Неизвестный алмаз. «Артефакты» технологии

Карасев Владимир Юрьевич

Глава 8

Гипотезы квантово-волновой обработки

 

 

Прежде чем попытаться обобщить полученные результаты проведенных экспериментов, обратимся еще раз к более подробному рассмотрению метода двухосевого воздействия инструмента на алмаз на конкретном примере.

Обрабатывающий инструмент имеет ось вращения α (рис. 8.1). Эта подвижная ось перемещается вокруг неподвижной оси ß по траектории окружности с радиусом (r a ). Величина (r a ) является аппаратурным фактором и не меняется в процессе воздействия.

Ось вращения а является центром инерции обрабатывающего инструмента, диаметр рабочей поверхности которого выбирается в зависимости от поставленной задачи воздействия и имеет размер в несколько раз больше, чем (r a ). В данном случае в этой схеме плоскость чертежа можно условно рассматривать как 1/2 часть поверхности инструмента.

Вполне очевидно, что вся рабочая поверхность инструмента одновременно перемещается вокруг неподвижной оси ß по траектории окружности с радиусом (r a ), В этом случае любая точка касания инструмента с обрабатываемой поверхностью алмаза описывает аналогичную траекторию окружности по поверхности инструмента (окружность диаметром 2r a , рис. 8.1).

Рис. 8.1. Схема волнового воздействия

В качестве примера циклического воздействия инструмента на кристалл алмаза рассмотрим эксперимент «мягкое направление» (см. рис. 7.2).

Начальная (задаваемая) кристаллографическая ориентация обрабатываемой поверхности плоскости октаэдра (с учетом направления движения зерен абразива инструмента) была проведена относительно траекторий движения абразива по мягкому направлению а на рис. 7.2. Это направление соответствует движению зерен абразива С 3 на рис. 8.1. Положение оси α в этом случае соответствует, например, положению α 3 относительно оси ß. При этом линейная скорость движения зерен абразива составляет V 0 и происходит эффективное воздействие инструмента по мягкому направлению а обрабатываемой поверхности.

При эксцентричном перемещении оси α в положение α 2 , обрабатывающая поверхность инструмента также перемещается по окружности относительно неподвижной обрабатываемой плоскости октаэдра алмаза. Кристаллографическая ориентация траекторий движения зерен абразива относительно неподвижной плоскости октаэдра изменяется на С 2 , и совпадает с твердым направлением b 2 , поверхности октаэдра на рис. 7.2. Величина линейной скорости V2 при этом уменьшается относительно V 0 , поскольку уменьшается радиус движения зерен абразива инструмента на величину г a .

При перемещении оси α в положение α 4 инструмент относительно неподвижную обрабатываемой поверхности алмаза занимает позицию, аналогичной движению зерен абразива позиции инструмента в положении α 3 . При этом линейная скорость движения зерен абразива составляет V 0 и происходит воздействие инструмента опять по мягкому направлению α.

При перемещении оси α в положение траектории α 1 движения зерен абразива обрабатывающего инструмента также меняют кристаллографическую направленность относительно неподвижной обрабатываемой октаэдрической поверхности алмаза. Траектории движения зерен абразива инструмента С 1 в этом случае совпадают с твердым направлением b 1 поверхности октаэдра на рис. 7.2. Величина линейной скорости V 1 при этом увеличивается относительно V 0 , поскольку увеличивается радиус движения зерен абразива инструмента на величину г a .

Периодическое изменение угла движения зерен абразива по С 1 и С 2 относительно выбранного мягкого направления С 3 в процессе обработки происходит за счет симметричного перемещения по окружности всей обрабатываемой поверхности инструмента. Угол изменения направления движения абразива между направлениями C1 и C3 равен углу изменения направления движения абразива между C3 и C2 и определяется задаваемой величиной ra. Больше ra – больше угол изменения направления движения абразива. В данном случае этот угол (т. е. величина ra) задавался таким образом, чтобы направления движения зерен абразива периодически совпадали с твердыми направлениями C1 и C2 (так называемое симметричное воздействие).

