Приключения великих уравнений

Карцев Владимир Петрович

Тетрадь вторая. ВРЕМЯ ИСКАТЬ

 

 

Маски кружились, кружились вокруг в диком хороводе, пока человек не остановил их: «Откройтесь!» И осталось только две маски: Электричество и Магнетизм, а все остальные были порождением их. Но чтобы разглядеть это, нужно было приблизиться. И протянуть уверенную руку.

 

Гильберт, придворный врач

Стратфорд на Эйвоне, наши дни, выставка «Шекспир и его время». Пестрые группки туристов, прилавки с сувенирами остаются позади. Вы машинально протягиваете контролеру свой билетик, делаете шаг по пластиковому полу сквозь алюминиевый короб ультрасовременной двери и оказываетесь в XVI веке. С темных, старательно закопченных сводов свисают масляные светильники. На стенах — заржавленные двуручные мечи и прорубленные от плеча до пояса кольчуги. Только что смолкли шумные схватки закованных в броню приверженцев Алой и Белой роз. В то смутное время в небольшом английском городке Стратфорде в семье Джона Шекспира рождается сын Вильям… Другому Вильяму, Гильберту, который прославится впоследствии как первый человек, посмотревший на электрические и магнитные явления с научных позиций, исполнилось тогда двадцать лет.

Детство его не отличалось, наверное, от детства Шекспира. В зале «Детство» человечки из папье-маше, замерев, перепрыгивают через палки, пляшут под свирель и играют в бабки.

На стенде — золотом строки из «Бесплодных усилий любви»:

Когда свисают с крыши льдинки, И дует Дик-пастух в кулак, И леденеют сливки в крынке, И разжигает Том очаг, И тропы занесло снегами, Тогда сова кричит ночами: У-гу! У-гу! У-гу! Приятный зов, Коль суп у толстой Джен готов. Когда кругом метут бураны, И онемел от кашля поп, И красен нос у Марианны, И птица прячется в сугроб, И яблоки румянит пламя, Тогда сова кричит ночами: У-гу! У-гу! У-гу! Приятный зов, Коль суп у толстой Джен готов.

Шекспир оканчивает обычную школу с латынью и греческим, преподносимыми учителем-«педантом» в ослепительно белых носках и глухой черной шляпе.

Шекспир «знал мало по-латыни и еще меньше по-гречески». Восемнадцати лет он женился на двадцатишестилетней Анне Гесуе.

Гильберт после школы поступает в колледж святого Джона в Кембридже, через два года становится бакалавром, а через четыре — магистром, через пять — доктором медицины. Гильберт всю жизнь оставался убежденным холостяком.

Вскоре после женитьбы Шекспир уезжает в Лондон.

Усталый конь, забыв былую прыть, Едва трусит уныло подо мной, Как будто знает: незачем спешить Тому, кто разлучен с душой родной… Как тяжко мне, в пути взметая пыль, Не ожидая дальше ничего, Отсчитывать уныло, сколько миль Отъехал я от счастья своего.

В то время миллионы англичан стали жертвами эпидемии чумы. «Зал чумы» — один из самых страшных на выставке. Громадная, натуралистически выполненная туша чумного быка висит на площади. В грубо сколоченных, отмеченных белым крестом клетках — зачумленные. Через скрытые в стенах репродукторы непрерывно передаются ропот средневековой толпы, ржанье перепуганных лошадей, плач женщин и детей, нагнетающие подавленное настроение.

А Лондон веселится. Королева Елизавета, слывшая «непорочной», спешила побольше взять от быстротечной жизни. Поводом для торжеств был разгром испанской «непобедимой армады». Фаворит королевы граф Эссекс делает все, чтобы королеве было весело. Театры создаются чуть не десятками, хотя актеры по-прежнему приравнены в общественном положении к нищим, бродягам и ворам. В одном из театров присматривает за лошадьми богатых посетителей Вильям Шекспир.

Вильям Гильберт достиг большего. Он — лейб-медик королевы.

Трудно сказать, почему именно медик написал первую научную работу по магнетизму и электричеству.

