машина

Существенным шагом вперед оказались опыты, проведенные англичанином Генри Кавендишем (1731–1810), результаты которых всем известны как закон… Кулона! Дело в том, что Кавендиш был богатым английским лордом, который физику и химию считал своим хобби, как сказали бы мы сейчас. С помощью специального прибора – крутильных весов – он определил, что сила взаимодействия между электрически заряженными шариками уменьшается при увеличении расстояния между ними в определенной математической зависимости. Кавендиш неохотно публиковал свои работы, и в частности свои исследования по электричеству. Поэтому они оставались неизвестными почти до 1879 г., когда их – через 100 лет! – опубликовал другой выдающийся английский ученый Максвелл.

«Громовая машина». Рисунок М. В. Ломоносова (1753 г.)

Шарль Кулон

В 1777 г. открытие Кавендиша «переоткрыл» французский военный инженер и исследователь Шарль Кулон (1736–1806).

Практическое значение накопленных за два столетия знаний об электричестве было сравнительно невелико. Это объясняется тем, что запросы практики, промышленности пока не выдвигали перед наукой требований познания электричества и изучения возможности его исполь

Открытие Луиджи Гальвани

Большим открытием XVIII в. было обнаружение итальянским физиком и анатомом Луиджи Гальвани (1737–1798) появления элекричества при столкновении двух разнородных металлов с телом препарированной лягушки.

Во второй половине XVIII в. была открыта возможность создания электрического тока. Это явление интересовало не только физиков, но и физиологов и врачей. Обнаружение электрических свойств ската заставляло их искать пути применения электричества и магнетизма во врачебной практике. Тот факт, что у врача Л. Гальвани была электрическая машина, вполне соответствовал духу времени.

Как преподаватель медицины, Гальвани проводил исследования препарированной лягушки. Он (а точнее сначала его помощники и жена!) заметил, что мышцы лягушки сокращаются, то есть начинают дергаться, когда к ним прикасаются скальпелем вблизи электрической машины. После этого он провел много серий опытов и наблюдений.

В 1791 г. вышла книга, которую Гальвани назвал «Трактат о силе электричества при мышечном движении». В ней он описал сделанное открытие. Гальвани ошибочно считал, что это явление вызвано наличием особого «животного электричества». Хотя позже это было объяснено иначе, опыты Гальвани вошли в сокровищницу очень важных физических экспериментов, давших толчок дальнейшему развитию науки.

Родился Гальвани в Болонье в сентябре 1737 г. Изучал богословие, а затем медицину, физиологию и анатомию. В 1762 г. он был уже преподавателем медицины в Болонском университете.

Когда войска Бонапарта захватили Италию, в частности Болонью, была создана Цизальпинская республика. Все служащие должны были принести присягу на верность республике. Гальвани отказался это делать, из-за чего в 1797 г. его отправили в отставку. Хотя впоследствии правительство республики за заслуги восстановило его в должности, да было уже поздно: Гальвани, тяжело переживая потерю жены и брата, 4 декабря 1798 г. ушел из жизни.

Проведенные Гальвани исследования сохранили его имя в памяти людей. Термин «гальванический» до сих пор используют в названиях некоторых процессов и приборов.

Отец батарейки

Еще один итальянский ученый, Алессандро Вольта (1745–1827), дал научно обоснованоое объяснение опытам Гальвани. Он экспериментально доказал, что электрические явления, которые наблюдал Гальвани, следует объяснять тем, что два разнородных металла, разделенные слоем специальной жидкости, являются источником электрического тока, протекающего по замкнутым проводникам внешней цепи.

Между Гальвани и Вольта развернулась острая полемика относительно того, что же наблюдалось в опытах с лягушкой. Гальвани пытался полностью исключить физические причины явления, а Вольта, наоборот, исключал физиологические объекты: он даже заменил в своих опытах лапку лягушки физическим прибором – электрометром.

Вольта объяснил происходящее так: есть замкнутая электрическая цепь, через которую течет ток. Лапка лягушки – просто соединительное звено такой цепи.

Кроме того, Вольта заметил, что наличие электрического тока можно просто почувствовать… на вкус, если языком коснуться контактов.

Элемент Вольта – «вольтов столб»

Разработанная Вольта теория позволила ему создать в 1794 г. первый в мире источник электрического тока в виде так называемого вольтового столба. Этот столб представлял собой набор дисков из двух металлов (меди и цинка), разделенных прокладками из войлока, смоченного в солевом растворе или щелочи.

Демонстрация опытов А. Вольты

Описание этого прибора, изготовленного в конце 1799 г., находим в письме А. Вольта президенту Лондонского Королевского общества Банксу от 20 марта 1800 г. Благодаря этому он обрел всемирную славу! Вольта был избран членом Парижской и других академий мира, а Наполеон сделал его графом и сенатором Итальянского королевства. (Но заметим, что после этого открытия он уже ничего выдающегося в науке не сделал…)

Отметим также, что и Гальвани был в известной степени недалек от истины: как это доказали позже, в любом организме жизненные процессы сопровождаются возникновением электричества (что не имеет, однако, ничего общего с электричеством, открытым самим Гальвани, и его пояснениями!..)

Электрический ток: начало

После открытия вольтового столба многие ученые пытались создать более мощные источники тока. Английские химики Никольсон и Карлейль построили вольтов столб из 17 элементов и осуществили электролиз воды. Так было открыто химическое действие электрического тока.

Одним из первых свойства электрического тока вплотную изучил в 1801–1802 гг. петербургский академик В. В. Петров (1761–1834). Работы этого выдающегося ученого, построившего крупнейшую по тем временам в мире батарею из 4200 медных и цинковых кружков, сделали возможным практическое использование электрического тока для нагрева проводников. Свою батарею Петров в честь Гальвани и Вольта назвал гальванивольтовым столбом. Это была самая мощная батарея того времени.

В отличие от вертикальных столбов предшественников, В. Петров предлагал размещать элементы батареи горизонтально, чтобы кружки стояли ребрами вертикально в деревянных ящиках. Когда все эти ящики выстроили в один ряд, его длина превысила 12 м!

Он также нашел способы изоляции элементов батареи от дерева, предложив делать это с помощью сургуча, а тела, с которыми проводят опыты, помещать на подставку на стеклянных ножках.

Кроме того, в 1802 г., на восемь лет раньше англичанина Г. Дэви, Петров наблюдал явление электрического разряда между концами слегка разведенных угольных стержней как в воздухе, так и в газах и вакууме, получившее название электрической дуги.

В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов, и таким образом впервые высказал мысль о практическом применении электрического тока. С того времени следует вести отсчет истории электротехники как самостоятельной отрасли техники.

Электричество + магнетизм =…

Опыты с электрическим током привлекали внимание многих ученых разных стран. В 1802 г. итальянский ученый Романьози заметил отклонение магнитной стрелки под влиянием электрического тока, который протекал по расположенному вблизи проводнику. В конце 1819 г. это явление было вновь замечено датским физиком Г. К. Эрстедом (1777–1851), который в марте 1820 г. опубликовал на латыни брошюру под названием «Опыты, касающиеся действия электрического конфликта на магнитную стрелку». В этом сочинении «электрическим конфликтом» был назван электрический ток.

Ганс Кристиан Эрстед родился 14 августа 1777 г. в г. Рудкебинг на острове Лангеланн в семье аптекаря. Учился он в Копенгагенском университете, где в 1797 г. получил диплом фармацевта, позже – степень доктора философии и в двадцать девять лет стал профессором университета.

Научные интересы Эрстеда были разнообразны: он увлекался физикой, химией, философией. Идеи о единстве сил природы и возможной связи между электричеством и магнетизмом он высказывал еще в 1812–1813 гг. Однако экспериментально он обнаружил это именно в 1820 г.

Ганс Кристиан Эрстед

Суть сделанного Эрстедом открытия заключается в том, что проводник, по которому проходит электрический ток, действует на магнитную стрелку, находящуюся рядом. Ток заставляет стрелку вращаться и определенным образом ориентироваться у проводника. Хотя объяснения самого Эрстеда относительно открытого им явления были не совсем правильными, это открытие увековечило его имя.

Небольшая, всего на пять страниц, книга Эрстеда в том же году была издана в Копенгагене на шести языках. Его опыты повторил осенью 1820 г. швейцарский натуралист де ля Рив на съезде естествоиспытателей в Женеве. На этом съезде присутствовал член Парижской Академии наук Доминик Франсуа Араго (1786–1853), который после возвращения продемонстрировал на заседании Академии опыт Эрстеда. Араго провел ряд исследований, из которых самым важным было открытое им в 1824 г. явление вовлечения медного диска во вращение магнитом, вращающимся рядом с ним.

Амперметр – устройство для измерения силы тока

Это явление, названное «магнетизмом вращения» в течение длительного времени так и оставалось разве что эффектным физическим опытом.

Но впоследствии именно оно стало основой многих практических изобретений, и в частности элекродвигателя переменного тока.

Большое значение имело также открытие в 1820 г. французами Био и Савара законов действия тока на магнитную стрелку.

Нельзя не сказать о деятельности выдающегося ученого Андре Мари Ампера (1775–1836), который положил

начало изучению действий электрического тока и установлению целого ряда законов электродинамики. Как только Араго продемонстрировал на заседании Парижской академии наук опыт Эрстеда, Ампер, повторив его, 18 сентября 1820 г., ровно через неделю сообщил о своих исследованиях. На следующем заседании, 25 сентября, Ампер закончил чтение доклада, в котором он изложил законы взаимодействия двух токов, протекающих в параллельно расположенных проводниках.

С тех пор Академия еженедельно заслушивала новые сообщения Ампера о его опытах, приведших к открытию и формулированию основных законов электродинамики.

Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления – электричество и магнетизм – одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы. Эта теория была встречена современниками Ампера с большим недоверием.

Через пять лет после проведенных Ампером работ был построен первый электромагнит и началось глубокое изучение законов электромагнетизма.

В 1827 г. немецкий ученый Георг Ом (1789–1854) открыл один из важнейших законов электричества, устанавливающий основные зависимости между силой тока, напряжением и сопротивлением цепи, по которой течет электрический ток. Да, это тот самый закон, о котором школьники говорят: «Не знаешь закон Ома – посиди дома!»

Георг Ом

Открытие Эрстеда, Араго, Ампера заинтересовали гениального английского физика Майкла Фарадея (1791–1867) и побудили его к изучению всего круга вопросов о преобразовании электрической и магнитной энергии в механическую.

В 1821 г. он нашел еще одно решение поставленной задачи превращения электрической и магнитной энергии в механическую и продемонстрировал свой прибор, в котором наблюдал явление непрерывного электромагнитного вращения. В тот же день Фарадей записал в свой рабочий дневник обратную задачу: «Превратить магнетизм в электричество».

Более десяти лет потребовалось, чтобы решить ее и найти способ получения электрической энергии из магнитной и механической. Лишь в конце 1831 г. Фарадей сообщил об открытом им явлении, которое он впоследствии назвал электромагнитной индукцией. Это явление стало основой всей современной электроэнергетики!

Личность и жизненный путь Фарадея настолько интересны, что требуют отдельного разговора (мы к нему вернемся в последнем разделе книги).

Исследования Фарадея и работы русского академика Э. X. Ленца (1804–1865), связанные с этой же проблемой, позволили создать первые электромагнитные генераторы и электродвигатели.

Эмиль Христианович Ленц родился в феврале 1804 г. в семье чиновника в г. Дерпт (ныне – Тарту, в Эстонии). Он рано остался без отца, однако благодаря стараниям матери с успехом окончил гимназию и поступил в 1820 г. в Дерптский университет.

Его научная деятельность началась рано: после второго курса университета он по рекомендации ректора в качестве физика отправился с научной экспедицией в кругосветное путешествие, продолжавшееся три года. Во время экспедиции Ленц сконструировал глубиномер и прибор для изучения воды на разных глубинах – батомер.

Эмиль Христианович Ленц

С 1838 г. Ленц работает в Петербургском университете, а со временем становится его ректором.

Свои исследования по электромагнетизму Ленц начал в 1831 г. в лаборатории, которая перешла к нему от В. Петрова. После открытия Фарадеем электромагнитной индукции Ленц начал искать общие правила определения направления индукционного тока. 29 ноября 1833 г. он сделал доклад об обнаруженном им правиле (его мы и сейчас знаем как «правило Ленца»), которое стало общепризнанным после публикации во многих европейских журналах.

Неразгаданная тайна

Большой шаг, который сделали Ампер, Фарадей, Ленц и другие физики того времени, все, кто изучал проблемы электричества и магнетизма, – стал толчком к внедрению сделанных открытий в производство. Это касается прежде всего электрических генераторов.

Сначала электрогенератор и электродвигатель развивались независимо друг от друга, как две совершенно разные машины. Первый изобретатель электрического генератора, основанного на принципе электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное инициалами Р. М., содержавшее описание первого в мире синхронного генератора и чертежи, приложенные к письму. Фарадей, внимательно разобравшись в этом проекте, направил письмо Р. М. и чертеж в тот же журнал, в котором был в свое время помещен его доклад, в надежде, что неизвестный изобретатель, следя за журналом, увидит опубликованным не только свой проект, но и письмо Фарадея, сопровождавшее его, где он дает очень высокую оценку изобретению Р. М.

И действительно, спустя полгода Р. М. прислал в редакцию дополнительные разъяснения и описание предложенной им концепции электрогенератора, но и на этот раз захотел остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым за инициалами, и человечество до сих пор, несмотря на тщательные поиски историков электротехники, не знает, кому оно обязано одним из важнейших изобретений.

Свеча Яблочкова

Началось стремительное развитие в применении электродвигателей и потреблении электроэнергии. Этому немало способствовало изобретение П. Н. Яблочкова: способ освещения с помощью так называемой «свечи Яблочкова» – дуговой электролампы с параллельным размещением углей. Простота и удобство «свечи Яблочкова», заменившей дорогие, сложные и громоздкие дуговые фонари с регуляторами для непрерывного сближения сгорающих углей, способствовали ее широкому распространению, и вскоре «свет Яблочкова», «русский», или «северный» свет, освещал бульвары Парижа, набережные Темзы, проспекты столицы России и даже древние города Камбоджи. Это было настоящим триумфом изобретателя-россиянина.

 

Статическое электричество вокруг нас

О теле, которое после натирания притягивает к себе другие тела, говорят, что оно наэлектризовано и ему придали электрический заряд. Как известно, трут тела друг о друга только для того, чтобы увеличить площадь их соприкосновения.

Электризация посредством трения до конца еще не изучена, но мы сейчас подчеркнем то, что при электризации происходит перераспределение заряженных частиц между телами, которые принимают участие в этом процессе. В отличие от процессов, связанных с электрическим током, эти явления называют электростатическими (от греческого слова statos – неподвижный).

Статическое электричество на производстве, как известно, иногда приводило к негативным последствиям. Но в некоторых случаях электростатические эффекты вызывали намеренно и использовали их.

Так, например, при производстве абразивной (наждачной) бумаги электростатические эффекты играют положительную роль. Вместо того чтобы посыпать намазанную клеем бумагу абразивным зерном, это зерно помещают под бумагой. Зерна притягиваются к липкой стороне бумаги благодаря электростатическому притяжению. В этом процессе абразивные зерна ориентируются в необходимом направлении, образуя абразивную бумагу.

Все науки порождены здравым смыслом, любознательностью, наблюдательностью, размышлениями.
Р. Оппенгеймер

С другой стороны, на мукомольных мельницах кожаные ремни электризовались о вращающийся шкив. Возникающий при

этом искровой разряд мог вызвать пожар и взрыв. Работу на ткацком станке может усложнить взаимодействие наэлектризованных тел, поскольку электризация волокон вызывает их взаимное отталкивание, а произведенная ткань сильно загрязняется частицами пыли, которые она притягивает к себе.

В строительстве сейчас широко используют синтетические материалы для покрытия полов и стен, тепло– и звукоизоляции, применяют их и в производстве мебели, обуви, одежды. Такие полимерные материалы прочны, имеют прекрасный внешний вид. Однако они легко «насыщаются» зарядами статического электричества. От этого и возникают такие явления, например, как прилипание одежды к телу, треск, искры, покалывание, когда одежду снимают.

Даже самолет электризуется при трении о воздух. Поэтому сразу после его посадки нельзя приставлять к нему металлический трап, потому что может возникнуть электрический разряд и, как следствие, пожар. Сначала самолет «разряжают»: опускают на землю металлический трос, соединенный с корпусом самолета, и по металлическому тросу электрические заряды уходят в землю. Этот процесс называют заземлением.

Когда хотят снять электростатический заряд с тех частей станка которые могут электризоваться при работе, их тоже заземляют.