Следует заметить, что скорость перемещения инструмента относительно оси β в направлении α1 α3 α2 α4, в свою очередь, вносит вклад в изменение величины линейных скоростей V1 и V2. Скорость перемещения против часовой стрелки (в плоскости чертежа на рис. 8.1) дополнительно увеличивает V1 и уменьшает V2. Соответственно, перемещение инструмента относительно оси β по часовой стрелке приводит к противоположному результату

Разность линейных скоростей ΔV как приращение линейной скорости движения инструмента относительно обрабатываемой поверхности алмаза есть величина постоянная в любой точке контакта обрабатывающего инструмента с кристаллом и является важным отличительным признаком нашей технологии от всех известных методов механического воздействия на алмаз.

Здесь мы подходим к основным следствиям:

• определяющее влияние ΔV на создание сильнонеравновесных волновых процессов в объеме алмаза;

• стабильность параметра ΔV – условие когерентности протекания процесса воздействия;

• управление частотой перемещения ß — управление функцией состояния динамической волновой среды.

Перемещение инструмента по окружности относительно обрабатываемой поверхности алмаза приводит к изменению направления движения зерен абразива относительно кристаллографического состояния обрабатываемой поверхности. При совпадении движения зерен абразива с направлением b 1 происходит генерация волн упругих деформаций в объем алмаза с максимальной амплитудой (с максимальной энергией в соответствии со значением К) по всем кристаллографическим направлениям семейства b 1 .

При совпадении движения зерен абразива с направлением b2 происходит генерация волн упругих деформаций с меньшей энергией, чем в случае b 1 (в соответствии со значением V 2 ), по всем кристаллографическим направлениям семейства b 2 .

В этом случае возникают условия для образования энергетического вихря в приповерхностной области кристалла, т. е. движение (выравнивание) энергии между равнозначными, но разделенными в пространстве направлениями b 1 . и b 2 относительно направления а [23].

Этот вихревой пучок обретает угловой момент, который передается возникающим волнам упругих деформаций. Эти образованные квантовые волновые потоки обретают момент вращения, как, например, торнадо или вода за винтом судна, т. е. возникает волновой поток с винтовым возмущением волнового фронта. Такого рода возмущения обусловливают вихревой характер распространения волновой энергии. Этот процесс также может быть рассмотрен с точки зрения области оптики, называемой оптикой винтовых полей или сингулярной оптикой 124].

Взаимодействие этих квантовых потоков волн упругих деформаций, обладающих винтовым возмущением волнового фронта, и создает ту уникальную динамическую волновую среду в объеме алмаза, которая приводит к образованию энергетических флуктуаций в объеме кристалла. В критическом случае эти высокоэнергетические флуктуации могут привести к большим флуктуациям плотности материи алмаза, т. е. к опалесценции [16].

Вполне естественно, что необходимо учитывать не только угловой момент вращения энергетических потоков волн упругих деформаций в объеме алмаза при воздействии инструмента на его поверхность, но и влияние конфигурации формы алмаза на формирование этой динамической волновой (вихревой) среды.

Например, на рис. 2.13 пластина алмаза быта обработана по сложному алгоритму, в который, кроме всего прочего, входили условия изменения полярности перемещения оси а. Если одна плоскость пластины обрабатывалась при перемещении оси а против часовой стрелки, то при обработке противоположной плоскости пластины направление перемещения оси а было изменено на направление движения по часовой стрелке. Тем самым сохранился угловой момент вращения и взаимодействия энергетических потоков волн упругих деформаций во всем объеме алмаза. При этом частотные характеристики перемещения оси а в обоих случаях не изменялись.

Невыполнение или несоблюдение подобных условий воздействия может привести к разрушению алмаза, что и произошло при проведении Эксперимента 1 (см. рис. 5.7). В этом случае не был учтен угловой момент вращения общих энергетических потоков, сформированных геометрической формой поверхности всей системы кристалла.

В эксперименте «мягкое направление» (см. рис. 7.2) условие «симметричного воздействия» на твердые направления b1 и b2 сформировало в приповерхностной области кристалла в момент контакта инструмента с алмазом энергетический вихрь, энергии которого оказалось достаточно, чтобы повлиять на характер атомных связей в мягком направлении а.

