Неизвестный алмаз. «Артефакты» технологии

Карасев Владимир Юрьевич

Глава 5

Совокупность форм кристалла

 

 

Предположение, что совокупность создаваемых форм алмазной поверхности может привести к формированию особого высокочастотного волнового поля в кристалле и, как следствие, достижению сильнонеравновесных условий возбуждения всего алмаза, позволило запланировать эксперименты с необработанными алмазами. Цель этих экспериментов – обнаружение или проявление особого кристаллофизического состояния алмаза или его поверхности при применении в обработке определенных алгоритмов нашего воздействия с учетом конфигурации его природных форм.

Предметом экспериментов стали несколько кристаллов природных алмазов, отобранных из одной партии и принадлежащих к одной категории сырья. При этом кристаллы из партии отбирались со схожими характеристиками, морфологией и близким по значению весом.

На рис. 5.1 представлен типичный представитель отобранного природного кристалла алмаза, который относится к категории сырья Rejection Stones, взятого нами за основу анализа (а), и приведена геометрическая схема (б) его формы. Видно, что этот кристалл обладает формой поверхности искаженного октаэдра, т. к. грани и ребра его округлые. Заметен характерный для этого типа сырья рельеф поверхности граней октаэдра.

Рис. 5.1. Природный кристалл алмаза (а) и вписанная в него фигура идеального октаэдра (б)

Поверхностный рельеф этого природного алмаза, так называемая «рубашка» – это поверхность кристалла, скрывающая основное тело алмаза. Эта поверхность может быть покрыта многочисленными углублениями, бугорками, штриховкой, террасами, кольцевыми и ступенчатыми выступами, которые рассеивают свет, обусловливая тусклый или стеклянный блеск большинства природных алмазов в их естественном виде.

Главная ось октаэдра обозначена как ось (а). Пространство, плоскость (б) – область сопряжения двух четырехгранных пирамид (пирамида 1 и пирамида 2 соответственно). В кристалле эта плоскость (б) имеет определенную толщину. Поэтому мы иногда эту плоскость будем называть «пространство» – в зависимости от того, что мы рассматриваем: объем этого участка или его геометрическое расположение.

С точки зрения создания определенной оптической схемы кристалла, наиболее полно привязанной к его кристаллографическому положению, представляет интерес состояние геометрии вершин естественного октаэдра алмаза.

Например, рассмотрим возможности формирования сферических или конусообразных поверхностей на его вершинах. Приведем изображения вершин 1 и 2, находящиеся на главной оси октаэдра (рис. 5.2).

На вершине 1 в месте схождения ребер октаэдра наблюдается конфигурация, напоминающая пирамиду (рис. 5.2а). На этой вершине логичнее всего сформировать конусообразную поверхность, повторяющую размеры этой конфигурации. На вершине 2 (рис. 5.2б) схождение ребер происходит не в одну точку. Видимо, по этой причине вершина 2 имеет своеобразную вытянутую форму с характерным абрисом поверхности (рис. 5.3).

Очевидно, на этой вершине целесообразнее сформировать короткофокусную сферическую линзу, тем более что абрис этого образования подсказывает величину ее радиуса.

Рис. 5.2. Вершина октаэдра 1 (а), вершина октаэдра 2 (б). Стрелками отмечены направления схождения ребер исходного октаэдра

Рис. 5.3. Характерное образование рельефа поверхности на вершине 2

В результате этих наблюдений можно сконструировать определенную оптическую схему между вершинами 1 и 2 и рассмотреть предполагаемый принцип ее работы. Конусообразная отражающая поверхность вершины 1 направляет волновой поток на вершину 2. Вершина 2 отражает этот поток и проецирует его через фокус F обратно на поверхность конусной линзы вершины 1 и т. д. (рис. 5.4).