Может быть, это было связано с тем, что толченый магнит у средневековых лекарей считался сильным слабительным. Сам Гильберт считал, что магнитное железо «…возвращает красоту и здоровье девушкам, страдающим бледностью и дурным цветом лица, так как оно сильно сушит и стягивает, не причиняя вреда».

Однако горький опыт показал Гильберту, что магниты при приеме внутрь иногда «…вызывают мучительные боли во внутренностях, чесотку рта и языка, ослабление и сухотку членов».

Может быть, экскурсы Гильберта в природу магнетизма и были порождены желанием узнать, где истина: является магнит лекарством или нет. Гильберт приходит к выводу, что «природа магнита двойственная и больше — зловредная и пагубная». По пути к этому выводу Гильберт делает ряд других, значительно более ценных.

Нет сомнения, что на занятия Гильберта магнетизмом оказал влияние следующий, казалось бы, не имеющий большого значения факт: Гильберт был дружен с капитанами Фрэнсисом Дрейком и Генри Кэвендишем. Это были просоленные насквозь морские волки, «королевские пираты», в обязанность которых входили завоевания и грабеж новых земель для английской короны, а то и просто взятие на абордаж какого-нибудь испанского «купца». Эти полупираты-полуисследователи были весьма популярны при дворе.

Фрэнсис Дрейк был вторым после Магеллана капитаном, совершившим кругосветное плавание (наверное, многие в юности зачитывались приключениями «Золотой лани» капитана Дрейка), а Генри Кэвендиш прославился кровавым «корсарским Рождеством», которое он отметил в американских владениях Испании 400 с лишним лет назад.

Радушный, веселый Гильберт легко подружился с героями своего времени. Видимо, не раз внимал он их рассказам о дальних странствиях, об океанских островах, о диковинных зверях, рыбах и растениях. Как новость сообщили они Гильберту то, что и в Южном полушарии, так же как и в Северном, стрелка компаса указывала на север (это было тогда не столь очевидно). Они привезли для Гильберта королевский подарок — карты всей Земли с уникальными замерами магнитного склонения в далеких морях и землях.

Тот факт, что северный конец стрелки компаса в Северном и Южном полушариях указывает на север, и навел Гильберта, по-видимому, на мысль, что Земля в целом ведет себя как один большой магнит.

Что было известно в Европе о магните до Гильберта?

В 1269 году некий Пьер Перегрин из Марикурта во время вынужденного безделья при осаде небольшого итальянского городка Люцера написал книжку «Письма о магните», в которой собрана масса наблюдений о магните, накопившихся до него и сделанных лично им. Перегрин впервые говорит о полюсах магнитов, о притяжении («совокуплении») разноименных полюсов и отталкивании одноименных, об изготовлении искусственных магнитов, о проникновении магнитных сил через стекло и воду, о компасе. Причину притяжения южного и северного полюсов Перегрин и его последователи объясняли довольно туманно: «Южная часть притягивается той, которая имеет свойства и природу севера, хотя они обе имеют одну и ту же специфическую форму. Однако это не исключает некоторых свойств, существующих более полно в южной части. Но эти свойства северная часть имеет лишь в возможности, и поэтому они при этой возможности и проявляются».

Ценность этой точки зрения заключается в том, что она, наводя на размышления, привела средневекового ученого Аверроэса к гениальной догадке. По его мнению, естественный магнит искажал ближайшее к нему пространство в соответствии с его формой. Ближайшие к магниту области среды, в свою очередь, искажали ближайшие к ним, и так до тех пор, пока «специи» не достигали железа. В этих рассуждениях впервые дан намек на магнитное поле — особую форму материи.

До Гильберта было известно и явление «старения магнитов». Так, в трактате, приписываемом Джабиру ибн Хайяну, или, на латинский лад — Геберу, есть такие слова: «У меня был магнит, поднимавший 100 драхм железа. Я дал ему полежать некоторое время и поднес к нему другой кусок железа. Магнит его не поднял. В куске оказалось 80 драхм. Значит, сила магнита ослабла».