При достаточной влажности воздуха электростатические заряды быстро стекают, не накапливаются. Зимой же или в сухую погоду, когда относительная влажность воздуха небольшая, их накапливается гораздо больше.

Следует сказать, что чувствительность людей к действию статического электричества различна. Специалисты считают, что это связано с состоянием кожи. Чем суше кожа, тем больше зарядов в ней сохраняется. С возрастом кожа становится более сухой. Не случайно пожилые люди чаще жалуются на то, что в тот момент, когда они прикасаются, скажем, к металлическому предмету, возникает потрескивание, искры. Снизить наэлектризованность помещения в определенной степени помогают увлажнители воздуха. В комнате такими увлажнителями могут быть аквариум или обычная посуда с водой.

Статическое электричество может стать и помощником человека. Если корпус автомобиля зарядить, например, положительно, а частичкам краски придать отрицательный заряд, то они тонким и равномерным слоем покроют корпус автомобиля. Одноименно заряженные частицы краски будут отталкиваться друг от друга и притягиваться к корпусу автомобиля. Поэтому слой краски будет одинаковой толщины и расход краски будет меньше. Такой метод окраски металлических изделий широко применяется у нас в стране и за рубежом.

Статическое электричество используется также и в медицине, например при создании так называемых электроаэрозолей. Они представляют собой лекарственные вещества в виде очень маленьких заряженных капелек, которые не слипаются в крупные капли и при вдыхании глубоко проникают в легкие человека, вплоть до мелких легочных ячеек – альвеол.

Влияние статического электричества на организм человека и животных еще до конца не изучено. Но уже известно, что электрические разряды, возникающие вследствие электризации одежды, для большинства людей безвредны, а в некоторых случаях, например при заболеваниях суставов, даже полезны.

И еще один пример из живой природы. Когда комар садится нам на руку, он начинает энергично тереть лапками крылышки и брюшко. Для чего? Оказывается, при энергичном трении хитинового покрова образуется статическое электричество между кожей руки и насекомым. Благодаря этому происходит слабый разряд, возникает искра. Разряд и помогает комару пробить твердую кожу хоботком! Как вы думаете, кому на пользу эта электризация – комару или человеку?..

А еще с помощью статического электричества производят очень хорошие ворсистые ткани наподобие бархата. Для этого материал покрывают клеем и подвергают действию электрического заряда. Ворсинки притягиваются к ткани и приклеиваются к ней. Причем удлиненные ворсинки будут располагаться перпендикулярно поверхности ткани.

Познакомиться с явлениями электростатики несложно и дома, особенно в сухую погоду. Если вы снимаете свитер, стаскиваете с постели одеяло или идете по ковру, вы превращаетесь в слабое подобие «Зевса-громовержца», который вызывает молнии. Возникают мельчайшие искорки, слышно потрескивание.

Вот несколько упражнений для наблюдения электростатического эффекта:

1. Отрежем от листа бумаги полоску шириной в 1 см. Положив полоску на тетрадь, проведем по ней несколько раз пластмассовой ручкой с легким нажимом. Затем возьмем в одну руку полоску, а во вторую ручку и начнем их сближать. Бумажная полоска выгнется в сторону ручки – между этими телами возникнет сила электрического притяжения.

2. Положим две бумажные полоски рядом на тетрадь, проведем по ним ручкой несколько раз с легким нажимом. Возьмем полоски в руки и начнем их сближать. Опыт показывает, что при сближении полоски выгибаются в противоположные стороны, обнаруживая присутствие сил отталкивания.

3. Надуем воздушный шарик. Затем потрем шарик шерстью или мехом или, лучше, о свои волосы, и увидим, что шарик начнет прилипать к телу, о которое мы его потерли, и ко всему прочему, даже к стене.

4. Возьмем два воздушных шарика и подвесим их с помощью нитей к одной и той же точке – гвоздю на потолке. Если каждый из них натереть шерстью или своими волосами, то можно увидеть, что шарики отклонились в разные стороны друг от друга.

5. Возьмем кусочек рыхлой гигроскопической ваты. Хорошо наэлектризуем пластмассовую расческу о чистые волосы и опустим на нее кусочек ваты – он притягивается.

Дома можно провести еще много других наблюдений и опытов по электростатике.

 

Первая лампочка

Задайте своим знакомым простой вопрос: кто изобрел электрическую лампочку? Ответы мы можем получить самые разнообразные. Кто-то назовет американца Эдисона, кто-то – россиянина Александра Лодыгина, а кому-то придет на ум имя другого русского изобретателя – Павла Яблочкова.

Так кто же будет прав?

История лампочки представляет собой целую цепь открытий, сделанных разными людьми в разное время. И Эдисон, и Лодыгин, и Яблочков – все они внесли свой вклад в ее открытие. К тому же следует упомянуть и выдающегося русского физика Василия Петрова, который еще в 1802 г. наблюдал явление электрической дуги – яркого разряда, возникающего между сведенными на определенное расстояние угольными стержнями-электродами. Следовало бы вспомнить и имена В. Чиколева и А. Шпаковского, также внесших свой вклад в это выдающееся изобретение.

Однако поговорим подробнее о Павле Николаевиче Яблочкове (1847–1894), ведь именно с ним связана одна из самых интересных и поучительных «изобретательских» историй….

…Было это в Париже. Официант подошел к столику в маленьком кафе, взял нехитрый заказ и исчез на кухне. Посетитель, ожидая заказанное блюдо, рассеянно достал из кармана блокнот, положил его на стол, взялся за карандаш. Одна из страниц была испещрена палочками, которые попарно соединялись тонкими дугами; чертежами каких-то механизмов с маленькими, как у часов, шестернями.

Посетитель кафе склонился над записями, забыв, где он, и глубоко задумался.

Павел Николаевич Яблочков

Происходило это в 1876 г., когда Павлу Яблочкову едва минуло двадцать девять лет. Позади осталось обучение в Петербургском военном училище, где он увлекся физикой, и особенно – мало еще изученной ее областью – электричеством. Он успел уже послужить в должности начальника телеграфа на только что построенной Московско-Курской железной дороге. Но это занятие отнимало много времени, поэтому Яблочков его оставил, чтобы посвятить себя тому, что считал главным в жизни, – разработке надежной конструкции электрической дуговой лампы для освещения.

В 1873 г. П. Яблочков познакомился с еще одним энтузиастом электрического освещения – В. Чиколевим, для которого он сделал один экземпляр регулятора электрической дуги.

В 1874 г. он открыл в Москве мастерскую физических приборов. Но надежды на то, что на них будет большой спрос, не оправдались, и Яблочков решает отправиться в Америку.

Позже судьба привела его в Париж. Здесь изобретатель пытался реализовать некоторые из своих приборов. Он разыскал всемирно известную мастерскую точных часов и приборов под руководством Луи Франсуа Бреге, и Бреге предложил Яблочкову работу в мастерской (сейчас мы эту «мастерскую» назвали бы научно-производственной фирмой), чтобы он продолжил свои поиски устройства для освещения. И вот уже на протяжении нескольких месяцев Яблочков пытается найти решение, как следует расположить угольные электроды в лампе.

Опыты В. Петрова показывали: электрическая дуга, дающая яркий свет, возникает лишь тогда, когда концы горизонтально расположенных угольных электродов находятся друг от друга на четко определенном расстоянии. Если оно уменьшается или увеличивается, разряд исчезает. Между тем во время разряда угольные электроды выгорают, и расстояние между ними возрастает. Чтобы примененять их в электрической дуговой лампе, следовало придумать специальный механизм-регулятор, который бы постоянно, с определенной скоростью подвигал выгорающие стержни навстречу друг другу. Тогда дуга не погаснет.

Попытки осуществить это имели место и до Яблочкова. Свои дуговые лампы с регуляторами разработали русские изобретатели Шпаковский и Чиколев. Электрические лампы Шпаковского в 1856 г. уже горели в Москве во время коронации Александра II. Чиколев использовал мощный свет электрической дуги для работы морских прожекторов. Созданные этими изобретателями автоматические регуляторы имели определенные различия, но и тот и другой были ненадежными. Лампы горели совсем недолго, а стоили дорого. Было ясно, что нужен другой механизм – простой и безотказный. Над этим и бился который месяц Павел Яблочков, только об этом и думал – и у себя в мастерской, и блуждая по парижским улочкам, и даже здесь, в кафе.

Часовой механизм, который использовался в лампочке Шпаковского, не мог предвидеть всех «капризов» угольных электродов, которые так неравномерно выгорали. Нужно было что-то другое. Но что?

…Пришел официант с заказом, Яблочков взял со стола блокнот. И, продолжая думать о своем, машинально наблюдал, как официант ставит блюдо, как кладет ложку, вилку, нож… И вдруг…

Яблочков резко встал и пошел к выходу, не слыша окликов официанта. Он побежал к себе в мастерскую. Вот оно, решение! Наконец! Простейшее и абсолютно надежное! Нашел! Оно пришло к нему, едва он взглянул на столовый набор, на ложку, вилку, лежавшие рядом, параллельно друг другу. Именно так следует расположить в лампе угольные электроды – не горизонтально, как было в предыдущих конструкциях, а вертикально параллельно! Тогда оба электрода будут выгорать одинаково, и расстояние между ними всегда будет постоянным. И никакие мудреные регуляторы будут не нужны!..

Уже в следующем году электрическая свеча Яблочкова ярко осветила парижский универсальный магазин «Лувр». Конструкция ее была совсем не похожа на все предыдущие: два угольных стержня были разделены изолирующим слоем каолина. Укреплены они были на простой подставке, напоминающей подсвечник. Сгорали электроды равномерно, и лампа давала яркий свет, причем на протяжении достаточно длительного времени. Такую «электрическую свечу» и изготовить было просто, и стоила она дешево.

В марте 1875 г. Яблочков запатентовал свое изобретение. Неудивительно, что «электрическая свеча» Яблочкова начала свой победный ход по всему миру. Уже через год лампочки русского изобретателя засияли по набережным Темзы в Лондоне, затем – в Берлине. Вскоре Яблочков вернулся в Россию, и его «свеча» озарила Петербург…

Конечно, тот официант, которого однажды удивил странный посетитель, и не подозревал, что стал как бы соавтором изобретения. Но кто его знает: не положи он тогда перед Яблочковым так аккуратно нож и вилку, – может, и не осенила бы изобретателя молниеносная догадка.

Наука должна быть самым возвышенным воплощением отечества, ибо из всех народов первым будет всегда тот, который опередит другие в области мысли и умственной деятельности.
Л. Пастер

Правда, «подсказка» официанта упала, как говорится, на благодатную почву. Ведь Яблочков искал свое решение даже здесь, за столиком в кафе, ожидая заказ.

Впоследствии «свечу Яблочкова» вытеснили более экономичные и удобные лампы накаливания . Это нововведение связано с именами Томаса Алви Эдисона (1847–1931) и Александра Лодыгина (1847–1923).

Томас Алва Эдисон

Лодыгин поместил элемент накаливания в стеклянную колбу, но главным является то, что в его лампе свет излучает раскаленный электричеством тонкий угольный цилиндр, а не электрическая дуга. Ему также принадлежит идея заменить тонкую нить из угля на металлическую – из молибдена или вольфрама. Уже потом стали выкачивать воздух из стеклянной колбочки лампы, что увеличило срок ее службы. (К сожалению, лампы Лодыгина были запатентованы как «лампы Кона» – по имени человека, который продвигал изобретение на рынок.)

Лампа Эдисона

Выдающийся американский изобретатель Томас Эдисон изобрел патрон для лампочки и насос, позволяющий откачивать воздух из колбы.

А «свеча Яблочкова» стала теперь музейным экспонатом с интересной историей ее создания. Она будто напоминает нам, что великие открытия приходят только в умные головы! (Кстати, существует и другое предание, связанное не со столовыми приборами, а с увиденными Яблочковым карандашами, которые параллельно лежали на столе…)

 

Физика и изобретение радио

Предсказание и экспериментальное обнаружение электромагнитных волн

Революционные открытия, сделанные М. Фарадеем в области электромагнетизма, находили все большее применение. Однако многие из физических вопросов открытых явлений оставались еще нерешенными. Вот почему молодой английский физик Джеймс Клерк Максвелл (1831–1879) начал новую «атаку на электричество». Кстати, заметьте такую интересную случайность: Максвелл родился в тот год, когда Фарадей открыл явление электромагнитной индукции.

Если мы хотим открывать законы природы, то достичь этого можем лишь путем точного ознакомления с явлениями природы…
Дж. К. Максвелл

Это был гениальный ученый, человек большой души и стойкости. То, что он сделал для развития физической науки, ставит его на один уровень с Ньютоном и Галилеем. О его жизненной и творческой биографии речь пойдет дальше, а сейчас подчеркнем то, что Максвелл, усвоив научные труды Фарадея, создал теорию электромагнитного поля.

Сам ученый объяснял: «Теория, которую я предлагаю, может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические и магнитные тела». Суть теории заключается в том, что переменное магнитное поле создает электрическое поле, которое, в свою очередь, создает поле магнитное и т. д.

Максвелл также пришел к выводу, что должны существовать электромагнитные волны, и свет – это тоже разновидность электромагнитних волн.

Работа Максвелла «Трактат об электричестве и магнетизме», которая была напечатана в 1871 г., стала вершиной его научного творчества.

Схема опыта Г. Герца

Но любая теория переживает настоящий триумф, когда она получает подтверждение на практике, в экспериментах. Этот триумф состоялся благодаря экспериментальным исследованиям немецкого физика Генриха Герца (1857–1894). Это он в 1888 г. открыл электромагнитные волны, предвестником их существования являлся Максвелл.

Источником, который в опытах Герца излучал электромагнитные волны, был проводник, подключенный к высоковольтной катушке (вибратор). Проводник был разрезан пополам; при электрических колебаниях в этом месте проходил электрический разряд (искра). Приёмником колебаний (резонатором), которые при этом возникали и распространялись вокруг, был такой же провод.

В своих экспериментах Герц не только открыл электромагнитные волны, но и исследовал их важнейшие свойства. К сожалению, выдающийся ученый рано умер: ему исполнилось лишь 37 лет…

От физики к радиотехнике

Опыты Герца привлекли внимание ученых всего мира. В физических кабинетах многих стран начали проводить различные эксперименты по воспроизведению этих опытов. Поскольку приёмник Герца был недостаточно чувствительным, ученые пытались создать более совершенный приемник электромагнитных волн. Среди первых ученых, которые начали изучать опыты Герца, были англичанин Оливер Лодж и россиянин Александр Степанович Попов.

Лодж при воспроизведении опытов Герца предложил в качестве индикатора (приемника) использовать прибор, описанный в 1891 г. французским физиком Бранли. Этот прибор представлял собой стеклянную трубку с металлическими опилками, которые под действием электромагнитных волн резко уменьшали свое электрическое сопротивление. Эту трубку Лодж назвал «когерером» (от латинского слова cohere – сцеплять, связывать).

Введя когерер в схему своей установки (1894), Лодж немного увеличил дальность приема электромагнитных волн, но не выходил за пределы лаборатории. Еще одной проблемой установки было то, что для восстановления чувствительности когерера (опилки под действием электромагнитных волн будто бы слипались и уже не могли служить индикатором) его необходимо было встряхивать, это было осуществлено Лоджем с помощью часового механизма.

А. С. Попов, воспроизводя опыты Герца, на одной из публичных лекций в 1889 г., отметил возможность применения электромагнитных волн для передачи сигналов на расстояние. Он понимал, что решение этой задачи невозможно без существенного усовершенствования принимающей схемы. Изучив работы Бранли и Лоджа, Попов взялся за разработку еще более чувствительного когерера.

Когерер

Попов искал автоматический метод, позволяющий восстанавливать чувствительность когерера после каждого принятого сигнала. Вследствие многочисленных экспериментов он разработал метод периодического встряхивания когерера с помощью молоточка звонка и применил электромагнитное реле для включения цепи этого звонка.

Схема, разработанная А. С. Поповым, имела большую чувствительность, и уже в 1804 г. он смог с ее помощью принимать сигналы на расстоянии нескольких метров. Во время этих опытов А. С. Попов обратил внимание на то, что дальность действия приемника заметно увеличивается при присоединении к когереру вертикального провода. Это была приемная антенна, благодаря использованию которой А. С. Попов внес существенные улучшения в условия работы приемника.

Работы А. С. Попова в этом направлении привели его к созданию прибора для обнаружения электромагнитных волн, по сути это был первый радиоприемник.