В этом случае модуль упругости алмаза в кристаллографическом направлении а в приповерхностной области кристалла перешел в состояние функции, стремящейся к нулю. Изменилось физико-химическое состояние поверхности алмаза в этом направлении, и сопротивление поверхности прикладываемому воздействию упало почти до нуля. Это хорошо видно на сформированном рельефе поверхности в виде неких «барханов» (см. рис. 7.3).

Конфигурации граней алмаза, прилегающих к поверхности грани воздействия обрабатывающего инструмента, по всей видимости, сформировали энергетический вихрь в направлении а такой мощности и величины, что в центральной части этого вихря функция модуля упругости алмаза перешла в область отрицательных значений, и внутри этой флуктуации вихревое давление оказалось намного ниже давления матрицы алмаза. Этого оказалось достаточно, чтобы перераспределились ослабевшие энергетические связи и сформировался «колодец» с поверхности алмаза в объем кристалла.

Рис. 8.2. На прозрачной обработанной грани: b 1 и b 2 — твердые направления; а — мягкое направление; Н — входное отверстие «колодца»; h – наблюдаемое дно «колодца»

На рис. 8.2 приведено изображение поверхности воздействия (см. рис. 7.3), твердые направления b1 и b2 мягкое направление а, входное шестигранное отверстие «колодца» Н на прилегающей грани алмаза (см. рис. 7.4), наблюдаемое через прозрачную грань дно «колодца» h в виде треугольника. Через прозрачную поверхность обработанной грани (см. рис. 7.3) наблюдается поверхность противоположной необработанной грани.

Здесь следует заметить, что изменение условий «симметричного воздействия» на плоскости октаэдра путем изменения, например, начальной кристаллографической ориентации поверхности на 3–5° относительно мягкого направления а не приводит к резкому изменению модуля упругости поверхности алмаза. Обработка октаэдрической грани проходит в обычном режиме с высококачественной полировкой ее поверхности.

Как правило, режим целенаправленного «симметричного воздействия» твердых (или иных) направлений в процессе обработки алмаза нами не применяется. Целенаправленно этот режим был включен в обработку только в экспериментальных целях. Используемые обычно технологические режимы воздействия не жестко привязаны с конкретной кристаллографической ориентации алмаза и входят в общий алгоритм выполнения поставленной задачи. В этом случае образование вихревого энергетического потока может происходить на отличных от основных (сингулярных) кристаллографических направлениях (например, вицинальных) или их комбинациях.

Создание энергетических вихрей, например, по вицинальным направлениям с учетом определенных частот ß (см. рис. 4.4) приводит к поверхностным эффектам перераспределения атомных связей на всей поверхности и, как правило, к сглаживанию поверхностного рельефа всего кристалла, т. е. проявлению в полной мере эффекта автополировки.

При формировании поверхностей второго порядка за счет динамики изменения положения кристалла относительно плоскости инструмента, выполняется воздействие на различные кристаллографические направления, определяемые геометрическим размером (площадью) конкретной области обработки. Динамическая вихревая среда алмаза при этом формируется из условий общего алгоритма воздействия на кристаллографические направления данной области контакта инструмента и алмаза. Если таких областей воздействия на кристалл несколько, то каждая область вносит свой вклад в формирование общей волновой среды кристалла (например, Эксперименты 1, 2, 3).

При решении технологических задач иногда возникает необходимость применять принцип «симметричного воздействия» без привязки к какому-либо конкретному кристаллографическому направлению алмаза. Порой классификацию кристаллографических направлений в обрабатываемой области определить визуально весьма проблематично. В этих условиях применяется периодическая кристаллографическая разориентация области воздействия инструмента относительно произвольно выбранной оси (например, «пошаговый съем» «рассасывающейся подковы», с. 34).

Взаимодействие энергетических потоков в этом случае может сформировать поверхностные вихри другой природы и привести к трансформации морфологии поверхности алмаза в виде «пупырышек». Что мы и наблюдаем, например, в случае обработки цилиндрической поверхности (рис. 8.3). В этом случае вихревое давление внутри энергетической флуктуации оказывается выше, чем окружающее ее давление матрицы алмаза. Перераспределение поверхностных атомных связей приводит к трансформации поверхности кристалла (миграции атомов поверхности) с образованием островков различных форм и конфигураций (высота этих островков ~200 мкм).