К другим важнейшим догильбертовским событиям можно отнести открытие в XIV веке магнитного склонения и обнаружение Колумбом (1492 г.) изменения склонения магнитной стрелки на одной и той же параллели, а также открытие Георгом Гартманом (Нюрнберг, 1544 г.) магнитного наклонения.

Кроме этого, о магнитах в конце XVI и начале XVII века было известно следующее:

— под хвостом Большой Медведицы имеется магнитный камень;

— прием магнита внутрь «в малых дозах» продлевает молодость;

— если положить магнит под голову спящей женщины, он сбросит с постели прелюбодейку;

— магнит открывает запоры и замки;

— днем магнит притягивает сильнее, чем ночью;

— если потереть магнит чесноком или положить рядом с ним бриллианты, его сила исчезнет;

— если же помазать магнит кровью козла, его сила восстанавливается;

— магнит, хранимый в рассоле из рыбы-прилипалы, обладает силой извлекать золото, упавшее в самые глубокие колодцы;

— есть магниты, притягивающие серебро, алмазы, яшму, стекло и даже «мясные» и «деревянные» магниты и т. д. и т. п., в частности, в заволжских степях существует растение, имеющее ноги и называющееся «бараме», притягивающее к себе овец, а затем безжалостно пожирающее их.

* * *

Кстати, почему южный конец магнитной стрелки красный, а северный — черный? Не исключено, что здесь мы следуем древнекитайской традиции. Китайцы всегда окрашивали южный конец стрелки в красный цвет. В древнем ассирийском календаре времен Александра Македонского север называется черной страной, юг — краской, восток — зеленой и запад — белой. Городские ворота в Китае окрашивались в соответствии с этим. Вполне вероятно, что такое обозначение сторон света было в то время общепринятым, и отголоском этого являются названия Черного и Красного морей, лежащих на юг и север от центрального — Средиземного.

* * *

Разобраться в подобных утверждениях и отделить зерна от плевел предстояло Вильяму Гильберту, придворному медику.

В течение 18 лет он на собственные деньги ставит бесчисленное количество опытов, которые в конце концов описаны в книге «О магните, магнитных телах и о большом магните — Земле. Новая физиология, доказанная множеством аргументов и опытов», вышедшей в 1600 году. И сам Гильберт, и его современники чрезвычайно высоко оценивали этот труд, первый по-настоящему научный труд, посвященный электричеству и магнетизму.

Заслуги Гильберта действительно велики. Самой значительной из них явилось то, что он впервые в истории, задолго до Бэкона, считавшегося родоначальником «индуктивного» метода в науке, провозгласил опыт критерием истины и все положения проверял в процессе специально поставленных экспериментов.

Величие идей Гильберта и его заслугу перед своим временем нам сейчас даже трудно вообразить. Понятие об эксперименте как основе исследования было в то время неизвестно. Признавалась тогда лишь аристотелевская созерцательная наука, направленная на доказательство существования бога да на решение насущных проблем типа: сколько чертей может уместиться на острие иглы? В европейских городах сжигались сотни «ведьм» и «колдунов», причем в качестве доказательства принадлежности к «нечистым» принимались, например, и такие: «Старуха такая-то замечена в том, что подбирала конский помет, — наверное, чтобы околдовать хозяина этого коня». Или просто: «Уж очень подходящий цвет лица у него для сношения с нечистым».

Обстановку того времени передает случайно сохранившийся дневник обывателя небольшого городка из вюрцбургского княжества:

«В сем 1616 году на Иванов день начали забирать колдуний, и первою попалась Елисавета Букелева, Ивана Букеля жена. 26 ноября у нас сожгли девять молодых женщин как ведьм — это было первое паленье.

В сем 1617 году 6 марта устроили второе паленье колдуний, их поставили на костер четыре души. 13 апреля сожгли Анну Рютцову, Ивана Вейера хозяйку… 26 июля сожгли колдуна и трех колдуний…»

А вот выдержка из, так сказать, официального документа той эпохи — Баденского «Земского Уложения», раздел «Наставление к допросу ведьм». Вопросы, которые следует задавать выявленным и пойманным ведьмам:

«Вредила ли она людям и кому именно? Ядом? Прикосновением, заклятиями, мазью? Сколько она до смерти извела мужчин? Женщин? Детей? Сколько она лишь испортила? Сколько беременных женщин? Сколько скотины? Сколько напустила туманов и тому подобных вещей? Как она это производила и для чего?