Этот прибор был устроен следующим образом: чувствительная трубка с металлическими опилками (когерер) размещалась в горизонтальном положении на часовой пружине между зажимами, к выводу трубки присоединялся кусок проволоки, представляющий собой приемную антенну. Электрический ток от батареи замыкался через чувствительную трубку и электромагнитное реле; вследствие большого сопротивления опилок трубки (до 100 000 Ом) ток в цепи батареи был недостаточен для притяжения якоря электромагнитного реле.

Как только на трубку действовала электромагнитная волна, опилки слипались, сопротивление трубки значительно уменьшалось, ток в цепи возрастал, и якорь реле притягивался. При этом начинал звонить звонок. Молоточек звонка при возвращении в исходное положение ударял по трубке, и она снова становилась чувствительной к электромагнитным волнам.

Седьмого мая 1895 г. А. С. Попов демонстрировал работу радиоприемника во время своего доклада на заседании Физического отделения Русского физико-химического общества.

Статья А. С. Попова с описанием конструкции приемника была опубликована в журнале Русского физико-химического общества в январе 1896 г.

Заметьте, что первая радиограмма, которую передал и принял Попов, состояла из двух слов: «Генрих Герц». Этим А. С. Попов продемонстрировал значимость трудов этого ученого для разработки нового направления науки.

Убедившись, что приемник реагирует на грозовые разряды, Попов создал второй прибор – «грозоотметчик», оборудованный специальным пишущим аппаратом, который регистрировал сигналы на ленте. В 1895–1896 гг. «грозоотметчики» Попова уже получили практическое применение. Один «грозоотметчик» был установлен Поповым в Нижнем Новгороде на электростанции для предупреждения о приближении грозы, второй, наряду с другими метеорологическими приборами, – в Петербургском лесном институте.

Непрерывно работая над совершенствованием своего прибора, Попов в сентябре 1895 г. присоединил к схеме аппарат Морзе и ввел запись на ленту. Так был создан приемник с записью сигналов азбукой Морзе.

Схема приемника А. Попова

В марте 1896 г. на заседании Русского физико-химического общества в Физическом кабинете Петербургского университета А. С. Попов демонстрировал первую в мире радиотелеграфную передачу на расстояние 250 м, а в 1897 г. им была осуществлена радиосвязь между несколькими кораблями Балтийского флота на расстоянии до пяти километров.

А. С. Попов и его сотрудники продолжали работать над совершенствованием радиоприемника, и в 1899 г. они установили возможность приема радиосигналов на слух с помощью телефона, включенного последовательно с когерером, – это сразу увеличило дальность радиосвязи.

В 1897 г. А. С. Попов обнаружил, что на радиосвязь между двумя кораблями влияет третье судно, проходя между этими кораблями и пересекая направление связи, и это натолкнуло ученого на мысль о том, что явление отражения радиоволн может быть использовано для обнаружения морских судов. Именно оно и лежит в основе современной радиолокации.

Преимущества беспроводной радиосвязи были наглядно продемонстрированы в конце 1899 г. в связи с аварией броненосца «Генерал-адмирал Апраксин», севшего на камни у острова Гогланд. Необходимо было в короткие сроки наладить связь с кораблем, удаленным на 43 км от ближайшего прибрежного пункта Котка, где была телеграфная станция. Несмотря на большие трудности, А. С. Попов вместе со своим помощником П. Н. Рыбкиным установил станции на Гогланде и Котке и обеспечил между ними надежную радиосвязь. Таким образом, А. С. Попов осуществил радиосвязь на относительно большом расстоянии и при этом не только в целях эксперимента, но и для практических потребностей.

Следует остановиться и на роли, которую сыграл в изобретении радио итальянский изобретатель и предприниматель Гульельмо Маркони (1874–1937). В июне 1897 г. он получил в Англии патент на способ передачи электрических импульсов и сигналов и аппарат для этого. Однако в течение длительного времени в прессе не появлялось описания этого устройства. А когда была опубликована схема устройства Маркони, предназначенная для приема, стало совершенно очевидным, что она идентична схеме приемника Попова.

Принятые сигналы можно было также записывать на ленту с помощью аппарата Морзе, присоединенного к схеме. В качестве передатчика Маркони использовал вибратор Герца, усовершенствованный итальянским профессором Риги. Этот вибратор позволял получать волны сравнительно малой длины (около 1,2 м). К передатчику и приемнику присоединялись антенны и заземление, что способствовало радиосвязи на значительных расстояниях. С помощью описанной схемы летом 1897 г. Маркони осуществил радиосвязь на расстоянии девяти миль.

Попов или Маркони?..

Патент был выдан Г. Маркони согласно английскому законодательству, которое не требовало установления научного новшества. В других странах – Франции, Германии, США, России – Г. Маркони было отказано в патентовании со ссылкой на приоритет (первенство) А. С. Попова. Первое публичное сообщение о приборах Г. Маркони было сделано главным инженером службы английских правительственных телеграфов В. Г. Присом 4 июня 1897 г. О более ранних опытах у Г. Маркони нет ни документов, ни публикаций, раскрывающих конструкцию приборов. Однако следует отметить, что, хотя, скорее всего, Маркони нельзя считать изобретателем радио, его заслуги в увеличении дальности передачи сигналов, освоении промышленного производства радиоаппаратуры, а также последующем ее совершенствовании бесспорны.

А. С. Попов, оценивая приёмник Маркони, писал в петербургской газете «Новое время»: «В июне 1897 г. Прис опубликовал новые результаты опытов Маркони и подробности приборов. При этом оказалось, что приёмник Маркони по своим составляющим частям одинаков с моим прибором, построенным в 1895 г.». Вместе с тем в ряде своих выступлений Попов отмечал, что чувствительность прибора Маркони немного больше и что есть отличие в опытах Маркони и его исследованиях, которое заключается в том, что Маркони использовал явление резонанса.

Приемник Г. Маркони

По словам известного физика и историка физики Л. И. Мандельштама, «…настоящим изобретателем можно считать того, кто дал идее конкретное осуществление….после чьих работ не остается сомнения в том, что поставленная практическая цель достигнута…». Это в полной мере относится к работе А. С. Попова, потому что именно он впервые дал техническое решение, вполне пригодное для радиосвязи. С появлением прибора А. С. Попова заканчивается период научного и технического поиска и начинается процесс совершенствования первого действующего беспроводного устройства связи, а также разработка принципиально новых устройств, то есть процесс развития радиотехники.

А. С. Попов не получил патента, но по российскому законодательству он может считаться изобретателем, поскольку раскрыл сущность своего устройства для широкого круга лиц с достаточными для воспроизведения подробностями. Согласно положениям изобретательского права, известные ранее элементы, входящие в устройство Попова, нельзя трактовать как прототипы (предшественники), поскольку новый эффект в его изобретении создается совокупным применением этих элементов. Именно совокупность элементов позволила создать первое действующее радиоустройство.

Всякая наука, которая последовательно развивается, только потому и растет, что она нужна человеческому обществу.
С. И. Вавилов

Как видно из ряда материалов о деятельности Г. Маркони, он настойчиво стремился добиться, прежде всего, увеличения дальности связи. В 1899 г. он совершил радиосвязь между Англией и Францией (на расстоянии более 30 миль). В январе 1901 г. он установил беспроводной контакт между некоторыми пунктами на побережье Англии, находящимися друг от друга на расстоянии 186 миль. В конце того же года, находясь в Сент-Джоне на острове Ньюфаундленд, Маркони принял сигнал, переданный через Атлантический океан из Корнуолла (Великобритания). Сигнал преодолел расстояние в 2100 миль!

В 1902 г. Маркони передал первый беспроводной сигнал через Атлантику с запада на восток. Позже, в 1905 г., он получил патент на направленную передачу сигналов.

Конечно, условия работы Маркони и Попова были совершенно разными. Маркони поддерживали крупные английские промышленники, он имел в своем распоряжении огромный капитал, большое количество сотрудников и все условия для работы, тогда как А. С. Попов был ограничен в средствах для проведения экспериментов и только в 1902 г. организовал в Кронштадте небольшую мастерскую с очень незначительным по масштабам производством радиостанций. Отсталая промышленность дореволюционной России не могла развернуть большое производство радиоаппаратуры, поэтому и находилась изначально в большой зависимости от иностранного капитала.

Многие исследователи жизни и научной деятельности А. С. Попова считают, что если бы ученый не умер (а это произошло в 1906 г.), он получил бы Нобелевскую премию 1909 г. вместе с Г. Маркони и Ф. Брауном.

Отдавая должное теоретическим исследованиям Майкла Фарадея, Генриха Герца и других предшественников Маркони, Ганс Хильдебрандт из Шведской Королевской академии во время награждения Нобелевской премией отметил, что «главное (кроме необузданной энергии, с которой Маркони шел к им самим поставленной цели) было достигнуто, когда Маркони благодаря природным способностям смог воплотить всю систему в виде компактной, пригодной для практического использования конструкции».

Во время Первой мировой войны Маркони выполнял ряд военных миссий и в итоге стал командующим итальянского военно-морского флота. Руководил он и программой по телеграфии для обеспечения итальянских вооруженных сил. В 1919 г. его назначили полномочным представителем Италии на Парижской мирной конференции. От имени Италии Маркони подписал договоры с Австрией и Болгарией.

Превратив свою паровую яхту «Элеттру» в домашнюю лабораторию и рабочий кабинет, Маркони в 1921 г. принялся интенсивно исследовать коротковолновую телеграфию. К 1927 г. компания Маркони развернула международную сеть коммерческой коротковолновой телеграфной связи. В 1931 г. Маркони исследовал передачу микроволн и в следующем году установил первую радиотелефонную микроволновую связь. В 1934 г. он продемонстрировал возможность применения микроволновой телеграфии для нужд навигации в открытом море.

Первое десятилетие после изобретения радио характеризуется интенсивными исследованиями, направленными на совершенствование генераторов и приемников электромагнитных волн. Без этих усовершенствований развитие беспроводной телеграфии было невозможным. Искровые передатчики страдали существенными недостатками, которые усугублялись отсутствием устройств для настройки приборов. Что касается приемников, то когерер не мог обеспечить устойчивость и надежность приема.

Вследствие многочисленных исследований, проведенных в конце XIX – начале XX в. учеными и изобретателями разных стран, были созданы более совершенные конструкции радиопередающих и радиоприемных устройств.

…Истинной темой исследования для человечества является человек.
Дж. К. Максвелл

После открытия возможности приема радиосигналов на слух, по телефону, начинают разрабатываться приборы для выделения звуковых колебаний из высокочастотных. Такими приборами были детекторы – устройства, пропускающие ток в одном направлении. Уже в начале XX в. применяют кристаллические детекторы. Между прочим, Попов в 1900 г. заменил когерер детектором, состоящим из пары «уголь – сталь». Но кристаллический детектор – прибор малочувствительный, он может применяться только при передаче мощных сигналов на небольшое расстояние.

Дальнейшие успехи в области радиотехники были неразрывно связаны с развитием электроники и электровакуумных приборов. Полный переворот в развитии радиотехники состоялся в связи с изобретением электронной лампы, получившей широкое распространение в радиопередающих и радиоприемных устройствах.

Согласитесь, что нашу современную жизнь сейчас невозможно даже представить без радио, телевидения, спутниковой связи, мобильных телефонов!.. Все это возникло благодаря физическим исследованиям выдающихся ученых и техническим разработкам, основанным на результатах этих исследований.

И в конце – исторический анекдот из жизни физиков.

Вспоминает академик В. И. Векслер:

«Во время Первой мировой войны Сергей Иванович Вавилов был в армии, и по долгу службы ему пришлось принимать имущество полевой радиостанции тогдашнего примитивного типа. В описи, выполненной очень аккуратно каким-то писарем и содержавшей перечень оборудования, за номером таким-то каллиграфическим почерком значилась следующая формулировка: «непонятное в баночке». Естественно, что это возбудило у Сергея Ивановича любопытство, и он установил, что такое «оригинальное определение» писарь дал когереру, хорошо известному всем физикам.

Это определение – «непонятное в баночке» – стало очень популярным среди физиков и, по существу, превратилось в имя нарицательное».

 

«Люблю грозу в начале мая…»

Линейная молния

В природе электричество наиболее ярко проявляется в электрических разрядах, которые называют молниями. Существуют различные виды таких разрядов. Молнию относят к искровому разряду.

Люди издавна наблюдали молнии и наделяли их особыми свойствами. Главного бога древних греков Зевса называли еще богом молнии и грома («громовержец»). У римлян богом-громовержцем был Юпитер. Главную роль отводили своим богам-громовержцам и древние индусы (бог Индра), скандинавы (бог Тор), славяне (бог Перун).

Электрический разряд в атмосфере – молния

Молния и гром сначала воспринимались людьми как выражение воли богов, причем как проявление божьего гнева. Но те люди, которые стремились познать мир, пытались постичь и природу молнии, понять ее естественные причины. В древности над этим размышлял Аристотель. Писал о молнии и Лукреций. Пусть его представления были наивными и не вполне физическими (он, например, считал, что гром возникает там, где «облака сбиваются под напором ветров»), однако это были первые шаги в осмыслении причин этого явления.

Большой интерес к изучению молнии проявлял американский исследователь Бенджамин Франклин. Именно он в 1752 г. показал, что молния – это сильный электрический разряд. Франклин выполнил знаменитый опыт с воздушным змеем, запуская его во время грозы и исследуя эффекты, возникающие при этом.

Теория сама по себе ничего не стоит, она нужна, поскольку заставляет нас верить в связь явлений.
И. Гете

Одновременно с Франклином молнии исследовали в России М. Ломоносов и Г. Рихман (для Рихмана, как мы уже говорили, к сожалению, это закончилось трагически). Благодаря исследованиям именно этих трех ученых в середине ХVШ в. была доказана электрическая природа молнии.

Что мы сейчас можем сказать о молнии?

Существуют два основных вида молнии: линейные и шаровые. Рассмотрим кратко, каким образом происходит образование обычной линейной молнии и какие процессы сопровождают это явление.

Как известно, молния возникает тогда, когда образовались грозовые облака. Чаще всего говорят о четырех этапах образования такого облака: зарождение облака, начальное развитие, этап зрелого облака и этап его разрушения.

Основными физическими причинами зарождения и развития облака является конвекция (движение теплого воздуха вверх, а холодного – вниз) и конденсация (образование капелек воды из влажного воздуха при его охлаждении на большой высоте от поверхности земли).

Капли воды, образовавшиеся при конденсации, начинают падать вниз. Вследствие трения воды, падающих капель о воздух, происходит их электризация.

Чаще всего распределение электрических зарядов внутри грозового облака таково: верхняя часть облака (на высоте примерно 7—10 км) заряжена положительно, а нижняя (на высоте 3–4 км) – отрицательно. Важно также и то, что поверхность земли и прилегающий к ней слой воздуха под облаком тоже оказываются заряженными – этот заряд положительный. Именно благодаря наличию этих зарядов и возникает молния – электрический разряд в атмосфере.

Линейная молния представляет собой последовательность нескольких импульсов – пробоин в воздушном промежутке между облаком и землей. Происходит это чаще всего так: сначала образуется канал разряда между облаком и землей, а потом по этому каналу быстро проходит кратковременный ток (говорят – импульс тока).

Ленточная молния

Импульс тока длится примерно 0,1 миллисекунды, а сила этого тока достигает 100 000 А! Температура газа в канале молнии может достигать 10 000 К. В это время и рождается чрезвычайно яркий свет, который мы наблюдаем во время разряда молнии. Тогда же возникает гром, вызванный резким расширением внезапно нагретого газа.

Если рассматривать не отдельный импульс тока, а средние значения для всей молнии, то можно сказать, что один разряд длится примерно 0,1 с, а средняя сила тока равна 1000 А. Видимый канал молнии имеет диаметр около 1 м, при этом основной ток протекает по еще более узкому каналу диаметром всего лишь 1 см.

Продолжительность каждого из последовательных импульсов одной молнии составляет 10-3 с, промежутки времени между импульсами – приблизительно 10-2 с.

Иногда возникает не одиночная молния, а так называемая ленточная. При этом наблюдается такая картина, будто возникло несколько практически одинаковых молний, смещенных одна относительно другой.

Шаровая молния

Шаровая молния была известна еще в далеком прошлом, однако ученые до сих пор не могут объяснить это природное явление. В конце своей жизни академик Петр Леонидович Капица сетовал: «Плазмовый орешек оказался мне не по зубам».

Георг Рихман

В свое время Г. Рихман погиб именно от шаровой молнии. Это произошло 26 июля 1752 г., когда ученый во время грозы проводил запланированные исследования. Свидетели видели, что из стержня, который был соединен с молниеотводом, вдруг будто вылетел голубой шар размером с кулак. Шар ударил Рихмана прямо в лоб, он упал и мгновенно умер.