Рис. 5.4. Схема прохождения волновых потоков между вершинами предполагаемого прибора (в разрезе). F— фокус сферической линзы, сформированной на вершине 2

На вершинах октаэдра, расположенных в пространстве (б), наблюдается аналогичная конфигурация вершин. На вершинах 4 и 5 целесообразнее сформировать конусообразные отражающие линзы, а на вершинах 3 и 6 сферические (см. рис. 5.1). Здесь надо отметить главное, что было замечено при анализе формы этого природного октаэдра с точки зрения функционирования волновых энергетических потоков.

В пространстве (б) пирамида 1 развернута относительно пирамиды 2 на небольшой (~5°) угол вокруг главной оси октаэдра по направлению часовой стрелки. Покажем этот природный разворот пирамид на примере вершины 4 (рис. 5.5).

Разворот пирамид привел к деформации вершин, расположенных в пространстве (б), на вполне определенную величину, зависящую от величины этого разворота. Тем самым изменились оптические оси будущих линз. Оси конусов, а также сферических линз развернуты на тот же самый угол, что и наблюдаемый разворот пирамид. В результате этих наблюдений оптическая схема октаэдра приобрела вид, как показано на рис. 5.6.

Рис. 5.5. Разворот пирамид 1 и 2 октаэдра вокруг его главной оси. Стрелкой отмечена деформация вершины 4, пунктиром – смещение ребер пирамид, точками – пространство (б)

Рис. 5.6. Оптическая схема октаэдра с учетом разворота пирамид. 1, 2, 3, 4, 5,6 – вершины октаэдра

Анализ других типов алмазного сырья, имеющих форму октаэдра, позволяет сказать, что в его природных конфигурациях либо наблюдается сдвиг (разворот) пирамид в ту или иную сторону, либо этого сдвига нет. На наш взгляд, этот факт является важным при отборе алмазного сырья и составлении алгоритмов воздействия для постановки экспериментов по созданию сильнонеравновесных условий возбуждения кристалла. В данном случае для экспериментов были отобраны два кристалла с разворотом пирамид по часовой стрелке и один кристалл с разворотом пирамид против часовой стрелки.

Таким образом, в пространстве (б) изначально заложена определенная кристаллофизическая аномалия, которая при взаимодействии динамических волновых потоков может сформировать особое волновое поле. Это поле сформировано взаимодействием отражающих поверхностей пирамид 1 и 2. А с учетом указанного разворота пирамид появляется градиент вращения динамического волнового потока в направлении, задаваемом оптическими осями вершин 3, 4, 5, 6. Этот факт может оказаться определяющим при создании условий образования значительных флуктуаций при протекании волновых потоков в объеме алмаза.

При проведении этих экспериментов мы придерживались определенного алгоритма воздействия на алмаз. Этот алгоритм складывался из требований к параметрам создания сильнонеравновесных условий воздействия инструмента на систему кристалла и определенной последовательности технологических операций, учитывающих предполагаемую оптическую схему отобранного конкретно для данного эксперимента природного кристалла алмаза.

Выбранная скорость вращения инструмента а в процессе проведения работ не изменялась. А стабилизированная частота перемещения инструмента ß автоматически увеличивалась от заданной частоты на 0,5 Гц с периодичностью во времени (~10÷12 минут) и через такое же время возвращалась на исходную величину. Тем самым создавался режим цикличности волнового динамического когерентного возбуждения кристалла, обеспечивающий надежное функционирование неравновесных состояний его фононной подсистемы.

Этот алгоритм использовался для формирования трехмерных конфигураций на вершинах каждого природного октаэдра (см. рис. 5.6). В первую очередь это относится к вершинам 1 и 2. Поскольку конус – фигура вращения, то съем материала при волновом возбуждении происходит по его образующей. Особую важность имеет направление перемещения этой образующей относительно оси конуса при его формировании на вершине 1. Например, как видно на рис. 5.6, движение образующей конуса должно происходить против часовой стрелки в сторону направления оптических осей отражающих линз на вершинах 3,4, 5, 6.