Умеет ли она летать по воздуху и на чем она летала?

Как она это устраивает? Как часто она летает? Куда случалось ей летать в разное время? Кто из других людей, находящихся еще в живых, бывал на их сборищах?

Умеет ли она прикидываться каким-нибудь животным и с помощью каких средств?

Сколько малых детей съедено при ее участии? Где они были добыты? Также — у кого они взяты? Или они были вырыты на кладбище? Как они их готовили — жарили или варили? Также, на что пошли головка, ручки и ножки? Добывала ли она также из наших детей и сало, и на что оно? Не требуется ли детское сало, чтобы подымать бури?»

Написать в те времена трактат об электричестве и магнетизме да еще утверждать, что Земля — магнит, да еще проверять все теоретические построения на опыте, исходить из опыта — это был действительно научный подвиг. Надо сказать, Гильберт не недооценивал своих заслуг. Впервые в практике книгопечатания он поставил свое имя перед названием книги. И никто его за это до сих пор не осудил.

Через год после выхода книги Гильберта «О магните» Шекспир создает «Гамлета». По иронии судьбы и гениальные идеи Гильберта, и неповторимые страсти шекспировских трагедий будут впоследствии приписываться одному автору — все тому же Фрэнсису Бэкону, философу. До сих пор многие известные ученые считают, что именно Фрэнсис Бэкон был родоначальником «индуктивного» метода в науке, хотя его книга «Новый Органон», в которой этот метод развит, вышла через 11 лет после книги Гильберта, являющейся «одним из лучших в мире примеров индуктивной науки». Некоторые исследователи даже считают, что Бэкон умышленно искажал и замалчивал открытия Гильберта.

Изготовив из магнитного железняка шар — «терреллу» (землицу), Гильберт заметил, что этот шар по магнитным свойствам сильно напоминает Землю. У «терреллы», так же как у «терры» (Земли), оказались северный и южный полюсы, экватор, изолинии, магнитное наклонение. Эти обстоятельства позволили Гильберту провозгласить Землю «большим магнитом». До Гильберта о магнетизме Земли никто не подозревал, и притяжение южного черного конца магнитной стрелки к северному полюсу Земли объяснялось в средние века тем, что «железо направляется к северным звездам, так как ему сообщила сила полярных звезд, подобно тому, как за солнцем следуют растения, например подсолнечник».

Гильберт опроверг широко распространенное мнение о влиянии алмазов на магнитные свойства. Он собрал 17 крупных алмазов и в присутствии свидетелей показал, что магниты к алмазам абсолютно безразличны.

Он открыл, что при нагревании магнита выше некоторой температуры его магнитные свойства исчезают: впоследствии эта температура (588 °C) была названа точкой Кюри в честь Пьера Кюри.

Гильберт открыл, что при приближении к одному полюсу магнита куска железа другой полюс начинает притягивать сильнее. Эта идея была запатентована Сименсом лишь через 250 лет после смерти Гильберта.

Гильберт открыл, что предметы из мягкого железа, в течение долгого времени лежащие в одном положении, приобретают намагниченность в направлении север — юг.

Гильберт открыл экранирующее действие железа.

Гильберт открыл, что магнит со «шлемом», или «носом», то есть магнит, вправленный в арматуру из мягкого железа, имеет большую подъемную силу.

Гильберт сделал гениальную догадку о том, что действие магнита распространяется подобно свету.

Гильберт многое сделал и открыл. Но… Гильберт почти ничего не смог объяснить. Все его объяснения носят схоластический и наивный характер. Вот, например, как Гильберт объясняет тот факт, что при разрезании одного длинного магнита образуется много коротких, которые имеют первоначальное направление намагничивания и стремятся сохранить прежнее положение в пространстве.

Он сравнивает магнит с веткой дерева: «Пусть АВ будет покрытый листвой сучок ивы… А — верхняя часть, В — нижняя, по направлению к корню. Разделили его в С.