Сохранилось описание этого события, составленное другом Г. Рихмана М. В. Ломоносовым, который сразу посетил лабораторию и исследовал последствия этого трагического случая.

Загадочность этого явления, связанного с неожиданным появлением шаровой молнии, приводит к самым неожиданным выводам. Некоторые люди заявляют, что шаровая молния руководствуется высшим разумом, является живым существом или связана с пришельцами из космоса. Другие объясняют природу шаровой молнии на основе космического излучения, антивещества и других экзотических элементов.

В свое время популярный журнал «Наука и жизнь» обратился к своим читателям с просьбой описать собственные наблюдения шаровой молнии. Сбор наблюдений – важный элемент в изучении этого загадочного явления. Далее переходят к систематизации и анализу собранного материала, а затем – к обобщениям и выводам.

Что же можно сказать (конечно, кратко и без использования сложных физических законов и математических записей) об этой молнии?

Шаровая молния представляет собой светящийся сфероид (шар) диаметром 10–30 см и более, массой примерно 5–7 г. Чаще всего шаровые молнии действительно имеют форму шара. В такой форме им, как говорят физики, энергетически выгоднее существовать. Но встречаются шаровые молнии грушевидной и каплевидной формы, а также очень редко и другой необычной формы, так что некоторые из них легко принять за НЛО. Цвет молнии чаще белый, желтый, красный или оранжевый. Световое излучение такое же, как от лампочки 100 Вт. Существует такая молния от одной секунды до нескольких минут. Движется она со скоростью не более 10 м/с, иногда при этом вращаясь. Обычно шаровая молния движется бесшумно, но может и шипеть или жужжать, особенно когда она искрит.

Шаровая молния может также двигаться вдоль электрических проводов. Это получило название «гидирования».

Сейчас существует несколько научных гипотез относительно природы шаровой молнии. Согласно гипотезе Б. Смирнова, шаровая молния имеет химическую природу и ее свечение связано с определенными химическими реакциями.

Согласно другой гипотезе, шаровая молния состоит из положительно и отрицательно заряженных частиц – ионов. Однако подробные расчеты, проведенные для этих моделей молнии, не дают ответов на многие вопросы, поэтому эта проблема до сих пор остается не решенной.

Закончим рассказ о шаровой молнии несколькими правилами поведения при встрече с ней. Говорят, что следует среагировать на нее, как… на незнакомую собаку – стоять или сидеть неподвижно, наблюдая за ее поведением. Если дверь рядом, лучше медленно покинуть помещение самому, а не ждать, когда она вылетит, и тем более не выгонять ее веником, метлой или другими предметами, потому что поведение шаровой молнии в этом случае будет непредсказуемым, а энергию она несет достаточную, чтобы быть опасной для вашего здоровья!..

«Огни святого Эльма»

Среди электрических разрядов, которые можно увидеть в природе, есть и так называемый коронный разряд.

При атмосферном давлении вблизи заостренных участков проводника, несущих большой электрический заряд, наблюдается газовый разряд, светящаяся область которого напоминает корону. Этот разряд, который называют коронным, вызывается электрическим полем у заряженного острия. При большой напряженности электрического поля происходит ионизациявоздуха. Ионизация и связанное с ней свечение газа наблюдаются в ограниченной области пространства – именно у острия.

В природе такой разряд может возникнуть при приближении заряженной грозовой тучи, которая наводит на поверхность Земли электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях тел. Поэтому перед грозой или во время ее на остриях и острых углах могут вспыхивать похожие на кисточки конусы света. С давних времен это свечение называли огнями святого Эльма, потому что в средние века его довольно часто наблюдали на верхушках католического храма Св. Эразма (Эльма).

Огни святого Эльма

Особенно часто свидетелями этого явления становятся альпинисты. Иногда не только металлические предметы, но даже кончики волос на голове украшают маленькие светящиеся кисточки – «огни святого Эльма».

 

«Живой» электромагнетизм, или Электромагнетизм в живой природе

Электрические рыбы

К так называемым электрическим рыбам относят электрического и обычного скатов, электрического сома, электрического угря, рыбу-нож, гимнарха, гматонемуса, звездочета. Их называют электрическими потому, что они способны генерировать электричество и давать электрический разряд.

Зачем рыбам нужен электрический разряд? Прежде всего – для нападения и защиты. Электрическому скату, парализующему свою добычу электрическим ударом, завладеть ею другим способом было бы весьма непросто – ведь рот у него… на брюхе.

Угорь, парализующий лягушку на расстоянии метра, использует свой электрический удар и для защиты от многочисленных врагов, которые были бы не прочь полакомиться его вкусным мясом.

Электрический скат

Кстати, жители Южной Америки давно заметили, что существуют рыбы, которые способны наносить парализующие удары. Они называли таких рыб «арима», что означает: забирающие движение. Мясо таких рыб считалось целебным. Сегодня известно, что эти удивительные рыбы – электрические угри, которые живут в реках Южной Америки.

Что представляют собой электрические органы рыб? Прежде всего – это особые мускульные клетки, так называемые электрические пластинки, поразительно напоминающие по схеме и конструктивным принципам электробатареи. У электрического ската эти органы занимают почти четверть тела, у сома – большую часть, а у электрического угря ими не занята разве что голова!

Физические исследования постоянно обнаруживают перед нами новые особенности процессов в природе, и мы вынуждены находить новые формы мышления, соответствующие этим особенностям.
Дж. К. Максвелл

Есть рыбы, электрические органы которых небольшие и будто бы разбросаны по телу. Да и разряды у этих рыб слабенькие, всего несколько вольт, – правда, разряды происходят непрерывно. Было обнаружено, что эти рыбы способны чувствовать малейшие изменения своего электрического поля, вызванные, например, приближением другой рыбы. Изменение поля – и немедленная реакция: в атаку! Пусть это даже твой родственник! Такие реакции, возможно, вызваны условиями жизни: ведь эти рыбы живут в мутной воде и вообще плохо видят. И охотятся они обычно ночью.

Ценнейшее в жизни качество – вечно юная любознательность, которая не унимается с годами и возрождается каждое утро.
Р. Роллан

Интересно, что, например, у обычных скатов тоже есть электрические органы, они создают напряжение около 5 В. Электрические скаты, специальные электрические органы которых находятся в области головы и жабр, создают напряжение уже в 50 В!

Электрический сом, обитающий в Ниле, дает напряжение до 350 В, а угорь – более 500 В!

У многих электрических рыб голова заряжена положительно, а хвост – отрицательно, а у электрического сома, наоборот, хвост заряжен положительно, а голова отрицательно.

Как уже упоминалось, рыбы, имеющие электрические свойства, используют их не только для нападения, но и для ориентации в мутной воде, распознавания опасных противников. Например, большой ночной хищник гимнарх имеет высокую чувствительность к малейшим изменениям напряженности электрического поля, которое его окружает. Когда возле него появляется какой-то объект или когда он оказывается рядом с препятствием, его собственное электрическое поле меняется, искажается, и это сразу чувствует «хозяин».

Магнитные явления в живой природе

Многие ученые утверждают, что у животных существует специальный орган, с помощью которого они определяют наличие магнитного поля. Многочисленные опыты показали, что, например, голуби имеют особое «магнитное чутье», что позволяет им ориентироваться в магнитном поле Земли. Чтобы проверить это, ученые поступили с голубями, как с обычным компасом: прикрепили к их крыльям стальные пластинки. И живые компасы «испортились».

Имеется много наблюдений, которые показывают, что голуби теряют способность ориентироваться в зоне действия мощных электростанций и начинают двигаться к источнику излучения.

Самки термитов в гнезде лежат так, что ось их тела совпадает по направлению с магнитным меридианом, а если поместить рядом сильный магнит, то они меняют свое положение.

Известно, что магнитное поле влияет на кровеносную систему и кровообращение. При этом большое значение имеют взаимные соотношения между направлением силовых линий магнитных полей и направлением кровотока. Магнитные поля способны тормозить циркуляцию крови (очень сильные – на 0,1 %). Такое воздействие магнитных полей на кровеносную систему используется при лечении атеросклероза. Эритроциты способны ориентироваться в малых магнитных полях. Под влиянием постоянного магнитного поля лейкоциты образуются быстрее. Срок их жизни при этом уменьшается, однако костный мозг очень быстро их воспроизводит. Подобное влияние на костный мозг используется при лечении лучевой болезни. Влияние магнитных полей замедляет свертывание крови.

Магнитное поле земли называют геомагнитным. Исследования показывают, что геомагнитное поле воздействует на дыхание прорастающих семян, на потребление ими крахмала.

Особенно интересными оказались результаты исследования влияния геомагнитных полей на растения в зонах магнитной аномалии. Они показали, что развитие корнеплодов происходит там менее активно, а злаки, наоборот, растут лучше.

Существует явление магнитотропизма – ориентированного роста корней некоторых растений. Явление это открыли в 60-х годах ХХ в. Так, наибольших размеров свекла достигала при ориентации ее борозд с запада на юг и с запада на восток. Ориентация относительно геомагнитного поля влияет и на обмен веществ: количество сахара было различным в зависимости от ориентации борозды.

Поражение электрическим током

Что происходит с человеком, когда он касается провода, находящегося под напряжением?

Прикоснувшись к проводу, по которому проходит ток, человек, возможно, не погибнет сразу, но если он будет долго держаться за него, то это в конечном итоге может привести к смерти – электрическое сопротивление человеческого тела уменьшится и сила тока, проходящего через тело, может приблизиться к критической отметке.

Электрический ток, проходящий через тело человека, совсем не ощущается или ощущается очень слабо, когда сила тока меньше 0,01 А;

– вызывает болевые ощущения, когда сила тока равна 0,02 А;

– нарушается дыхание при силе тока 0,03 А;

– дышать становится трудно при силе тока 0,07 А;

– сила тока 0,1 А вызывает фибрилляцию сердца, что может привести к смерти;

– сила тока более 0,2 А вызывает сильный ожог, дыхание останавливается.

К смерти чаще приводит ток в диапазоне 0,1–0,2 А, так как при этом возникают неконтролируемые сокращения сердечной мышцы (фибрилляция) и нарушения кровообращения.

При силе тока более 0,2 А сердце просто останавливается, но если пострадавшему своевременно оказать помощь, сердечный ритм восстанавливается. Фибрилляцию можно остановить только хорошо рассчитанным повторным электрическим шоком. Поэтому ток в диапазоне 0,1–0,2 А опаснее, чем ток более сильный.

Будьте внимательны и осторожны, когда имеете дело с электричеством!

Значение силы тока, проходящего через тело человека, зависит от сопротивления кожи, которое обычно изменяется в пределах от 1000 Ом (влажная кожа) до 500 000 Ом (сухая кожа). Сопротивление тканей тела значительно меньше: 100–500 Ом.

Когда человек касается провода, находящегося под напряжением выше 240 В, ток пробивает кожу. Если течет ток, значение которого еще не смертельное, но достаточное для того, чтобы вызвать непроизвольное сокращение мышц руки (рука будто прилипает к проводу), то сопротивление кожи постепенно уменьшается, и, в конце концов, ток достигает смертельной для человека отметки – 0,1 А.

Человеку, оказавшемуся в такой опасной ситуации, следует как можно скорее помочь, прежде всего «оторвать» его от провода, не подвергая при этом опасности себя.

Вообще, биофизика действия электрического тока на человеческий организм еще недостаточно хорошо изучена. Многие специалисты вообще считают, что говорить однозначно о безопасном и опасном для человека значении силы тока (или напряжения) невозможно: многое зависит от конкретной ситуации.

Когда сопоставляют результаты исследований электротравм у животных с результатами несчастных случаев с людьми, приходят к выводу, что человек в электрической цепи представляет собой особый вид «проводника». Этот «проводник» отличается не только своими свойствами, но и своей реакцией на ток от любого «неживого» органического или неорганического элемента электрической цепи, а также от любого вида животных. Например, у животных нет такой разницы в реакции на большое и малое напряжение, как у человека. Поэтому экспериментальные данные, полученные в ходе исследований на животных, очень осторожно следует применять по отношению к человеку.

 

Электро– и магнитотерапия

Среди методов лечения человека значительное место занимают специальные процедуры с использованием электромагнитных устройств.

В 20-е гг. ХХ в. началось применение электрокардиографии – диагностического метода оценки состояния сердца и сердечно-сосудистой системы. Это связано с именем английского физиолога Адриана, предложившего для регистрации электрической активности различных систем организма человека применять осциллограф. Хотя до сих пор полной картины, объясняющей в полном объеме биоактивность человеческого организма, еще нет, практическая электрография успешно помогает врачам, основываясь на многочисленных наблюдениях и опыте.

Электрокардиограф – это прибор, который позволяет измерять напряжение, характеризующее работу сердечной мышцы, в пределах от 0,01 до 0,5 мВ. Регистрация результатов измерения фиксируется на бумажной ленте, на фотоленте или на экране электронного устройства.

Электрокардиограф состоит из усилителя, эталонного источника напряжения, электродов, накладываемых на тело пациента, лентопротяжного механизма.

При снятии электрокардиограммы (ЭКГ) на тело человека накладывают электроды, которые с помощью гибких проводов соединены с усилителем. Практика показывает, что в зависимости от типа наложения электродов на ленте получают кривые различных форм. Они дают врачу информацию, позволяющую ему диагностировать заболевания сердца.

Еще одним помощником врача является электрофорез – метод введения лекарственных веществ через кожу человека. Самый распространенный способ электрофореза: электроды из эластичных металлических пластин накладывают непосредственно на тело больного. Между телом и электродом прокладывают ткань, пропитанную специальным раствором. Сила тока, проходящего через тело, не должна превышать 40–50 мА, а напряжение составит примерно 15–20 В.

А вот другой способ проведения этой процедуры: руку или ногу человека помещают в ванночку, заполненную специальным раствором. Один из электродов опускают в ванночку, а второй накладывают на конечность выше места погружения.

С помощью электрофореза в организм через кожу вводят антибиотики, йодные препараты и различные сложные медицинские препараты.

Одной из физиотерапевтических процедур является электростатический душ, или франклинизация (по названию понятно, что это – дань памяти ученому Бенджамину Франклину).

Больного помещают между двумя электродами, подключенными к источнику постоянного напряжения 40–50 кВ. Один электрод в виде звезды с неострыми углами размещают над головой человека на расстоянии 10–15 см. Второй электрод находится под ногами на изолирующей подставке.

Возле углов верхнего электрода электрическое поле сильнее – там и возникает электрический разряд. Созданный этим разрядом поток ионов направляется к телу человека, преимущественно на участки его головы и шеи. Так называемые аэроионы действуют на нервные окончания, находящиеся на кожных покровах этого участка тела, а также на слизистые оболочки при вдыхании ионизированного воздуха.

Во врачебной практике применяют и высокочастотные электромагнитные колебания.

При диатермии осуществляется прогрев тканей организма с помощью высокочастотного тока (высокочастотный ток – это такой ток, когда значение силы тока меняется очень быстро; это явление еще называют колебаниями тока).

При индуктотермии соответствующий участок тела больного помещается внутрь катушки, по которой пропускается высокочастотний ток. (Эта катушка с током называется соленоид.) Таким образом осуществляется прогревание тканей.

В физиотерапии довольно широко применяют и бесконтактные методы, например терапию высокочастотным электрическим полем.

Специальные глазные электромагниты помогают врачу-офтальмологу вытащить из глаза железные стружки, которые могли попасть в него во время работы. Электромагнит состоит из большого числа витков толстой проволоки, по которому пропускается ток большого напряжения, и сердечника – тонкого стального стержня, закрепленного в центре катушки.

При включении тока глаз пациента должен быть размещен напротив стержня. Таким способом извлекают инородное тело из глаза.

Сон – лучшее изобретение.
Г. Гейне

Сейчас в медицине применяют специальные электромагнитные аппараты, позволяющие получать информацию о состоянии различных органов человека. Например, так же как электрокардиограмму, врачи-диагностики могут снимать и магнитограмму с помощью специального прибора – магнитометра.

Регистрация магнитных полей позволяет проследить за кровообращением, за биохимическими процессами в клетках, определить количество железа в легких рабочих, работающих в сталелитейной промышленности, и т. д.

Кардиограмма

При проведении некоторых хирургических операций применяют не обычный наркоз, а электроанестезию. Обезболивания достигают, воздействуя на мозг (точнее, на те его структуры, которые отвечают за болевые реакции) безвредными импульсами электрического тока. Максимальная сила тока при этом достигает 0,3 А, но меняется этот ток очень быстро – его частота составляет 400—1500 Гц. (Напомним, что когда какое-то колебание осуществляется с частотой, например, в 1 Гц, то это означает, что за 1 секунду осуществляется 1 колебание. При частоте 100 Гц за 1 секунду происходит 100 колебаний и т. д.)