Аналогичная ситуация складывается в этом случае и с вершиной 2. Сферическая линза формируется некой малой областью контакта плоского инструмента с выпуклой поверхностью вершины. Необходимо отслеживать направление перемещения этой контактной области по поверхности кристалла в сторону, которая согласуется с оптической схемой конкретного алмаза. Наблюдения показывают, что в данном случае движение этой области должно происходить по направлению часовой стрелки, если смотреть со стороны вершины 2.

Учитывая различное влияние активного инструмента на кристаллографические направления алмаза при формировании конусообразных и сферических линз, учитывая также задачу создания многообразия волнового потока при воздействии на кристалл, была принята определенная последовательность обработки вершин октаэдра в каждом эксперименте.

Цель эксперимента – выявить зависимость применяемых алгоритмов воздействия при формировании динамического волнового поля алмаза на характер протекания неравновесного процесса обработки кристалла.

 

5.1. Эксперимент 1

Для этого эксперимента был выбран кристалл алмаза, аналогичный описываемой выше схеме, разворот пирамид которого происходил по часовой стрелке (см. рис. 5.6). Алгоритм этого эксперимента предполагал начальное формирование сферической поверхности на вершине 2. После этого должен был формироваться конус на вершине 1. В дальнейшем последовательность обработки сфер и конусов должна была проводиться по вершинам 3,4, 5, 6.

Формирование сферической поверхности на вершине 2 прошло без особых сложностей. А когда приступили к формированию конуса на вершине 1, то совершили непростительную ошибку.

Вращение кристалла при формировании сферической поверхности происходило против часовой стрелки строго в рамках требований схемы рис. 5.6, если смотреть со стороны вершины 1. (Со стороны обрабатывающего инструмента соответственно по часовой стрелке.) При перевороте кристалла для обработки конуса на вершине 1 требовалось обеспечить вращение алмаза по часовой стрелке, если смотреть со стороны вершины 2 (со стороны крепления алмаза).

Корректировки в программном обеспечении сделаны не были, и обрабатываемая вершина продолжала вращаться против часовой стрелки. В момент касания инструмента к обрабатываемой вершине 1 раздался резкий звук (словно сломалась сухая ветка), и верхняя половина кристалла неторопливо отделилась от своей нижней половины и зависла в системе крепления. Процесс был завершен.

В первую очередь анализ произошедшего показал полное отсутствие пространства (б), какнекоего слоя в оставшихся половинках алмаза. Словно это пространство строго в рамках своих границ рассыпалось в невидимую невооруженным глазом пыль. И второе, что вызвало удивление, это отсутствие четко выраженных очертаний ребер и граней алмаза (рис. 5.7).

Черные области на рис. 5.7 – остатки цемента для крепления алмаза в оправке.

По всей видимости, при формировании сферы на вершине 2 начала происходить трансформация всей поверхности алмаза в форме октаэдра, что выразилось в изменении очертаний ребер и граней кристалла.

В пространстве (б) особое волновое поле, имеющее градиент вращения против часовой стрелки, если смотреть со стороны вершины 1, уже сформировало не только определенную структуру алмаза этой области, но и предположительно сохранило часть приложенной (или какой-то иной?!) энергии.

Рис. 5.7. Бывшие пирамиды октаэдра после воздействия

При попытке формирования конуса на поверхности 1 потоки волновой энергии от движения инструмента были направлены в противоположную сторону, что предположительно и привело к конфликту приложенной и сохраненной энергий. Говоря проще – произошло «короткое замыкание» в пространстве (б) и это пространство «самоликвидировалось», превратившись в мелкодисперсную пыль.

Характер разрушенной поверхности основания пирамиды 1 бывшего октаэдра показывает, что скола по кристаллографическим направлениям в этой области не было. А наблюдаемая сферическая лунка в центральной части этой поверхности (рис. 5.8) вполне может соответствовать положению бывшего фокуса F на рис. 5.6.