Например, формирование цилиндрической поверхности тела цилиндра происходило после предварительной обработки его «грубого» абриса стандартной технологией. Инструмент циклически перемещался симметрично относительно твердого направления b в секторе между направлениями а' 1 и а' 2 , выравнивая и полируя обрабатываемую поверхность. Подобное симметричное возбуждение волн упругих деформаций относительно твердого направления, по всей видимости, и привело к созданию и взаимодействию определенных вихревых потоков, которые и проявились в виде «пупырышек» на плоскости, отклоненной от твердого направления на угол менее 5° и оставшейся после обработки традиционной технологией.

Рис. 8.3. Симметричное воздействие обрабатывающего инструмента в секторе а' 1 и а' 2 относительно твердого направления b

В равновесных условиях, в которых находятся твердые тела, в результате теплового движения атомы структуры смещаются (колеблются) относительно своих положений равновесия по гармоническому закону. Их коллективное движение приобретает характер колебательного процесса, распространяющегося в объеме кристалла в виде различных типов волн (мод) упругих деформаций.

В дебаевской модели твердого тела принимается, что акустические колебания (волны упругих деформаций) обладают линейным законом дисперсии при всех частотах в интервале 0 < ω < ω D . Дебаевская частота по порядку величины равна максимальной частоте ~1013 с-1. Так как в гармоническом приближении нормальные колебания независимы, то в кристалле одновременно может быть возбуждено много мод с разным набором частот [25].

При применении нашего квантово-волнового метода воздействия ситуация в алмазе резко меняется с появлением флуктуаций и переходом системы кристалла в неравновесное состояние. В этом случае появляются дальнодействующие корреляции, которые организуют всю систему алмаза, повышая ее когерентное состояние. Такие дальнодействующие корреляции появляются в самой точке перехода от равновесного состояния к неравновесному состоянию. Атомы, находящиеся на макроскопических расстояниях друг от друга, перестают быть независимыми. Вся система начинает подчиняться единому закону, и ее состояние напоминает фазовый переход. Единый колебательный процесс атомов кристаллической решетки алмаза из всего многообразия существовавших мод приводит к распространению колебаний только тех мод, которые кратны основной частоте возбуждения, т. е. частоте ß. Взаимодействие колебаний с различными частотами и создает предпосылки для возникновения еще больших флуктуаций. В алмазе флуктуации служат началом эволюции кристалла в совершенно новом направлении, которое резко меняет поведение всей его системы [26].

При проведении эксперимента по максимальной производительности обрабатывающей системы (см. рис. 2.19) на алмазе первоначально было сформировано восемь граней низа будущего бриллианта. Придерживаясь принципов традиционной технологии [3], эти восемь граней были расположены на четырех гранях природного октаэдра, т. е. по две грани на грань октаэдра. В этом случае «симметричное воздействие» на грани октаэдра происходило сначала между направлениями С 1 и С 3 , потом между направлениями С 3 и С 2 (см. рис. 8.1), и так на каждой грани октаэдра. Обработка происходила в обычном режиме без особых визуальных эффектов, хотя динамическая вихревая среда при этом уже была.

После обработки первых восьми граней кристалл был развернут сформированным ребром к плоскости инструмента, и процесс обработки новых восьми граней был повторен. В этом случае симметричное воздействие начало происходить вокруг твердых направлений С 1 и С 2 и мягкого направления С 3 . Сразу на поверхности граней стали возникать «пупырышки», что говорит о резком изменении характера протекания динамической волновой среды в объеме алмаза.