Во время лечения электросном на человека с помощью определенной программы действуют электрические импульсы, которые вызывают торможение нервных клеток, и организм переходит в состояние сна.

Приведенные здесь примеры применения электромагнитных приборов в лечении – это только, так сказать, вершина айсберга, потому что современную медицину даже представить себе невозможно без использования таких приборов.

 

VII. Оптика

 

Из истории оптики: начало

Оптика античности и начала средневековья

К каждому из нас представления об окружающем мире и событиях в нем приходят через зрение. Мы видим – и это подарок природы! Мы видим мир цветным, в отличие от многих других живых существ, и это тоже является прекрасным проявлением особенностей нашего организма. Но мы еще и мыслим, спрашиваем у природы: «Почему?» Человеку всегда было интересно, как он видит, что такое свет, как он распространяется в пространстве.

Исследуй все, пусть для тебя на первом месте будет разум; предоставь ему возможность управлять тобой.
Пифагор

Первые представления о природе света возникли еще до новой эры. Античные мыслители пытались понять сущность световых явлении, основываясь на зрительных ощущениях. Древние индусы считали, что глаз имеет «огненную природу». Греческий философ и математик Пифагор (582–500 гг. до н. э.) и его школа считали, что зрительные ощущения возникают благодаря тому, что из глаз к предметам исходят «горячие испарения».

В своем дальнейшем развитии эти взгляды получили более четкую форму в теории зрительных лучей, которая была развита Евклидом (300 г. до н. э.). Согласно этой теории, зрение обусловлено тем, что из глаз вытекают «зрительные лучи», которые ощупывают своими концами тела и создают зрительные ощущения.

Пифагор

Евклид является основоположником учения о прямолинейном распространении света. Применив к изучению света математику, он установил законы отражения света от зеркал. Следует отметить, что для построения геометрической теории отражения света от зеркал не имеет значения природа происхождения света, а важно лишь свойство его прямолинейного распространения. Открытые Евклидом закономерности сохранились в современной геометрической оптике. Евклиду было знакомо и преломление света.

Евклид

Кстати, само слово «оптика» имеет греческое происхождение и означает «видимый», тот, что воспринимается через зрение.

В более поздние времена аналогичные воззрения развивал Птоломей (70—147 гг. н. э.). Он уделял большое внимание изучению явлений преломления света. В частности, Птоломей проводил большое число измерений углов падения и преломления, но закона не установил. Он заметил, что положение светил на небе меняется вследствие преломления света в атмосфере.

Кроме Евклида, действие вогнутых зеркал знали и другие древние ученые. Например, Архимеду приписывают сожжение неприятельского флота при помощи системы вогнутых зеркал, которыми он собирал солнечные лучи и направлял на римские корабли.

Сжигание вражеского флота с помощью системы зеркал

Значительный шаг вперед сделал Эмпедокл (492–432 гг. до н. э.), который считал, что от светящихся тел идут вытекания к глазам, а из глаз выходят встречные вытекания в направлении тел. При встрече этих вытеканий возникают зрительные ощущения.

Знаменитый греческий философ, основатель атомистики, Демокрит (460–370 гг. до н. э.) полностью отвергал представление о зрительных лучах. Согласно взглядам Демокрита, зрение обусловлено падением на поверхность глаза мелких атомов, идущих от предметов. Аналогичных взглядов позже придерживался и Эпикур (341–270 гг. до н. э.).

Решающим противником «теории зрительных лучей» был знаменитый греческий философ Аристотель, который считал, что причина зрительных ощущений лежит вне человеческого глаза. Аристотель сделал попытку дать объяснение цветам как следствию смешения света и темноты.

Интересно отметить, что линзы появились еще в давние времена. Кусок горного хрусталя в форме линзы был найден в развалинах Ниневии. Аристофан (V в. до н. э.) был знаком с применением линз в качестве поджигающего стекла.

Следует отметить, что взгляды древних мыслителей в основном базировались на простейших наблюдениях явлений природы. Античная физика не имела под собой необходимого фундамента в виде экспериментальных исследований, поэтому учение древних мыслителей о природе света носит умозрительный характер. Но хотя эти взгляды в основном являются гениальными догадками, они, безусловно, оказали большое влияние на дальнейшее развитие оптики.

В первый период средневековья (150–700 гг. н. э.) не было каких-либо серьезных работ в области оптики. Но с 700-х гг. н. э. наблюдается прогресс науки у арабов. Арабский физик Альгазен в своих исследованиях (1038) развил ряд вопросов оптики. Он занимался изучением глаза, преломления света, отражения света в вогнутых зеркалах.

При изучении преломления света Альгазен в противоположность Птоломею доказал, что углы падения и преломления не пропорциональны, и это было толчком к дальнейшим исследованиям с целью обнаружения закона преломления. Альгазену было известно увеличивающее действие сферических стеклянных сегментов. По вопросам о природе света Альгазен, отвергая теорию зрительных лучей, стоит уже на других позициях. Он исходит из представления о том, что из каждой точки светящегося предмета исходят лучи, которые, достигая глаза, вызывают зрительные ощущения.

Альгазен считал, что свет имеет конечную скорость распространения, и это было значительным шагом в понимании природы света. Он дал объяснение тому, что Солнце и Луна кажутся на горизонте большими, чем в зените; он истолковал это обманом восприятия.

Эпоха Возрождения

Период между XIV в. и первой половиной XVII в. стал для Западной Европы переходным этапом от феодализма к капиталистическому способу производства. Ряд крупнейших открытий, среди которых, прежде всего, следует назвать открытие Колумбом Америки, изобретение печатного станка, обоснование Коперником гелиоцентрической системы мира, способствовали общему прогрессу. Происходит постепенный общий подъем экономики, техники, культуры, искусства, усиливается борьба прогрессивного мировоззрения со схоластикой. В области науки постепенно побеждает экспериментальный метод изучения природы. В этот период в оптике был сделан ряд выдающихся изобретений и открытий.

Франческо Мавролику (1494–1575) принадлежит заслуга достаточно правильного объяснения действия очков. Он открыл, что вогнутые линзы не собирают, а рассеивают лучи.

Только тот свободен, кто самостоятельно мыслит и не повторяет чужих слов, смысла которых не понимает.
Б. Ауербах

Им было установлено, что важнейшей частью глаза является хрусталик, и сделан вывод о причинах дальнозоркости и близорукости как следствии – ненормального преломления света хрусталиком. Мавролик дал правильное объяснение образованию изображений Солнца, наблюдаемых при прохождении солнечных лучей через малые отверстия.

Следует также назвать имя итальянца Порта (1538–1615), который в 1589 г. изобрел камеру-обскуру – прообраз будущего фотоаппарата. Несколькими годами позже были изобретены основные оптические инструменты – микроскоп и подзорная труба.

Изобретение микроскопа (1590) связывают с именем голландского мастера-оптика Захария Янсена. Подзорные трубы начали изготавливать примерно одновременно (1608–1610) голландские оптики Захарий Янсен, Яков Мециус и Ганс Липперсгей. Изобретение этих оптических инструментов привело в последующие годы к крупнейшим открытиям в астрономии и биологии.

Голландский мастер-оптик Антони ван Левенгук прославился своим умением изготавливать простые и довольно мощные микроскопы. Хотя он и не был первооткрывателем этого инструмента, именно благодаря ему микроскопы получили большое распространение в Европе во второй половине XVII в. Его микроскопы состояли всего из одной маленькой линзочки, которую получали из капли стекла при расплавлении над пламенем свечи стеклянной палочки.

Пьер Ферма

Немецкому физику и астроному И. Кеплеру (1571–1630) принадлежат фундаментальные работы по теории оптических инструментов и физиологической оптики, и его по праву можно назвать ее основателем. Кеплер много работал над изучением преломления света.

Иоганн Кеплер

Большое значение для развития геометрической оптики имел принцип Ферма, названный так по имени французского ученого, который его сформулировал, – Пьера Ферма (1601–1665). Этим принципом устанавливается, что свет между двумя точками распространяется таким путем, на прохождение которого затрачивает минимум времени. Итак, Ферма, в отличие от Декарта, считал, что свет распространяется с конечной скоростью.

Знаменитый итальянский физик Галилей (1564–1642) не проводил систематических работ, посвященных исследованию световых явлений. Однако и в оптику он внес значительный вклад. Галилей усовершенствовал подзорную трубу и впервые применил ее для астрономических наблюдений. Им сделаны выдающиеся открытия, которые способствовали обоснованию новейших представлений о строении Вселенной, основанных на гелиоцентрической системе Коперника. Галилей создал подзорную трубу с тридцатикратным увеличением, что намного превосходило увеличение подзорных труб первых ее изобретателей. С ее помощью он открыл горы и кратеры на поверхности Луны, спутники Юпитера, звездную структуру Млечного Пути и т. д.

Галилей пытался измерить скорость света в земных условиях, но не преуспел в этом. Однако его заслуга состоит в том, что он имел правильные представления о конечной скорости распространения света. Он также наблюдал и солнечные пятна. Однако приоритет открытия солнечных пятен Галилеем отрицал ученый-иезуит Патер Шейнер (1575–1650), который провел наблюдения солнечных пятен и зорной трубы, построенной по схеме Шейнера является то, что он превратил подзорную трубу в проекционный прибор: это давало возможность получить изображения Солнца на экране и демонстрировать его при различной степени увеличения нескольким лицам одновременно.

Телескоп Галилея

Наиболее значительным достижением этого периода было открытие дифракции света Гримальди (1618–1663). Он доказал, что свет, проходя через узкие отверстия или возле краев непрозрачных экранов, отклоняется от прямолинейного распространения. Видоизменяя опыты по наблюдению дифракции, Гримальди осуществил прямой опыт сложения двух световых пучков, которые исходили из двух отверстий в экране, освещенном Солнцем. При этом он наблюдал чередование светлых и темных полос. Таким образом, оказалось, что при добавлении световых пучков в некоторых местах чувствуется не усиление, а ослабление света. Впоследствии это явление солнечных факелов с помощью под-Кеплера. Самым важным в работах было названо интерференцией. Гримальди высказал догадку, что названные явления можно объяснить, если предположить, что свет представляет собой определенное волнообразное движение. Он считал, что цвета тел являются составляющими частями белого света.

Происхождение цветов различных тел он объясняет способностью тел отражать свет, падающий на них, с особыми видоизменениями. Рассуждая о цветах вообще, он высказывает предположение, что разница цветов обусловлена разницей в частоте световых колебаний. Однако Гримальди не разработал последовательной теории, объясняющей природу света.

Вопросы о природе света приобрели особое значение тогда, когда экспериментальные открытия подготовили для этого некоторую почву. В последующий период были проведены теоретические и экспериментальные исследования, позволившие сделать первые научно обоснованные выводы о природе световых процессов. При этом приобрело определенную силу стремление дать объяснение световым явлениям с двух противоположных точек зрения: с точки зрения представлений о свете как потоке частиц (корпускул) и с точки зрения волновой природы света.

Оптика от XVII века

XVII в. характеризуется дальнейшим прогрессом в различных областях науки, техники и производства. Значительное развитие приобретает математика. В разных странах Европы создаются научные общества и академии, объединяющие ученых. Благодаря этому наука становится достоянием более широких кругов, что способствует установлению международных связей в науке.

Во второй половине КУП в. окончательную победу одержал экспериментальный метод изучения явлений природы. Наиболее выдающиеся открытия этого периода связаны с именем гениального английского физика и математика Исаака Ньютона (1643–1727).

Важнейшим экспериментальным открытием Ньютона в оптике является дисперсия света в призме (1666). Исследуя прохождение пучка белого света через трехгранную призму, Ньютон установил, что пучок белого света распадается на бесконечную совокупность цветных пучков, образующих непрерывный спектр. Из этих опытов был сделан вывод о том, что белый свет представляет собой сложное излучение.

Ньютон провел и обратный опыт, собрав с помощью линзы цветные пучки, образовавшиеся после прохождения через призму пучка белого света. В результате он снова получил белый свет. Наконец, Ньютон провел опыт смешения цветов с помощью вращающегося круга, разделенного на несколько секторов, окрашенных в основные цвета спектра. Во время ого вращения круга все цвета сливались в один, создавая впечатление белого цвета.

Леонард Эйлер

Результаты этих фундаментальных опытов Ньютон положил в основу теории цветов, до сих пор никем из его предшественников не разработанной.

Согласно этой теории, цвет тела определяется теми лучами спектра, которые это тело отражает, другие же лучи тело поглощает.

Наряду с этими открытиями Ньютону принадлежат работы по дифракции, а также открытие закономерностей интерференционной картины, получившей название кольца Ньютона.

Ньютона считают создателем корпускулярной теории света, которую он назвал теорией истечения. Согласно Ньютону, частицы света (их называли корпускулы) имеют различные размеры: частицы, соответствующие красной области спектра, большие, а частицы, соответствующие фиолетовым лучам, – мельче. Между этими крайними частицами находятся частицы промежуточных размеров, что и обусловливает непрерывный спектр цветов. Теория истечения, кроме цветов, объясняла прямолинейное распространение света. Однако она столкнулась с очень большими сложностями при объяснении отображения и преломления, дифракции и интерференции. Для согласования теории истечения с этими фактами Ньютону пришлось прибегнуть к различным дополнительным гипотезам, которые были слабо обоснованы.

X. Гюйгенсу принадлежит открытие принципа, который сейчас носит его имя. С помощью этого принципа объясняются законы отражения и преломления.

Однако волновая теория света Гюйгенса из-за определенных недостатков не могла противостоять теории истечения Ньютона, поэтому на протяжении XVIII и в начале XIX в. в науке господствовала теория Ньютона.

Против теории истечения выступал выдающийся математик Леонард Эйлер (1707–1783), который большую часть жизни работал в Российской академии наук в Петербурге. Сторонником волновой теории света был гениальный русский ученый Михаил Васильевич Ломоносов (1711–1765), который считал, что свет представляет собой колебательное движение эфира. Однако даже эти знаменитые ученые не смогли пошатнуть господство теории истечения.

Из других крупных открытий в области оптики в XVII и XVIII вв. следует назвать измерение скорости света (1675) датским астрономом Олафом Ремером (1693–1792), которое он осуществил благодаря наблюдениям затмения спутников Юпитера.

Названные выше открытия и изобретения являются важными моментами в развитии волновой теории света. Множество других исследований следовали друг за другом, и в целом всю их совокупность можно рассматривать как триумф волновой теории света. Однако ряд явлений, обнаруженных в указанный период, а также излучение и поглощение света, не находили объяснения в волновой теории света. Перед волновой теорией света стояло много других вопросов, один из которых – что такое этот загадочный эфир, в котором распространяется свет? Как с этим эфиром взаимодействуют движущиеся тела? Ответы на эти и другие вопросы нельзя было дать, пока не появилось учение об электромагнитной теории света. И началась новая эпоха оптики…

Начало оптического производства на территории старой России

Создавая в Петербурге Российскую академию наук, Петр I и его единомышленники (академик Г. В. Крафт, М. В. Ломоносов и др.), четко осознавали необходимость подготовки для России собственных кадров квалифицированных мастеров-оптиков, которых в допетровской России совсем не было. Центром подготовки таких мастеров должна была стать Академия наук и организованные при ней специальные инструментальные мастерские и учебные классы.

Составленная токарем Андреем Нартовым «Записка» (Проект организации оптических мастерских) была горячо одобрена Петром I. Он собственноручно добавил к проекту перечень девятнадцати мастерских, которые следовало организовать в первую очередь, и среди них – оптическую мастерскую, целью которой было наладить в России собственное изготовление и обработку линз для различных областей использования. Вопрос о руководителях мастерской по обработке и шлифовке линз был также поставлен Петром I.

В процессе организации Российской академии наук рассматривался вопрос приглашения в Россию лучших специалистов-оптиков – настоящих знатоков своего дела в области изготовления и обработки линз и оптических приборов. В переписке первого президента Академии наук Блюментроста и ее секретаря Шумахера с Христианом Вольфом на протяжении 1723–1726 гг. подробно обсуждался ряд вопросов, связанных с подбором кандидатур выдающихся иностранных конструкторов и мастеров-оптиков. Наконец остановились на приглашении в Россию из Германии опытного шлифовщика линз Иоганна Георга Лейтмана (1667–1736).