Рис. 5.8. Основание пирамиды 1 бывшего октаэдра после разрушения

 

5.2. Эксперимент 2

Поскольку разворот пирамид в октаэдре следующего кристалла соответствовал развороту пирамид против часовой стрелки (рис. 5.9), то в предстоящем эксперименте все параметры программного обеспечения были адаптированы с учетом направления вращения алмаза при его обработке. Отличие было также в последовательности воздействия на вершины кристалла. На рисунке красным пунктиром обозначены ребра пирамид, стрелкой – деформированная вершина кристалла.

Рис. 5.9. Разворот пирамид в пространстве (6) против часовой стрелки

Согласно алгоритму этого эксперимента сначала формировалась конусная линза на вершине 1, Следующей формировалась сферическая линза 3, затем обрабатывалась конусная вершина 4, потом 2, 5 и последней должна быть обработана сфера на вершине 6 (см. рис. 5.6).

Сразу после начала воздействия рельеф граней и ребер стал резко сглаживаться, но, к сожалению, зафиксировать этот неожиданный быстро-протекающий эффект не удалось. После формирования вершины 5 эксперимент был прекращен. Кристалл алмаза трансформировался в некое округлое, шароподобное образование, и найти местоположение вершины 6 оказалось проблематичным. От формы октаэдра не осталось и следа. Из всех вершин бывшего октаэдра сохранились только те вершины, на которых были сформированы конуса. Это вершины 1, 4 и 5.

Следует отметить удивительную гладкость и прозрачность поверхности трансформированного (измененного) алмаза (рис. 5.10а). На рис. 5.106 приведено растровое электронно-микроскопическое (РЭМ) изображение трансформированного октаэдра. Снимок (б) сделан в ИК АН РФ В.В. Артемовым.

Рис. 5.10. Трансформированный кристалл алмаза. 1, 4, 5 – конуса на вершинах бывшего октаэдра. Фото с оптического микроскопа (а). РЭМ изображение кристалла (б)

Кроме этого, результаты исследований подобных поверхностей (как плоских, так и трехмерных) методом атомно-силовой микроскопии показывают их шероховатость на уровне -1.0 нм [21]. В частности, на всех поверхностях трансформированного алмаза явно наблюдается выраженная тенденция к пространственной регулярности и сглаживанию рельефа, т. е. проявился в полной мере эффект «автополировки».

Следует отметить, что в данном случае вес алмаза не изменился. До обработки и после обработки он составил 0,400 карат. Измерения веса были проведены на каратных весах с точностью до третьего знака после запятой. На рис. 5.11. приведены величины измерений геометрических параметров алмаза до обработки (октаэдр) и измерения геометрии кристалла после трансформации.

Здесь следует отметить необычную флуоресценцию трансформированного алмаза при его облучении направленным пучком ультрафиолетового света (рис. 5.12).

Вполне естественно, что мы не смогли удержаться и вытащили это шарообразное состояние бывшего октаэдра на солнечный свет. Время воздействия солнечного света составило 20 минут. После этого кристалл был помещен в полиэтиленовый пакет и спрятан в хранилище.

Через неделю кристалл был извлечен из хранилища. В полиэтиленовом пакете на одной его стороне образовалось отверстие с рваными краями, в центре которого находился алмаз. Диаметр кристалла составлял ~4 мм, наибольшая длина отверстия ~11 мм. По всей видимости, по нашим предположениям, в этом месте пакета произошел односторонний выплеск энергии из кристалла, и окружающий его полиэтилен рассыпался в мелкодисперсную пыль.

Рис. 5.11. Геометрические размеры кристалла до (a) и после (б) воздействия

Рис. 5.12. Флуоресценция алмаза в пучке ультрафиолетового света

На рис. 5.13 приведено изображение этого отверстия в полиэтилене в обычном и поляризованном свете.

В оптическом микроскопе было замечено изменение на поверхности алмаза, которая была обращена перпендикулярно направлению потока солнечного света в процессе облучения. Эта сторона поверхности имела ярко выраженную «пупырчатую» поверхность, отмеченную стрелкой (рис. 5.14).