В этом эксперименте с каждым прикосновением инструмента к алмазу, с каждой обработанной в заданной последовательности гранью в объеме кристалла формировалась определенная динамическая вихревая среда [27]. В процессе обработки каждой грани эта среда коррелировала относительно новых кристаллографических условий воздействия. В результате этого общего симметричного воздействия в алмазе окончательно сформировалась определенная когерентная волновая среда, которая и образовала устойчивую сверхструктуру энергетических флуктуаций в его объеме. По всей видимости, эта сверхструктура способна не только аккумулировать и какое-то время сохранять энергию, полученную от внешнего источника (например, солнечного света), но и активно реагировать на подобные возмущения.

Эта флуктуационная среда в полной мере могла изменить характер межатомных связей в этой сверхструктуре и в общем случае повлияла на свойство упругости всего алмаза, что и привело (за счет приложенного значительного усилия инструмента к кристаллу в процессе обработки) к эффекту его погнутости. Уникальные свойства этой энергетической сверхструктуры, по нашему мнению, заслуживают самого пристального внимания и самого тщательного исследования. По всей видимости, это сформированное внутреннее энергетическое состояние алмаза является совершенно новым проявлением физических свойств этого материала.

 

8.1. Самый последний эксперимент

Выдающийся русский исследователь Николай Александрович Козырев в своих экспериментах по исследованию свойств времени использовал принцип вращения и перемещения рабочего тела. Напомним вкратце эти эксперименты.

На чашу рычажных весов помещался вращающийся гироскоп, и вся исследуемая система подвергалась механическим вибрациям. При вращении ротора волчка гироскопа против часовой стрелки фиксировалось изменение его веса. Гироскоп становился легче. Стрелка весов показывала, что гироскоп, вращающийся против часовой стрелки, при весе в 90 г становился легче на 4 мг – крошечная, но вполне ощутимая величина. Эти эксперименты до сих пор малоизвестны, так как эффекты изменения веса были невелики (0,001-0,01 % от веса тела). Предложенные объяснения этого эффекта были связаны с фактором свойств времени [28].

В нашем случае двухосевого вращения и перемещения инструмента по направлению или против часовой стрелки в созданной системе воздействия (с. 7) было бы опрометчивым решением искать изменение веса вибрирующего станка массой 30,5 кг в диапазоне нескольких миллиграмм. Но наша система является обрабатывающей, т. е. системой воздействия на материю, в отличие от экспериментальной системы Н.А. Козырева, которая являлась чисто индикаторной системой. И в этом случае предметом эксперимента, по нашему мнению, должен стать продукт, сотворенный нашей технологией и впитавший в себя всю энергию приложенных алгоритмов трансформации на уровне атомного ядра.

В качестве этого предмета исследований был выбран кристалл алмаза ∅ 2 мм и массой 0,057 карат, полученный в результате проведения эксперимента по максимальной производительности системы обработки (см. рис. 2.20).

По своей сути эксперимент весьма прост. На чашу электронных каратных весов, измеряющих вес алмаза с высокой точностью до третьего знака после запятой, помещается наш кристалл. Поскольку (как мы предполагаем) структура этого кристалла после проведенных ранее экспериментов и под действием динамической волновой среды трансформировалась в определенную флуктуационную энергетическую сверхструктуру, то вполне возможно ожидать каких-то проявлений физических свойств или особенностей этого кристалла в процессе воздействия на него, например, ультрафиолетового (УФ) излучения.

Это УФ-излучение, по нашему мнению, наиболее полно и эффективно может взаимодействовать со сформированной флуктуационной энергетической сверхструктурой атомов алмаза. В качестве излучателя ультрафиолетовых волн был выбран светодиод с длиной волны ~ 390 нм, встроенный в обычную авторучку.

На рис. 8.4 приведены показания электронных каратных весов до начала эксперимента (а) и в процессе облучения кристалла алмаза ультрафиолетовым светом в течение -30—40 секунд (б).

Рис. 8.4. Кристалл алмаза до облучения (а) и в процессе воздействия (б)

Проведенный эксперимент показал, что в процессе взаимодействия кристалла с ультрафиолетовым излучением начинают происходить периодические колебания показаний веса алмаза в сторону их уменьшения. Примерно за 40 секунд величина этих флуктуирующих показаний постепенно меняется с 0,057 до 0,050 карат, на этой цифре останавливается и далее почти не меняется. Алмаз как бы становится легче на —12,358. Этот эффект, по всей видимости, и в первом приближении можно объяснить реакцией флуктуационной энергетической сверхструктуры алмаза на приложенное УФ-облучение, которое, возбуждая атомы кристаллической решетки алмаза, восстанавливает течение сформированных в процессе обработки квантовых волновых потоков энергии упругих деформаций.