Андрей Нартов

В начале своей карьеры Лейтман был пастором лютеранской церкви. Однако впоследствии его целиком и полностью увлекло искусство шлифования и обработки линз. В 1719 г. Лейтман опубликовал обстоятельное по тем временам руководство по шлифовке и обработке линз и изготовлению с этой целью оригинальных конструкций шлифовальных станков. Насколько успешной была работа Лейтмана, говорит тот факт, что в 1728 г. его книга вышла четвертым изданием и получила широчайшее распространение во всем мире. На основании упомянутой выше книги сподвижник Петра I Яков Брюс рекомендовал пригласить в Россию именно Лейтмана.

Лейтман принял приглашение и в 1726 г. переехал из Германии в Петербург. С собой он привез многочисленные инструменты и станки для изготовления и обработки линз. Работая в Петербургской академии наук, Лейтман успешно обучал изготовлению и шлифовке линз российских мастеров-оптиков. История сохранила только два имени россиян – шлифовальщиков линз, которых Лейтман особенно хвалил – Андрея Матвеева и Петра Ремезова.

До прибытия Лейтмана в Петербург и до того, как он развернул работу оптической мастерской, в Российской академии наук уже находились на службе двое опытных мастеров: оптик Колмыков и шлифовальщик оптических линз Иван Беляев. Иван Беляев работал в оптической мастерской, которую задумал и организовал Андрей Нартов сам Петр I в своем дворце. Именно здесь под руководством Логина Шеппера и изучал технику изготовления и шлифования оптических линз Иван Беляев.

Петр I. Мозаика работы М. В. Ломоносова (XV.III в)

После смерти Шеппера в 1718 г. Беляев продолжал работать в оптической мастерской Петра I. Приглашенный в 1726 г. на службу в Российскую академию наук, он обратился 19 июня 1726 г. в канцелярию Академии с предложением передать ей оборудование, оставшееся после Шеппера. Из этого следует, что до тех пор академическая мастерская еще не имела никакого оснащения для изготовления и шлифовки линз.

Предложение Беляева немедленно приняли. Президент Академии наук Лаврентий Блюментрост обратился ко двору с соответствующей просьбой, к которой приложил перечень инструментов Шеппера. В этом реестре было перечислено около 150 шлифовальных форм (медных, чугунных, железных и стальных) различных диаметров и других инструментов, необходимых для изготовления линз; были также и оптические инструменты, работа над которыми была незавершена, в частности два микроскопа. Оставленное Шеппером «Руководство» по шлифовке и обработке линз дает полное представление о том круге сведений и знаний, которые Шеппер передал своим ученикам, в частности Беляеву.

Просьба Академии наук была вскоре удовлетворена, и через короткий срок по письму Блюментроста было передано «копиисту» Академии наук Ермолаю Крайцеву все оборудование оптической мастерской Петра I. Этим важным моментом определяется начало самостоятельного изготовления Академией наук оптических инструментов. В первые годы существования Оптической мастерской дело развивалось, к сожалению, крайне медленно. Мастерская была плохо оборудована, академики не делали никаких заказов, а Беляев и Колмыков были очень плохо обеспечены материально.

Шлифовальный оптический станок

Тяжелое положение вынуждало Беляева и Колмыкова выполнять заказы на изготовление самых разных оптических инструментов (в частности, очков) на продажу. Первого мая 1729 г. Иван Елисеевич Беляев умер. После его смерти дело перешло в руки его сына Ивана, которого отец обучил шлифовальному ремеслу и технологии изготовления линз.

Универсальный микроскоп Д. Адамса (1759 г.)

В 1737 г. Иван Беляев изготовил уже целый ряд оптических инструментов: микроскопы, очки и другое оборудование. Он полировал и шлифовал линзы для объективов подзорных труб и на заказ – для очков, а также налаживал оптические инструменты, продолжал брать заказы на изготовление очков от профессоров и действительных членов Академии.

Сохранился документ, показывающий роль Беляева в изготовлении различных инструментов для Камчатской экспедиции, которая отправилась из Петербурга 17 декабря 1737 г. В этом интересном документе, кроме всего прочего, говорится: «Иван Беляев – стеклянных шлифовальных дел мастер, шлифует любое оптическое стекло, а именно: очки, подзорные трубы, микроскопы… и все, что экспериментов физического профессора и метеорологических обсерваторий касается, ныне делает микроскопы, барометры и термометры для Камчатской экспедиции».

Таким образом, династия Беляевых внесла огромный вклад в развитие техники обработки и шлифования линз в России. Появление качественных линз способствовало и научному их применению в составе различных физических приборов.

 

Люди и тени

Как ведет себя свет при распространении в пространстве? Ответ на этот вопрос будет разным в зависимости от того, через какие среды он проходит. Например, когда свет проходит через однородное прозрачное вещество (его свойства везде одинаковы), он распространяется прямолинейно. Результатом этого является образование тени за непрозрачным предметом.

Такое свойство света было использовано людьми при измерении времени с помощью солнечных часов.

А гораздо позже, в середине XVIII в., это свойство позволило некоторым людям, желающим иметь свой портрет, не заказывая его маститым художникам, получить его в виде теневой копии. Кстати, именно из-за того, что французский министр финансов по имени Этьен Силуэт упрекал знать за чрезмерные расходы на картины и портреты, дешевые теневые картины стали называть «портреты по Силуэту», а отсюда пошло употребление слова «силуэт».

Получали эти теневые силуэты следующим образом. Человек становился между источником света и специальным полупрозрачным экраном.

Мастер поворачивал «модель» так, чтобы тень на экране давала характерный профиль. Тень обводили карандашом, затем заливали тушью, вырезали, наклеивали на белый лист – силуэт готов!

Благодаря прямолинейности распространения света наблюдается много интересных явлений – космических и земных. Например, именно из-за образования тени от Солнца на поверхности Земли мы имеем день и ночь. (То, что ночь сменяет день, связано уже с вращением Земли вокруг собственной оси.)

По тем же причинам мы видим Луну на нашем небе по-разному (в астрономии это называют фазы Луны).

Где много света, там тень гуще.
И. Гете

Подобные изменения вида можно наблюдать и у других планет, например у Венеры, только для этого нужно применять оптические приборы.

Кстати, если бы мы с вами оказались на Луне, то наверняка заметили бы, что все тени на ней более резкие, чем на Земле. Это связано с тем, что Луна не имеет атмосферы, рассеивающей свет.

Возвращаясь с небес на землю, подумаем над тем, почему тени от одного и того же предмета могут быть резкими или размытыми. Для начала вам нужно провести собственный эксперимент: в солнечный день понаблюдать тень от своей руки, например, на стене (а если это не солнечный день – возьмите настольную лампу

Если вы будете приближать или отдалять руку от экрана-стены, то увидите, как границы тени меняются – становятся более резкими, или наоборот – будто размываются.

Фазы Луны

Такой эффект объясняется определенной зависимостью расстояния между источником света и предметом (в нашем случае – рукой). Оказывается, что, когда источник находится достаточно далеко, мы его можем рассматривать просто как световую точку («точечный источник света»). На этот раз тень будет довольно резкой – ее называют полной тенью. Когда же источник света близко, и свет от отдельных его частей попадает в места, куда свет от других частей не попал, – это будет так называемая полутень. Именно она воспринимается нами как размытая граница тени.

Тени на поверхности Луны

Явления затмения Солнца и Луны тоже связаны с прямолинейным распространением света и образованием тени и полутени. Однако это разные явления. Когда происходит полное затмение Луны, это означает, что Луна оказалась в тени Земли. А когда из определенного места на поверхности Земли наблюдают солнечное затмение, это является результатом того, что Луна «перекрыла дорогу» свету от Солнца.

Затмение Солнца

Люди, которые оказались в месте полной тени Луны, которую она отбрасывает на Землю, не видят Солнца – они наблюдают полное его затмение. Те, кто оказался в районе полутени, могут наблюдать частичное затмение Солнца.

 

«Свет мой, зеркальце, скажи!..»

Мы все привыкли пользоваться зеркалами, но как они «работают» и вообще, что можно считать зеркалом? Давайте об этом поговорим.

Наверное, вы умеете пускать «солнечный зайчик» с помощью зеркальца. Тогда вы наверняка знаете из собственного опыта, что для того чтобы направить «зайчик» в нужное место, следует изменить угол, под которым солнечный свет падает на зеркало. Вследствие этого изменится и направление, в котором отражается свет от зеркала.

В свое время было замечено, что в природе реализуется закон отражения света: угол, под которым световой луч падает на зеркало, равен углу, под которым луч отражается.

Световой луч – это такое физическое упрощение (еще говорят – идеализация), которое помогает выяснить, как ведет себя свет при распространении в веществе, отражении от зеркальных поверхностей или преломлении при переходе из одного вещества в другое. Световые лучи изображают прямыми со стрелками, которые показывают направление распространения света. С помощью графического изображения световых лучей удобно определять, как распространяется свет в различных случаях, как возникают, или не возникают изображения предметов в различных оптических устройствах. Раздел оптики, который это изучает, называют геометрической оптикой.

Вернемся к зеркалам. Считают, что они начали выполнять свое назначение с тех пор, когда было замечено свойство спокойной поверхности воды отражать свет. Природа не имеет специальных зеркал, поэтому озера, реки и пруды были единственными отражателями, пока люди не научились добывать металлы из руд и мастерить из них грубые искусственные отражатели.

Древнеримский историк Плиний сообщает о стеклянных зеркалах, которые делали финикийцы более чем за 1500 лет до новой эры. Но металлы уже применялись, поэтому почти наверняка металлические зеркала существовали еще раньше.

Мир – это зеркало, и оно возвращает каждому его собственное изображение.
Теккерей

Зеркала времен древнегреческой и римской цивилизаций были изготовлены из полированной бронзы. Самая известная легенда об Архимеде, который с помощью вогнутых зеркал сжег римский флот, тоже свидетельствует о применении зеркал и определенных знаниях об их действии.

Полированные зеркала из золота и серебра были предметом гордости богатых дам во времена раннего христианства.

В средние века был изобретен способ покрытия стекла тонким слоем серебра, что сделало зеркала доступными более широкому кругу людей.

Но только в эпоху итальянского Возрождения, золотой век развития искусств, началось массовое изготовление стеклянных зеркал. Признанным центром производства зеркал стала Венеция. Для покрытия стекла в Венеции пользовались оловом и ртутью. Изготовленная из них паста – амальгама – наносилась на стекло, благодаря чему получали отражающую металлическую поверхность.

Создание мнимого изображения в плоском зеркале

Сначала так изготавливали только маленькие зеркала. То небольшое количество зеркал большего размера стоило так дорого, что за эти деньги можно было купить, например, картины кого-то из мастеров Возрождения. Большое научное значение зеркала приобрели позже в связи с изобретением телескопа в начале XVII в. Первые телескопы состояли только из линз (поэтому их называют телескопы-рефракторы) и имели определенные недостатки по качеству изображения. Но когда Ньютон создал свой первый телескоп-рефлектор, в состав которого вошло зеркало, качество изображения стало значительно лучше.

Заметим, что в те времена довольно часто применяли так называемое зеркальное написание текста: зашифрованный таким образом текст мог прочитать только тот, кто тоже имел зеркало.

Зеркала стали применять в различных аттракционах и игрушках. Известный всем калейдоскоп был изобретен в Англии в 1816 г. Через год-полтора он попал уже в Россию, где его встретили с восторгом.

Самый простой калейдоскоп состоит из трех плоских, создающих призму, зеркал, размещенных в трубочке-цилиндре. Если со стороны одного основания положить горсть осколков цветного стекла, то с другой стороны можно увидеть чрезвычайно причудливые фигуры, которые меняются при малейшем повороте трубочки вокруг оси.

В 1818 г. даже появились стихи, которые А. Измайлов посвятил калейдоскопу:

Смотрю – и что ж в моих глазах? В фигурах разных и звездах Сапфиры, яхонты, топазы, И изумруды, и алмазы, И аметисты, и жемчуг, И перламутр – все вижу вдруг! Лишь сделаю рукой движенье — И новое в глазах явленье!

Техника изготовления зеркал значительно продвинулась вперед в 1840 г., когда немецкий химик Либих изобрел способ нанесения слоя серебра на стекло. Это важное изобретение удешевило производство зеркал и расширило их использование в повседневной жизни и в научных лабораториях.

Есть зеркало для лица, нет зеркала для души. Этот пробел следует заполнить серьезными размышлениями над самим собой.
Б. Грасиан

Многих физиков-экспериментаторов того времени увлекала идея измерения скорости света. Методы, которые применялись для этого, были основаны на многократном отражении света от зеркал – неподвижных или подвижных.

Изображение в калейдоскопе

В 1849 г. французский физик Анри Физо провел первое прямое измерение скорости света с помощью зеркал и вращательного зубчатого колеса. Физо использовал пучок света, отражающийся от полупрозрачного зеркала и проходящий через прорезь между зубцами колеса до второго зеркала, которое было размещено на расстоянии 8,66 км. Если колесо было неподвижно, наблюдатель видел отражение света в далеком зеркале. Когда колесо начинали быстро вращать, то при определенной частоте вращения можно было добиться того, чтобы свет все же проходил сквозь тот же самый проем. По частоте вращения и расстоянию, которое проходил свет, рассчитали скорость света. По результатам Физо скорость света составляла 312 000 км/с. Эта цифра превышает правильный результат, но она показала, что свет распространяется не с бесконечной скоростью, как считали ранее, а с имеющей определенное значение.

Схема телескопа-рефлектора

Позже, в 1862 г., другой французский физик Жан Фуко провел независимое измерение скорости света. При этом он тоже применял зеркало. Наиболее известные эксперименты по измерению скорости света проводил Альберт Майкельсон, которые начались в 1879 г. и продолжались почти до его смерти в 1932 г. (Многие серии опытов Майкельсон провел совместно с Эдвардом Морли.) В этих опытах также применялось вращение зеркал. Именно из-за того, что скорость света очень и очень большая, то есть обычные «земные» расстояния он проходит за очень короткое время, исследователям нужно было придумать нечто такое, что позволяло бы рассчитать эту скорость. И здесь пригодились зеркала, по частоте вращения которых и осуществили задуманное.

Другим инструментом, в котором используется вращающееся зеркало, является дальномер. В этом приборе применяется полупрозрачное зеркало, с помощью которого наблюдатель видит два изображения объекта. Одно он видит прямо через это «частичное» зеркало, а второе – после двух отражений: сначала во вращающемся зеркале, а затем – в полупрозрачном. Шкала, с помощью которой можно следить за поворотом подвижного зеркала, проградуирована в единицах расстояния. Для того чтобы определить расстояние до объекта, наблюдатель должен совмещать два его изображения.

Другая распространенная конструкция дальномера устроена так: у одного изображения будто срезана верхняя половина, а у другого – нижняя.

Подгоняя две части изображения таким образом, чтобы они давали одно целое, наблюдатель определяет расстояние до предмета.

Рассказывая о зеркалах, нельзя не сказать об их особой роли в астрономии. Представить себе исследования звездного неба, планет и Солнца без телескопов просто невозможно! Ранее мы уже упоминали о первых оптических телескопах, которые состояли только из линз. Изобретение Ньютоном телескопа-рефлектора («рефлект» – отражать), в состав которого входит зеркало, значительно улучшило качество изображений, которые давал телескоп.

Объектив одного из самых больших рефлекторов, установленный на горе Маунт Паломар в Калифорнии, является параболическим зеркалом диаметром пять метров. Такое зеркало может вобрать в 700 000 раз больше света, чем человеческий глаз.

Еще один телескоп-рефлектор с зеркалом, диаметр которого составляет шесть метров, был установлен в СССР на Кавказе в 1975 г.

Наибольшими современными оптическими телескопами являются два идентичных телескопа Кека, расположенных рядом на вершине Мауна-Кеа, на Гавайях. Каждый из них имеет рефлектор диаметром 10 метров, состоящий из 36 шестиугольных элементов. Они с самого начала предназначались для совместной работы.

«Очень большой телескоп» (на английском – аббревиатура VLT), который находится в Чили, представляет собой конструкцию из четырех зеркал диаметром 8,2 м, образующих единый телескоп с 16,4-метровым рефлектором.

 

Кто сломал свет?

Мы уже упоминали о том, что, когда в процессе распространения свет переходит из одного вещества в другое, происходит его отражение и преломление.

Явление преломления очень легко наблюдать, опустив в стакан с водой ложку или какую-то трубочку.

Конечно, этот и подобные ему эффекты люди наблюдали давно и поэтому старались их объяснить. Уже было отмечено, что в XVII в. поистине осуществилась первая революция в оптике. Именно тогда появились телескоп и микроскоп, были изобретены рецептуры варки стекла, резко повысилось мастерство шлифовальщиков, и открылась возможность контроля формы обрабатываемых поверхностей. Однако настоящий научный аппарат для расчета оптических систем мог быть создан только на основе точного формулирования закона преломления света. Его открытие по праву принадлежит голландцу В. Снеллиусу и французу Р. Декарту.