Рис. 5.13. Изображение отверстия в полиэтилене: в обычном свете (а); в поляризованном свете (б)

Рис. 5.14. Вытянутые «пупырчатые» образования на поверхности алмаза после обучения солнечным светом (а) и увеличенный участок изображения (б)

Подобный факт изменения поверхности алмаза после облучения солнечным светом позволил сделать предположение о возможности наблюдения этой трансформации поверхности в оптический микроскоп сразу после очередного облучения. Может быть, удастся зафиксировать какие-то изменения при этом процессе? Кристалл алмаза опять был вынесен на солнечный свет на 20 минут и после этого сразу помещен под окуляры оптического микроскопа. Но как мы ни старались, выполнить качественную фокусировку на поверхности алмаза так и не удалось (рис. 5.15).

Рис. 5.15. Изображение алмаза сразу после облучения солнечным светом

Проверка показала, что оптическая схема микроскопа в порядке и на других объектах фокусировка изображения присутствовала в полной мере. Именно этот «возбужденный» кристалл алмаза после вторичного облучения солнечным светом отказывался фокусироваться оптической системой микроскопа.

Через несколько дней фокусировка кристалла восстановилась. На рис. 5.16 приведены изображения алмаза после первого облучения, сразу после второго облучения и через несколько дней от момента второго облучения. Морфология поверхности явно изменилась в сторону увеличения размеров неровностей.

Рис. 5.16. Сравнительные изображения кристалла алмаза до и после второго облучения

Природа проявившегося энергетического поля алмаза, влияющая на отражение светового потока осветителя микроскопа от поверхности кристалла и, как следствие, на прецизионную фокусировку объекта оптической системой, на данный момент остается неизвестна.

 

5.3. Эксперимент 3

В этом эксперименте использовался природный кристалл алмаза в форме октаэдра, разворот пирамид которого вокруг главной оси описан выше (см. рис. 5.6).

Целью этого эксперимента было по возможности зафиксировать реакцию алмаза на более высокочастотный алгоритм воздействия. Для реализации этого алгоритма частота по сравнению с предыдущими экспериментами была увеличена в три раза, а обработка вершин должна была проводиться только по природным образованиям в форме конуса, т. е. по вершинам 1, 4, 5 (см. рис. 5.6).

С первых секунд воздействия на вершину 1 сразу было зафиксировано изменение природной морфологии поверхности алмаза. Так называемая природная «рубашка» алмаза через три секунды после начала воздействия неожиданно «слетела» с характерным звуком («пых!»), резко изменив морфологию поверхности алмаза. Поверхность кристалла стала гладкой и блестящей. Алмаз предстал в своем новом виде (рис. 5.17).

Рис. 5.17. Поверхность природного алмаза до воздействия на вершину 1 (а); поверхность алмаза после воздействия (3 с) (б)

Такое ощущение, что алмаз стал голенький. От природной «рубашки» не осталось никаких следов. Словно она испарилась или распалась на невидимые кластеры (рис. 5.18).

Рис. 5.18. Поверхность алмаза после «сбоя» «рубашки»

Дальнейшая обработка вершины в течение 30 минут позволила сформировать на этой вершине конус. При этом вся поверхность алмаза стала резко меняться (рис. 5.19).

Рис. 5.19. Поверхность алмаза после формирования первого конуса

Поверхность стала структурироваться и локально «проседать». Это «проседание» поверхности никоим образом нельзя связывать с трещинообразованием. Алмаз стал как бы втягиваться внутрь, сжиматься. Механизм этого явления нами до конца пока не выяснен. Происходила локальная химическая реакция с окружающей средой или «распыление» материала в атмосферу – предстоит еще установить. Но факт резкого изменения формы кристалла и его морфологического рельефа в сторону увеличения перепада высот присутствовал. После обработки второй вершины этот перепад высот поверхности усилился, изменив весь рельеф до неузнаваемости (рис. 5.20).