После прекращения ультрафиолетового воздействия показания веса алмаза с незначительными флуктуационными колебаниями восстанавливаются до прежнего значения (0,057 карат) за -10 секунд. Этот эксперимент был повторен неоднократно и во всех случаях давал аналогичные результаты. Подобный эффект на обычных кристаллах алмаза, не подвергнутых нашему квантово-волновому воздействию (проведенной трансформации структуры), в таком проявлении замечен не был.

Поскольку реакция флуктуационной энергетической сверхструктуры алмаза на приложенное УФ-облучение в нашем кристалле связана с энергией волн упругих деформаций кристаллической решетки, то вполне естественно, что измерение параметров этих флуктуаций поверхности алмаза представляет особый научный интерес. В качестве измерительного инструмента при проведении экспериментов по определению этих параметров был выбран кантилевер атомно-силового микроскопа «ИНТЕГРА Прима» фирмы «НТ-МДТ» (Москва, РФ).

Принцип работы атомно-силового микроскопа основан на регистрации силового взаимодействия между поверхностью исследуемого образца и зондом. В качестве зонда используется наноразмерное острие, располагающееся на конце упругой консоли, называемой кантилевером. Сила, действующая на зонд со стороны поверхности, приводит к механическому изгибу консоли. Появление возвышенностей или впадин под острием при сканировании исследуемой поверхности приводит к изменению силы, действующей на зонд, а значит, и к изменению величины изгиба кантилевера. Таким образом, регистрируя величину изгиба, можно сделать вывод о рельефе поверхности.

В случае наших предстоящих экспериментов достаточно поместить кантилевер, например, на вершину пирамиды нашего кристалла алмаза и перевести атомно-силовой микроскоп в режим осциллографа. При возникновении флуктуаций (механических колебаний) поверхности исследуемого кристалла при УФ-облучении алмаза кантилевер должен соответственно прогибаться и на экране монитора компьютера должно регистрироваться изображение этих колебаний.

При проведении эксперимента кристалл алмаза фиксировался своим основанием на держателе объекта микроскопа с помощью двустороннего скотча. Кантилевер микроскопа помещался на вершину кристалла с целью регистрации ее механических колебаний. Авторучка с УФ-светодиодом, закрепленная на специальном кронштейне, подводилась к боковой грани алмаза на расстояние ~ 7—10 мм.

Через ~422 секунды после начала облучения поверхности алмаза УФ-светодиодом на экране монитора неожиданно возникла картина генерации когерентных механических колебаний поверхности вершины алмаза (рис. 8.5).

На рис. 8.6 показана картина генерации когерентных акустических колебаний вершины алмаза при УФ-облучении. Частота этих колебаний составила ~45,4 Гц, амплитуда ~ 16,0 нм.

Рис. 8.5. Начало генерации акустических колебаний вершины алмаза. Результат получен на микроскопе «ИНТЕГРА Прима» фирмы «НТ-МДТ» Ю.А. Бобровым (Москва, РФ)

Рис. 8.7. Спектр акустических колебаний вершины алмаза при УФ-облучении

Наблюдаемая на графике периодичность изменения амплитуды сигнала с частотой -100 Гц является аппаратурным фактором и связана с заданной частотой дискретизации, которая использовалась при оцифровке сигнала управляющим компьютером.

На рис. 8.7 приведен спектр генерируемых когерентных акустических колебаний вершины алмаза.

Проведенный эксперимент показал, что сформированная в объеме алмаза когерентная волновая среда, которая образовала устойчивую сверхструктуру энергетических флуктуаций в алмазе, при УФ-облучении кристалла способна активно реагировать на подобные возмущения генерацией когерентных акустических колебаний. По нашему мнению, этот факт открывает новые свойства и новые возможности применения кристаллов алмаза.