Я утверждаю, что конец А, снова вставленный в В с соблюдением правил прививки, прирастает к нему; точно так же, если В вставить в А, то они скрепляются друг с другом и дают ростки. Но если D вставить в А или С в В, то они вступают между собой в борьбу и никогда не срастаются, но один конец отмирает вследствие неподходящего и несоответствующего соединения, так как растительная сила, идущая одним путем, теперь оказывается стремящейся в противоположные стороны…»

Еще туманней разъяснения Гильберта относительно природы магнетизма. Его ответ сводится к тому, что всему причиной — «душа» магнита. Это в известной мере шаг назад по сравнению с Лукрецием. Извинением великому первооткрывателю может, видимо, служить лишь то, что и с позиций современной физики притяжение магнита — не такая уж очевидная вещь…

Другим, значительно более серьезным извинением служит то, что за словом «душа» у Гильберта иногда ясно слышится слово «поле», порой прямо называемое йм «сферой действия».

* * *

Кардан в своем трактате «О точности (1551 г.) за пятьдесят лет до Гильберта указал на различие электрических и магнитных явлений: янтарь притягивает разные вещества, магнит — только железо; бумажный экран препятствует распространению электрической силы, но не препятствует распространению магнитной; янтарь не притягивается теми кусочками, которые может притянуть он, а магнит может притянуться железом и т. п. Все эти наблюдения, в общем, неточны, но вывод — справедлив. Он подтверждает точку зрения Д. И. Менделеева: лучше придерживаться гипотезы, которая может со временем оказаться неправильной, чем никакой.

* * *

«Гильбертом» предложено называть единицу напряженности магнитного поля. Это дань потомков — физиков и инженеров — лондонскому врачу, сделавшему благодаря своей любознательности крупнейшие открытия в, казалось бы, очень далекой от него области — физике.

Но за опытами Гильберта по магнетизму иногда забывают отметить и другую важнейшую его заслугу — выяснение «взаимоотношений» между магнетизмом и электричеством.

Он был убежденным исследователем. Все время, которое оставалось после «основной работы», он посвящал опытам по электричеству и магнетизму. Само слово «электричество» введено в науку Гильбертом!

Именно в книге Гильберта «О магните» впервые встречается слово «электрический». Вот первое в истории употребление слова «электрический».

«Электрические тела — те, которые притягивают таким же образом, как янтарь» (Гильберт В. «О магните», глава «Объяснение некоторых слов»).

Кстати, читая эту книгу Гильберта, приходишь к интересному выводу о происхождении слова «электричество». Мы уже привыкли считать, что слово «электричество» названо по греческому слову «электрон», что значит янтарь. Но дело-то в том, что янтарь у древних греков имел чуть не десяток названий (об этом пишет французский исследователь Анри Мартин): электрон, электрос, хризэлектрос, хризофорос и т. п. Почему же Гильберт выбрал именно первое название янтаря? Дело, по-видимому, в том, что первое название янтаря образовано от глагола, обозначающего «притягивать», «увлекать».

Этот тезис кажется тем более убедительным, что Гильберт приводит несколько веществ, «электрических тел», способных притягивать, как янтарь:

— «Гагат» — разновидность каменного угля;

— Сера;

— «Ирис» — кристалл кварца;

— Стекло;

— «Винцентина», «бристольский алмаз» — разновидность кварца;

— «Кристалл» — кварц;

— «Мышьяк» — минерал;

— «Аммонияк» — камедь.

Задача Гильберта была великой — ему предстояло разделить множество известных фактов на естественно складывающиеся группы. Проведя такую классификацию, ему впервые удалось четко отделить электрические явления от магнитных.

Отделить, чтобы через двести лет усилиями многих ученых они снова могли быть воссоединены, но уже на новой основе.

Средневековые ученые считали, что все в мире делится на «магниты» и «феамеды».

К «магнитам» принадлежит все, притягивающее друг друга, — магнит и железо, янтарь и пылинки, мужчина и женщина, моллюски-прилипалы и днище корабля, пчела и цветок.