Виллеброрд Снеллиус (1580–1626) – голландский (датский) ученый. Родился в Лейдене. В 1608 г. он получил степень магистра в Лейденском университете, там, в последствии, и работал (с 1615 г. – профессор). Его научные труды посвящены математике, оптике, астрономии.

В 1621 г. Снеллиус экспериментально вывел точный закон, связывающий угол наклона светового луча, падающего на поверхность, с углом, на который световой пучок, прошедший через эту поверхность, отклоняется или преломляется. До него были известны таблицы Кирхера для углов падения и соответствующих им углов преломления из воздуха в воду и из масла в стекло. Снеллиус впервые связал между собой синусы этих углов. К сожалению, ученый не опубликовал свой труд, и закон, носящий его имя, был обнародован лишь в 1637 г. благодаря Рене Декарту, который открыл этот закон независимо от Снеллиуса.

Явление преломления света

Еще до открытия этого закона явление преломления света применялось во врачебной практике, уже в XШ в. врачи рекомендовали для улучшения зрения носить очки. Интересно, что не все считали целесообразным пользоваться очками. Существовала даже такая мысль: «Основная цель зрения – знать правду, однако линзы для очков дают возможность видеть предметы большими или меньшими, чем они есть на самом деле, а иной раз – перевернутыми, деформированными и ложными, следовательно, они не дают возможности видеть действительность…»

Во времена Роджера Бэкона (1214–1294) – изобретателя очков – некоторые даже считали, что очки – это творение дьявола. Несмотря на это, великий Леонардо да Винчи (1452–1519) в своем трактате «Атлантический кодекс» давал объяснения действию зеркал, линз и очков с научной, а не мистической точки зрения.

Когда в 1666 г. Ньютон исследовал прохождение света через стеклянную призму, он доказал, что свет не только преломляется, но и как бы распадается на прекрасные цвета – полученную картину ученый назвал spectrum (спектр). Так было открыто явление дисперсии.

Виллеброрд Снеллиус

Но не будем касаться эффектов, связанных с дисперсией, – пока ограничимся разговором о преломлении света в призмах, линзах и других прозрачных телах.

Когда свет падает на границу раздела двух прозрачных веществ, чаще всего его направление меняется – физики говорят, что угол преломления луча отличается от угла его падения. Если свет проходит, например, из воздуха через стеклянную пластину или призму, угол преломления становится меньше угла падения.

Явление преломления света можно наблюдать, стоя на берегу реки. Нам кажется, что дно реки поднято вверх (особенно это заметно, если на дне лежат какие-то камни). На самом деле, конечно, это не так. Дело в том, что свет, идущий от дна и попадающий нам в глаза, преломляется. Однако наши глаза воспринимают этот свет так, что он исходит из точек, находящихся на продолжении световых лучей, которые попали в глаза. То есть в действительности глаза видят мнимое изображение дна.

Можно смоделировать этот эффект с помощью известного опыта с чашкой и монетой. Сначала положите на дно непрозрачной чашки монету и сядьте у стола, на котором стоит чашка, так, чтобы монеты не было видно (для этого следует понемногу отодвигать чашку). Затем осторожно налейте воды в эту чашку: вы заметите, что монета будто всплывает со дна, поднимается!

Явление преломления света лежит в основе действия линз. (Кстати, само слово линза происходит от итальянского «чечевица», потому что линзы по форме действительно похожи на бобы.)

Ход лучей в различных линзах

В линзах происходит отклонение световых лучей от первоначального их направления. В зависимости от формы линз их воздействие на световые пучки может быть различным: собирающее и рассеивающее. Такое действие легко наблюдать, если на разные линзы направить параллельные пучки света.

Схематическое изображение прохождения лучей света через стеклянную призму

Преломление света в линзах применяется в различных приборах. Здесь нельзя не вспомнить телескопы и микроскопы, фотоаппараты и различные проекционные аппараты (например, киноаппарат). Но для нас еще важно, что явление преломления света происходит также и в нашем организме – имеются в виду наши глаза.

Важную роль для нашего зрения играет так называемый хрусталик, имеющий форму линзы. Но не только он! Самое большое преломление происходит в так называемом стекловидном теле, являющимся основной частью нашего зрительного аппарата.

Преломление света играет важную роль и в естественных оптических явлениях, которые мы можем наблюдать. Например, мираж – преломление (рефракция) световых лучей в атмосфере Земли, о чем пойдет речь ниже.

 

Некоторые особенности зрения

Строение глаза

«Стянутая рыбачья сеть, закинутая на дно глазного бокала и ловящая солнечные лучи» – так представлял себе древнегреческий врач Герофил сетчатку глаза.

Человека доброжелательного и искреннего можно узнать по глазам.
Марк Аврелий

Это поэтическое сравнение оказалось удивительно точным. Сетчатка глаза – именно сеть и именно ловит отдельные «частицы света» – так называемые кванты света.

FB2Library.Elements.Poem.PoemItem
И. Гете (Перевод В. А. Жуковского)

Темной ночью от далекой неяркой звезды наш глаз ловит не очень много квантов, этих малых порций света. По своей чувствительности глаза приближаются к идеальному физическому прибору, так как нельзя создать прибор, который зарегистрировал бы менее одного кванта. Этим уникальным свойством глаза пользовались ученые-астрономы давних времен и пионеры атомной и ядерной физики. После долгого пребывания в темноте им удавалось увидеть далекую звезду. И вместе с тем глаз выдерживает астрономическую лавину квантов, исчисляемую десятками миллиардов в секунду. Например, если вы посмотрите на Солнце, ваши глаза получат миллиардную дозу квантов. Но этого лучше не делать.

Строение глаза

Так что же такое глаз? Давайте рассмотрим его строение.

Глаз обычно сравнивают с фотоаппаратом. Роль объектива приписывают хрусталику. Как и любой фотоаппарат, глаз имеет диафрагму – зрачок. Его диаметр изменяется в зависимости от освещенности. Изображение, создаваемое на сетчатке, немного хуже, чем на пленке хорошего фотоаппарата. Но потом сама сетчатка и мозг исправляют его, делают четким, цветным и, наконец, осмысленным. Механизмы работы мозга, которые обеспечивают передачу, расшифровку и обработку зрительной информации, поступающей из глаза, изучают сейчас сотни ученых в разных странах мира.

Сетчатка в зрительной системе – это, по образному выражению одного из ученых, «мозг, выдвинутый на периферию». Сетчатка – достаточно сложный нервный центр, ее строение чрезвычайно интересно. Сетчатка напоминает пирог толщиной 0,15—0,20 мм. В этом «микропироге» несколько слоев. Каждый состоит из различных клеток, которые сплетаясь и прижимаясь друг к другу своими отростками, образуют ажурную сеть.

От клеток последнего слоя отходят длинные отростки. Собираясь в одном месте в пучок, они образуют зрительный нерв. Более миллиона его волокон несут в мозг зрительную информацию, закодированную сетчаткой в виде слабых биоэлектрических импульсов. Задача мозга – мгновенно расшифровать их.

Чего нет в мыслях, того не будет в глазах.
(Русская пословица)

Место на сетчатке, где волокна собираются в пучок, называется слепым пятном. Если, например, изображение головы человека попадет на это место, то мы… головы не увидим! Об этом знали давно. Один веселый французский король забавлялся, рассматривая своих подданных без голов. Для этого ему приходилось рассматривать их особым образом: одним глазом на определенном расстоянии.

В первом слое сетчатки, образованном светочувствительными клетками – палочками и колбочками, свет поглощается. Благодаря им и происходит зрительное восприятие окружающего мира.

В сетчатке человека около 125–130 млн палочек и 6–7 млн колбочек. Палочки и колбочки состоят из двух половинок. Внешняя часть этих вытянутых в длину клеток представляет собой гигантскую массу наложенных друг на друга дисков. В палочке их около тысячи, толщина каждой примерно 150 ангстрем (1 ангстрем = 10-8 см). Сейчас ученым уже известно и строение диска: он состоит из нескольких молекулярных слоев, а каждый слой – из нескольких миллионов молекул.

«Лучи твои создают глаза всех животных твоих» – это слова египетского гимна Атону – богу Солнца. Древний Египет поклонялся Солнцу. Египтяне в мифах и гимнах уподобляли Солнце глазу. Академик С. И. Вавилов написал когда-то поэтическую и вместе с тем научную книгу «Глаз и Солнце». В ней он доказывал правоту египтян. Яснее всего «солнечность глаза» проявляется в его так называемой спектральной чувствительности, т. е. чувствительности к различным квантам – «частицам» солнечного спектра. Вспомним радугу – мы различаем в ней десятки оттенков, которые физически отличаются между собой только миллионными долями сантиметров, в которых измеряется длина световой волны!

Ночное и дневное зрение

Люди давно заметили определенную разницу между тем, как они видят днем и как ночью. Дело в том, что в центре сетчатки глаза находятся преимущественно колбочки, другая же ее часть выстлана палочками. Палочки ответственны за наше бесцветное, сумеречное зрение, они являются очень светочувствительными. В сетчатке ночных животных содержатся практически только палочки, например у сов и летучих мышей. Они хорошо видят ночью и плохо днем. Мир для них черно-белый, бесцветный.

Строение колбочки

В дневном, цветном зрении главную роль играют колбочки. Их чувствительность к свету небольшая, но в этом и нет необходимости: днем света много. У дневных животных, например, голубей, кур, сетчатки вообще «колбочковые». Вечером они совсем плохо видят. Недаром неспособность видеть при слабом свете в народе называют куриной слепотой!

В 1823 г. чешский физиолог Я. Пур-кинье описал интересный факт, который доказал, что днем мы видим в основном колбочками, а в сумерках – палочками. Вспомните красный мак и голубой василек. Днем они одинаково яркие и светлые. В сумерках же красный мак кажется почти черным, его едва можно увидеть, а вот василек все еще виден хорошо, он остается белесо-синим. В чем же дело? Как это можно объяснить?

В сумерках, когда света мало, колбочки перестают работать, а для палочкового зрения света еще хватает. Зрительный пигмент палочек – зрительный пурпур – сине-голубые лучи поглощает хорошо, а вот красные чувствует плохо, он их почти полностью пропускает через себя и от них не меняется.

Поэтому красный мак в сумерках палочки «не видят», а голубой василек различают хорошо. Итак, днем работают колбочки и, очевидно, палочки тоже, а ночью – только палочки.

Теперь, естественно, возникает вопрос: а как осуществляют колбочки именно цветное зрение? С чем связано восприятие красок окружающей среды?

Сейчас известно, что зрение человека «трехцветное», то есть мы воспринимаем любой цвет как комбинацию трех основных цветов: красного, синего и зеленого. Однако и сейчас цветное зрение – пока одна из самых сложных и самых неизученных проблем современной физиологии органов чувств.

Когда глаза говорят одно, а язык другое, опытный человек более верит первым.
Р. Эмерсон

Научная разработка гипотезы о трехкомпонентном цветном зрении связана с именами М. В. Ломоносова и ученых XIX в. – немецкого натуралиста Г. Гельмгольца и английских физиков Т. Юнга и Д. К. Максвелла. Но и до наших дней вопрос о трехцветном зрении все-таки долго оставался лишь гипотезой. Чтобы она стала теорией, необходимо было доказать экспериментально, что в сетчатке глаза человека и животных, обладающих цветовым зрением, все колбочки действительно делятся на красно-, зелено– и синечувствительные. Решить эту проблему не могла классическая физиологическая оптика конца XIX – начала ХХ в.

Только в середине 60-х годов ХХ в., т. е. сравнительно недавно, одновременно и независимо в нескольких лабораториях мира были проведены необходимые эксперименты. Исследовались сетчатки человека, обезьяны и золотой рыбки. Оказалось, что все внешне одинаковые клетки распадаются на три группы: красно-, зелено– и синечувствительные. Это означает, что в каждой из колбочек находится свой зрительный пигмент и благодаря его особенностям колбочки способны воспринимать три основных цвета: красный, зеленый, синий.

 

Оптические явления в природе

Мы видим окружающий мир таким прекрасным благодаря тому, что природа наградила нас зрением, способным воспринимать много оттенков цветов и будто бы задерживать изображение, возникающее на сетчатке глаза. Природные явления становятся перед нами во всей своей красе, и иногда… обманывают нас.

Поговорим о некоторых из явлений, связанных с распространением света и его восприятием человеческим глазом. Конечно, не все оптические эффекты, которые мы наблюдаем, будут здесь рассмотрены. Коснемся, вероятно, самых красивых и интересных из них.

Миражи

В жаркие солнечные дни на асфальтированных шоссе водители автомашин часто наблюдают такую картину: некоторые участки асфальта, находящиеся перед автомашинами на расстоянии около 80—100 м, кажутся покрытыми лужами. Когда водитель подъезжает ближе к этому месту, лужи исчезают и снова появляются перед ним, примерно на том же расстоянии.

Природа никогда не обманывает нас, это мы сами постоянно обманываемся.
Ж. Ж. Руссо

А вот еще одна картина. Представьте себе раскаленную пустыню: вокруг, куда ни глянь – раскаленный горячий песок. И вдруг впереди, где-то на линии горизонта, возникает озеро. Его видно совсем реально. Кажется, что нужно преодолеть всего лишь один-два километра, и можно будет освежиться. В воображении возникает даже плеск воды. Но вот вы проходите и один, и второй, и третий километр, а озеро все так же где-то впереди, а вокруг, по-прежнему, одни пески.

Оба эти случая являются миражами – оптическими явлениями, которые заключаются в том, что, кроме предметов в их реальном виде, можно видеть их мнимые изображения.

Мираж

Чаще всего такие явления наблюдают в пустыне, потому что именно там слой воздуха вблизи раскаленной песчаной поверхности очень нагревается. При этом плотность этого слоя относительно верхних слоев меньше, а показатель преломления (о нем уже шла речь ранее) тоже снижен. Поэтому световые лучи, идущие от предметов, будут изгибаться.

Например, если в ясный день наблюдатель стоит где-то поблизости песчаного бархана, то световой луч от определенного участка неба попадет ему в глаза, испытав искривление. Это означает, что наблюдатель увидит соответствующий участок неба не над линией горизонта, а ниже ее. Ему будет казаться, что он видит воду, хотя на самом деле перед ним будет изображение голубого неба.

Если у линии горизонта находятся пальмы, холмы или что-то другое, то благодаря искривлению лучей наблюдатель увидит их перевернутыми. Он будет воспринимать это как отражение соответствующих объектов в несуществующей воде! Так возникает оптическая иллюзия, которую называют нижний, или «озерный» мираж.

Иллюзия так же нужна для нашего счастья, как и действительность.
К. Бови

Случается, что воздух у самой поверхности земли может быть не нагретым, а наоборот, заметно холоднее по сравнению с более высокими слоями. В таком случае световые лучи тоже будут изгибаться, но выпуклость их траектории будет направлена вверх. Поэтому наблюдатель сможет увидеть те объекты, которые скрыты от него линией горизонта. Причем эти объекты будут словно висеть над горизонтом в воздухе. Такие миражи так и называют – верхними.

Когда плотность воздуха и его оптические свойства меняются с высотой неравномерно, возникают двойные и тройные миражи. В этих случаях можно наблюдать несколько изображений объектов.

Под воздействием ветра и вертикальных воздушных потоков слой холодного воздуха может изменяться по толщине, перемещаться вверх-вниз. Поэтому и верхнее, и нижнее изображение со временем будут меняться, создавая различные, будто живые картины. Так возникает знаменитая «Фата-Моргана» – мираж, когда одна картина неуловимо сменяется другой, запутывая путешественников, пытающихся достичь замечательных мест, которые им привиделись.

Гораздо меньше изучены так называемые сверхдальние миражи, когда наблюдаются изображения объектов, находящихся на расстояниях сотен километров. Считают, что это становится возможным, когда световые лучи попадают в слой холодного воздуха, будто зажатого слоями горячего воздуха. Световые лучи распространяются в этом слое, как в световоде. Однако на это явление влияют еще и другие факторы. Возможно, в атмосфере при определенных условиях создаются своеобразные воздушные линзы, что приводит к появлению вторичных миражей (миражи от миражей). Кроме того, вероятно, определенную роль играет ионосфера – слой в атмосфере Земли, который находится на высоте 70—100 км, – способная отражать световые лучи.

Источник поэтического вдохновения – радуга

Чудесное явление – радуга – издавна поражало воображение людей. О радуге слагали легенды, ей приписывали удивительные свойства. У древних греков богиня радуги Ирида выступала посредником между богами и людьми. Глядя на радугу, греки верили, что она соединяет небо и землю.