Из опасения, что кристалл алмаза может рассыпаться, было принято решение для третьего конуса возвратить «мягкий» режим обработки (уменьшить частоту ß), аналогичный тому, который использовался в формировании конусов в Эксперименте 2.

Рис. 5.20. Поверхность алмаза после формирования второй вершины

Рис. 5.21. Кристалл алмаза после воздействия. Стрелкой показаны «прогнувшиеся» ребра и грани

После формирования последней конусной вершины процесс воздействия был завершен. Кристалл алмаза изменился до такой степени, что провалились его ребра, и весь кристалл приобрел вид, как показано на рис. 5.21.

В процессе воздействия мы периодически фиксировали изменения, происходящие на вершине 2. Вершина 2 не обрабатывалась и реагировала изменением своей формы на все наши манипуляции при формировании конусов.

Фотографировать кристалл алмаза – очень непростая задача. Кристалл активно реагирует на освещение. Чтобы адекватно интерпретировать фиксируемые изображения, нужен определенный опыт работы с микрофотографиями алмаза.

Мы постарались как можно точнее воспроизвести наблюдаемые изменения. На рис. 5.22 показаны изменения, происходящие с вершиной 2 в процессе воздействия.

Рис. 5.22. Трансформация вершины 2 (стрелками указаны наблюдаемые участки поверхности): 30 мин. воздействия на вершину 1 (я); 60 мин. воздействия на вершину 1 (б); трансформация вершины 2 при формировании конуса на вершине 4 («жесткий» режим) (в); трансформация вершины 2 при формировании конуса на вершине 5 (возврат к «мягкому» режиму) (г)

Стрелками указаны наблюдаемые (реперные) участки поверхности вершины 2 в процессе воздействия.

Проведенные эксперименты показали, что форма алмаза и динамическая волновая среда кристалла находятся в определенной зависимости друг от друга. В последнем эксперименте (№ 3) повышение частоты воздействия при формировании конусной поверхности привело сразу к резкому повышению частоты динамической волновой среды кристалла.

На начальном этапе воздействия в неоднородных морфологических образованиях поверхности природной «рубашки» при прикосновении работающего инструмента сразу стали возникать высокочастотные волновые энергетические вихри. Эти вихри возникли и стали концентрироваться как в самой «рубашке», так и на границе раздела «рубашки» и основной матрицы алмаза. Был перейден предел прочности поверхностных образований алмаза и природная «рубашка» рассыпалась, обнажив ту поверхность, в которой протекание высокочастотных энергетических вихрей не носило необратимый характер.

Во время эксперимента на участках поверхности, имеющих резкие перепады высот морфологического рельефа (углы поверхностных пирамид (см. рис. 5.18), границы участков рельефа), стала концентрироваться высокочастотная волновая энергия, которая и привела к перестройке атомных связей и в конечном итоге к трансформации всей поверхности алмаза (см. рис. 5.21).

В отличие от Эксперимента 2, в котором трансформация поверхности проходила в «мягком» режиме и привела к изменению формы в более «округлое» состояние типа «шарика» (см. рис. 5.10), в Эксперименте 3 весь процесс проходил в «жестком» волновом диапазоне. Характер протекания процесса как бы был «направлен в противоположную сторону» от Эксперимента 2 (алмаз начал «сжиматься»).

Вес алмаза до обработки составлял 0,388 карат, после воздействия вес кристалла составил 0,383 карат.

На рис. 5.23 приведено изображение вершины 2 до процесса воздействия (а) и после трансформации (б).

Рис. 5.23. Вершина 2 до воздействия (а) и после трансформации (б)

 

5.4. Цилиндр

При анализе рис. 5.6 возникает ощущение, что перед нами схема некоего лазерного устройства или оптического (или иного) генератора, состоящего из самого рабочего тела (см. рис. 5.4) и системы его «накачки» (вершины 3,4, 5, 6). Насколько это правдоподобно – покажут дальнейшие исследования. А попытаться сформировать само цилиндрическое «рабочее тело» и провести его исследования – задача привлекательная.