С радугой почти всегда связывали чувство радости и облегчения. Например, по библейской легенде бог Яхве после Всемирного потопа повесил на небо радугу в знак того, что он больше не будет так жестоко наказывать людей.

О радуге часто вспоминали поэты, например великий английский поэт Дж. Г. Байрон, немецкий философ и поэт И. Гете, немецкий романтик Ф. Шиллер.

Радуга

Байрон написал:

Все ободрились: радугу они Считали добрым предзнаменованьем; И римляне, и греки искони Подобным доверяли указаньям.

В стихах Ф. И. Тютчева находим:

Как неожиданно и ярко На влажной неба синеве Воздушная воздвиглась арка В своем минутном торжестве! Один конец в леса вонзила, Вторым за облака ушла — Она полнеба обхватила И в высоте изнемогла. О, в этом радужном виденье Какая нега для очей! Оно дано нам на мгновенье, Лови его – лови скорей!

Когда-то английские поэты XVII в. упрекали Ньютона в том, что он, объяснив происхождение радуги, замахнулся на ее красоту. Но давайте не будем упрекать ученых – знания о природных явлениях не превратят нас в бездушных роботов, и мы всегда сможем ощутить прелесть Лермонтовских строк:

Там разноцветною дугой, Развеселясь, нередко дивы На тучах строят мост красивый, Чтоб от одной скалы к другой Пройти воздушною тропой.

Наблюдая радугу, люди, естественно, пытались понять ее происхождение. Сначала стало ясно, что это явление связано с наличием в атмосфере капелек воды. Одна из первых научных работ по этому поводу была напечатана еще в 1571 г. Автором ее был Флетчер, который считал, что появление радуги связано с двукратным преломлением света в одной капле воды и последующим отражением от второй капли.

Позже сначала итальянец Антонио Доминико, а затем француз Рене Декарт правильно объясняли появление радуги преломлением света именно в одной капле. В своем трактате Декарт объяснял также, почему радуга появляется именно тогда, когда высота Солнца над горизонтом составляет сорок два градуса. Однако ни Доминико, ни Декарт не смогли правильно объяснить появление цветов радуги. Это сделал Ньютон!

На основании своих похожих на чудо опытов с призмами Ньютон обнаружил, что «свет состоит из лучей всех цветов не только после выхода из призмы, но и тогда, когда он еще не дошел до призмы, до преломления». Напомним, что открытое Ньютоном явление называют дисперсией света.

Сейчас мы не будем приводить полное объяснение явления радуги, так как для понимания этого вам нужны большие знания математики и физики (надеемся, позже вы их получите в школе!). Однако скажем, что в этом явлении главным считается преломление солнечного света в капельках воды, причем размер этих капелек тоже влияет на то, что именно наблюдается.

Гало

Если радугу видел каждый из нас, то явление гало, пожалуй, нет. Это оптическое явление бывает довольно редко, однако о нем можно услышать или прочитать в исторических романах, описаниях и т. д.

Гало

Это явление заключается в том, что на небе наблюдают, кроме истинного светила – Солнца или Луны, – так называемые ложные. В давние времена появление светящихся колец, крестов или нескольких солнц или лун люди воспринимали исключительно как зловещее знамение.

В рассказе Джека Лондона «Тропой ложных солнц» можно прочитать: «С двух сторон солнца стоят ложные солнца, так что в небе их сразу три. В воздухе от мороза алмазная пыль».

Вообще гало могут выглядеть по-разному – светящиеся кольца, столбы, кресты, «ложные светила». Кстати, и само слово «гало» происходит от греческого halos – «круг».

Причиной появления гало является преломление света в ледяных кристалликах и отражения от их граней. Преломление приводит к появлению слегка окрашенных элементов гало; отражение дает белые элементы гало: их цвет совпадает с цветом светила (Солнца или Луны).

Своей чрезвычайной симметрией гало обязано правильной форме ледяных кристалликов. При этом значительную роль играет упорядоченная ориентация этих кристалликов в пространстве.

Северное сияние

Веками люди восхищались величественной картиной северного сияния, и, конечно же, человека интересовало его происхождение.

Одно из древнейших упоминаний этого природного явления встречается у Аристотеля. Он писал: «Иногда в ясные ночи наблюдается на небе множество явлений – сияния, провалы, кроваво-красная окраска. Кажется, будто полыхает пламя».

Там, где жил Аристотель, северное сияние бывает очень редко, но все же бывает. В таких случаях оно отличается особым богатством красок с преобладанием именно красных тонов.

А вот описание северного сияния, сделанное еще в I в. н. э. римским философом Сенекою: «Некоторые из них выглядят как пустота, когда под светящейся короной свечение отсутствует и образуется как бы овальный вход в пещеру, другие – как бочки, когда видно большое закругленное пламя, перемещающееся с места на место…»

Северное сияние у одних людей вызывало страх, у других, наоборот, – веру в то, что их ждет поддержка в великих делах. Так, во время битвы на Чудском озере Александра Невского с немцами (1242) на небе вдруг появились вспышки (так на Руси называли северное сияние). Согласно легенде, русские воины увидели в этом добрый знак и с удвоенной силой пошли на врага.

Тайна северного сияния оставалась нераскрытой на протяжении многих веков. Относительно их происхождения была выдвинута масса гипотез, порой очень наивных. Так, некоторые считали, что такое сиянио является отблеском солнца, опустившегося за горизонт. Другие предполагали, что это свет, который излучают полярные льды при особенно сильных морозах.

М. В. Ломоносов тоже интересовался природой северного сияния. Он даже в поэтической форме сформулировал вопросы, которые при этом возникают:

Что зыблет ясной ночью луч? Что тонкий пламень в твердь разит? Как молния без грозных туч Стремится от земли в зенит? Как может быть, чтоб мерзлый пар Среди зимы рождал пожар?

В опытах по электричеству, которые проводил Ломоносов, он увидел нечто общее со свечением в атмосфере. Ученый считал, что свечение газового электрического разряда и северное сияние близки по своей природе. Подобные выводы сделали Б. Франклин и Ж. Кантон.

Северное сияние

Северное сияние

По-настоящему разобраться в том, как возникает это очень красивое природное явление, ученые смогли только в наши дни. Но и сейчас некоторые вопросы остались еще не выясненными.

Чаще всего встречаются четыре формы сияния: однородная дуга, лучи (лучевая полоса), ленты, размытые пятна (их называют диффузными пятнами).

Различные формы северного сияния могут возникать одновременно и накладываться друг на друга. Лучи, ленты и пятна перемещаются, при этом интенсивность их свечения со временем меняется. Обнаружено, что скорость движения лучей и лент достигает десятков километров в секунду!

В течение ночи можно наблюдать постепенное превращение одной формы сияния в другие. Например, однородная дуга разбивается на лучи или превращается в сложные ленты, а затем распадается на облакоподобные пятна.

Если посмотреть на нашу Землю из космоса, то сияние, о котором мы говорим, будет наблюдаться в определенных зонах, окружающих овалом полюса планеты. Такие овалы смещены в ночную сторону земного шара.

На дневной стороне земного шара (стороне, обращенной к Солнцу) овальная зона простирается от широты 75° до широты 85°, а на ночной – примерно от 60° до 70°. Интересно, что положение овала зоны является фиксированным относительно Солнца. В течение суток Земля совершает оборот под этим овалом.

Когда солнечная активность повышается, размеры зоны сияния значительно увеличиваются. После особо крупных волнений эта зона может так расшириться, что достигнет средних и даже низких широт. При этом заметно возрастает интенсивность свечения сияния. Как же объяснить это явление?

От нашей звезды Солнца во всех направлениях непрерывно распространяются электромагнитное излучение и потоки заряженных частиц (эти потоки называют солнечным ветром). Когда заряженные частицы попадают в земную атмосферу, на них действует магнитное поле Земли – наиболее сильное именно у полюсов. Сталкиваясь с атомами и молекулами атмосферы, частицы вызывают так называемую люминесценцию – свечение в атмосфере, что и представляет собой северное сияние.

Таким образом, северное сияние – это люминесцентное свечение, возникающее в результате взаимодействия заряженных частиц (электронов и протонов) с атомами и молекулами земной атмосферы.

Свечение моря

Существует много описаний свечения моря, основанных на собственных наблюдениях этого впечатляющего природного явления. Большинство описаний принадлежит, естественно, мореплавателям. Они пишут о светящихся волнах, расходящихся от корабля, о световой дорожке за кормой, о полыхающих глубинах. Иногда свечение занимает огромные пространства; вокруг, сколько охватишь взглядом, увидишь светящиеся гребни, длинные светящиеся полосы, которые могут быть настолько яркими, что на низких облаках возникают блики. Особенное впечатление производят изменчивые световые «фигуры», состоящие из ярких пятен, полос, кругов, завихрений.

Как великий художник, природа умеет и малыми средствами достичь больших эффектов.
Г. Гейне

Очень яркое свечение бывает во время цунами – огромных волн, падающих на побережье, когда под морским дном или в прибрежной полосе происходит землетрясение. Приближаясь к берегу, такие волны сначала вызывают сильный отлив – море вдруг отступает, иногда на километры. И вслед за этим вода возвращается в виде волны, высота которой может достигать десятков метров. Ее удар сметает все на своем пути; волна разрушает дома, выбрасывает на берег суда, вырывает с корнем и ломает толстые деревья. Перед тем как вот-вот должна прийти волна цунами, наблюдается особенно сильное свечение моря. Морское дно, оголившееся при кратковременном отливе, полыхает ярким светом.

Отметим две особенности свечения моря. Во-первых, оно возникает не «само по себе», а в ответ на воздействия возбуждающего характера. Возбуждающими факторами могут быть всевозможные волнения морской поверхности, прибой, прохождение судна и особенно землетрясение и образование волн цунами. Даже за обычной лодкой может возникать светящийся след, при этом с весел падают «огненные» капли, от их ударов по воде расходятся светящиеся круги.

Во-вторых, свечение моря характеризуется исключительной изменчивостью. Оно может вспыхнуть ярко в одном месте, внезапно исчезнуть в другом; интенсивность его может быстро изменяться во времени.

Море светится, как правило, зеленоватым и голубым светом. Реже наблюдается желто-зеленое и желтое свечения. Очень редко можно видеть свечение других цветов – фиолетового, оранжевого, красного.

Светящиеся организмы

Свечение моря – это всегда свечение живых организмов. Очень распространенные в прошлом представления о том, что свечение моря вызывают растворенные в морской воде соли или окисляющийся фосфор оказались неверными. Есть все основания называть свет, рождающийся в море, «живым светом».

Сегодня известно более 800 видов светящихся морских организмов – от светящихся бактерий и одноклеточных жгутиконосцев до светящихся рачков и рыб. Среди «сухопутных» организмов светятся только некоторые виды насекомых (жуки из семейства светляков, личинки отдельных видов комаров), а также некоторые виды грибов. Именно грибы вызывают хорошо известное свечение трухлявого дерева в лесу.

Светящиеся бактерии разделяют на две группы. К первой относятся бактерии, которые могут свободно жить в морской воде. В одном литре морской воды содержится в среднем 103—104 таких бактерий. Они часто поселяются на мертвой рыбе, в результате чего рыба загнивает, начинает светиться.

Вторую группу светящихся бактерий составляют бактерии, являющиеся сожителями рыб и головоногих моллюсков. Светящиеся органы некоторых рыб представляют собой специальные культиваторы для таких светящихся бактерий. Кровеносная система рыбы обеспечивает бактерии питательными веществами, доставляет им кислород, выводит продукты обмена. Когда кровеносные сосуды рыбы сжимаются, прилив крови уменьшается, а вместе с тем уменьшается и доступ кислорода к бактериям, вследствие чего свечение бактерий ослабевает или даже прекращается.

Расширение сосудов вызывает, наоборот, вспышку свечения.

Ночной призрак морского дна – способный светиться червь-трубкожил

Было бы, однако, неправильно думать, что свечение любых организмов связано со свечением бактерий, живущих в них. Многие организмы излучают свет сами, они имеют для этого специальные органы (фотофоры), нередко весьма сложные.

В прибрежных зонах морей распространены светящиеся одноклеточные жгутиконосцы – так называемые ночесветки. Отдыхающие на берегу Черного моря могут любоваться создаваемым ночесветками свечением воды, искрящимся у берега. Сама ночесветка красного цвета, ее свечение имеет голубоватый цвет. Большие ночесветки могут быть диаметром 1–2 мм; их хорошо видно невооруженным глазом. Внешне они напоминают мелкозернистую красную икру.

И. А. Гончаров в романе «Фрегат «Паллада» так описывает встречу со скоплениями ночесветок у берегов Японии: «Множество красной икры, будто толченый кирпич, пятнами покрывает в разных местах море. Икра эта сияет по ночам нестерпимым фосфорическим блеском. Вчера свет был так силен, что из-под судна как будто вырывалось пламя; даже на парусах отражалось зарево; за кормой стелется широкая огненная улица…»

Светятся также многие виды медуз. Среди них часто встречается в морях и океанах оранжевая медуза – пелагия. Ее купол имеет диаметр до 25 см, а длина щупалец достигает двух метров. Когда медузу раздражают, на поверхности ее купола и щупалец возникают светящиеся зеленые полосы.

Довольно эффектен и светящийся рачок эуфаузида. Он достигает в длину 3–5 см и дает очень сильный свет. Распределенные по телу рачка светящиеся органы имеют сложное строение. Они могут поворачиваться, способны изменять интенсивность излучения.

Очень интересен светящийся мелководный кальмар ватасения, живущий в Японском море. Он тоже имеет многочисленные светящиеся органы (фотофоры). Особенно ярко светятся фотофоры на концах щупалец.

Свечение рыб бывает трех видов: внеклеточное (раздраженная рыба выбрасывает облако светящейся слизи), внутриклеточное (создаваемое специальными светящимися органами, содержащими излучающие клетки), бактериальное (создаваемое светящимися бактериями, живущими в определенных местах на теле рыбы).

Кальмар

Фотофоры рыб с внутриклеточным свечением разнообразны, часто имеют сложное строение. У них есть отражатели, линзы, диафрагмы, светофильтры. Фотофоры могут покрывать рядами тело рыбы снаружи, как, например, у некоторых видов акул, но могут находиться и внутри тела рыбы, как, например, у рыбы рабдамии. У этой рыбы скрытые внутри тела светящиеся органы представляют собой специальные наросты кишечника. Излучение, исходящее от светящихся органов рабдамии, выходит наружу через две полупрозрачные линзы с брюшной стороны тела рыбы.

Глубоководная креветка защищается от рыбы световой завесой

Интересно, что свечение организмов возникает лишь при наличии определенного внешнего раздражителя и является своеобразной реакцией на него. Характер раздражения может быть различным. Высокоорганизованные организмы можно раздражать светом, они отвечают световым откликом на световые сигналы организмов того же вида.

Также раздражители могут быть химическими, механическими, тепловыми, электрическими. Например, ночесветки и мелкие рачки отзываются световыми импульсами на любое механическое раздражение – малейшее волнение водной массы, ее незначительные перемещения и т. п. Существуют организмы, которые не реагируют ни на механические, ни на электрические раздражители, но загораются при добавлении к морской воде пресной воды.

Даже у самых простых светящихся организмов (бактерий, жгутиконосцев) свечение является довольно сложным процессом – оно связано с выработкой специального фермента – люциферазы. Еще более сложным является этот процесс у высокоорганизованных существ – рачков, моллюсков, рыб и т. п.; они имеют специальные светящиеся органы. Все это указывает на то, что способность излучать свет имеет для них жизненно важное значение.

Природа не имеет органов речи, но создает языки и сердца, при посредстве которых говорит и чувствует.
И. Гете

Дело в том, что в темноте моря свечение организмов позволяет им ориентироваться, охотиться, узнавать друг друга. Световые сигналы могут служить для отпугивания или обмана хищников. Например, рачок, вспыхнув, быстро отскакивает в другую сторону, а хищник бросается на вспышку и… не попадает в цель!

Таким образом, свечение живых организмов является, прежде всего, сигнализацией. Однако значительное большинство живых организмов, вызывающих свечение моря, составляют одноклеточные организмы. Но объяснить свечение одноклеточных организмов так же, как и для высокоразвитых организмов, не удается, потому что они не имеют пола, среди них нет хищников и жертв. Сегодня вопрос о биологическом смысле свечения моря все еще остается до конца не решенным.

Для того чтобы разгадать эту загадку природы, нужно провести серьезные исследования по изучению поведения светящихся обитателей морских глубин.