Нами была предпринята попытка сформировать некое устройство из природного кристалла алмаза, состоящее из цилиндрического тела и отражающих линз. При этом отражающие линзы должны полностью соответствовать схеме (см. рис. 5.4), т. е. сферическая и конусообразная линзы расположены друг напротив друга и на одной оси; сферическая линза имеет фокус F и направляет волновой поток на основание конусной линзы.

Чтобы не создавать раньше времени динамическое волновое поле алмаза, предварительная обработка по созданию «грубого» абриса тела цилиндра была проведена с помощью стандартной технологии.

Эта предварительная обработка заключалась в нанесении плоских граней по всему диаметру будущего цилиндра. В дальнейшем при формировании динамической волновой среды все эти грани «стакана» обрабатывались в округлую цилиндрическую поверхность.

На начальном этапе проведения эксперимента необходимо было решить один, на наш взгляд, принципиальный вопрос: на какой стадии обработки формировать отражающие линзы? Сначала линзы, а потом рабочее тело («стакан») или наоборот? А с учетом влияния касания инструмента при обработке поверхности на формирование динамической волновой среды какую линзу начинать формировать первой – сферическую или конусообразную?

Может быть, подобные вопросы и не имеют под собой особых серьезных оснований, но, на наш взгляд, любое прикосновение активного инструмента к поверхности алмаза начинает сразу формировать динамическое волновое поле кристалла. При этом применяемая последовательность технологических операций в полной мере вносит свой вклад в формирование этой среды на каждом технологическом этапе.

Поскольку опыта создания таких «приборов» у нас еще не было, последовательность технологических операций была принята следующая. Сначала «грубым» абрисом нашей технологией формируется поверхность сферической линзы, затем – абрис конусной линзы, после этого обрабатывается («снимается мясо») традиционной технологией рабочее тело прибора («граненый стакан»). Финишная полирующая завершающая обработка всего изделия должна была быть проведена с помощью нашей технологии в обратной последовательности и в соответствующих режимах.

С первых же прикосновений к поверхности алмаза при формировании абриса сферической линзы в объеме кристалла, ближе к поверхности цилиндра, произошло снятие внутренних напряжений, и образовался необычный дефект в виде плоского и округлого «цветочка» (рис. 5.24).

Рис. 5.24. Образовавшийся внутренний дефект кристалла. Снимок сделан в проходящем свете

При дальнейшем воздействии на поверхность алмаза этот внутренний дефект постоянно реагировал на применяемые технологические операции. Он менял свои конфигурации, прозрачность, структуру. А иногда приобретал необычный голубоватый цветовой оттенок.

Предварительный спектроскопический анализ этой части цилиндра (половина области цилиндра, прилегающая к сфере) показал повышенное содержание атомов азота по сравнению со спектрами до обработки. Словно атомы азота образовались и специально сконцентрировались на этом дефекте. Но интересное событие произошло тогда, когда был образован «стакан» и мы приступили к формированию цилиндрической поверхности с применением нашей технологии.

Рис. 5.25. «Пупырышки» на плоской поверхности цилиндра

На самом начальном этапе этого технологического приема в районе конусной линзы, на поверхности одной из плоских граней, оставшихся после предварительной обработки цилиндра традиционной технологией, неожиданно сформировались великолепные «пупырышки» (рис. 5.25). На рисунке красная линия – траектория прохождения кантилевера профилометра при измерении профиля поверхности.

Рис. 5.26. Профиль участка поверхности (мкм)

Анализ профиля поверхности, покрытой «пупырышками» (рис. 5.26), показал, что крупные «пупырышки» имеют плоскую вершину и их высота в основном – 200 мкм. Общий вид будущего изделия приведен на рис. 5.27.

Рис. 5.27. Общий вид будущего «прибора»: поверхность с «пупырышками» (д); внутренний дефект алмаза (б)

Дальнейшие работы по созданию цилиндрической поверхности были приостановлены с целью изучения произошедших изменений.