К «феамедам» принадлежит то, что внушает «антипатию» друг к другу, — магнит и пламя свечи, одноименные полюсы магнита, женщина и женщина…

И вот Гильберт, отказывая себе в развлечениях и удовольствиях, дорогой ценой одиночества, на собственные деньги проделывает несметное количество экспериментов, в процессе которых приходит к нескольким чрезвычайно важным выводам. Один из них — притяжение магнита и янтаря имеет разную природу. Другими словами, Гильберту удалось разделить магнитные и электрические явления на два класса, которые с этих пор стали исследоваться отдельно.

Еще не скоро наступит то время, когда электричество и магнетизм снова соединятся…

Гильберт умер через три года после выхода в свет труда «О магните», умер от чумы.

Через 13 лет умирает Шекспир, и еще через 7 лет впервые выходит его «Первое фолио» — первое собрание пьес Шекспира.

Обеим книгам суждена была долгая жизнь, полная взлетов и падений, признаний и забвений. И чем дальше в глубь веков уходят воспоминания об их авторах, тем сильнее ощущаем мы гениальность этих людей, вечность истин знания и страстей, провозглашенных ими.

А о творениях их можно сказать шекспировскими строками:

Замшелый мрамор царственных могил Исчезнет раньше этих веских слов…

 

Новый и страшный опыт Мушенбрека

Гильберт открыл довольно много веществ, которые, как и янтарь, могут притягивать мелкие пылинки.

Испробуя эти вещества, десятипудовый любознательный бургомистр немецкого города Магдебурга Отто фон Герике изготовил странную машину: шар из серы, приводимый во вращение. Если шар при вращении придерживать ладонями, на нем скапливается электрический варяд. С помощью шара можно было делать много занятных экспериментов с наэлектризованными предметами. Один из опытов наиболее известен: Герике, пораженный, наблюдает пушинку, притягивающуюся к его носу, а затем отлетающую от него, затем снова притягивающуюся и т. д. Эксперимент забавен, но и чрезвычайно, принципиально важен: раньше считалось, что легкие тела могут только притягиваться наэлектризованными предметами, это даже считалось основным различием электрических и магнитных явлений — ведь известно, что магниты отталкиваются одноименными полюсами.

Другое интересное открытие — электрическая сила обнаружила способность распространяться по «льняной нитке на один локоть» (сравните это первое наблюдение с современными сверхмощными линиями передач!). Еще одно открытие — Герике слышал при разряде своих шаров слабый треск и иногда наблюдал слабое свечение.

Ему было в то время уже больше 60, знаменитому магдебургскому бургомистру. Родился он в семье дебургского патриция в 1602 году, за год до смерти Вильяма Гильберта. Учился в Лейпциге, потом в Вене занимался юриспруденцией. Потом отправился в Голландию, в Лейден, где увлекся физикой, математикой, фортификацией и другими точными науками. Потом — в Англию. Потом — во Францию. Вернулся на родину в 25 лет, женился, родил трех сыновей, был назначен охранителем и военачальником Магдебурга. Время было бурное, Магдебург переходил из рук в руки. Приходилось иной раз и улепетывать от противника, оставляя на разграбление дом, на верную смерть — слуг. Пришлось однажды и самому попасть в руки неприятеля, но… откупился, жизнь Отто фон Герике была оценена в 300 талеров.

Был он генерал-квартирмейстером, и строителем, и дипломатом. 44 лет избран бургомистром родного Магдебурга и на досуге занялся науками. Ему было около 50, когда он прославился своими «магдебургскими полушариями» (пустые полусферы, которые не могли растащить десять лошадей).

60 лет он окончил книгу, посвященную физическим опытам. Книга эта печаталась 10 лет и вышла как раз к семидесятилетию автора. Через шесть лет он добивается отставки, а еще через три года умирает от чумы.

Книга и «шары Герике» получили очень широкое распространение по всей Европе. Используя его открытие, другие исследователи смогли заметить новые, ранее никогда не наблюдавшиеся свойства электричества.

Один из ярких случаев произошел в 1745 году в Лейдене. Богач Кюнеус, ученик Питера ван Мушенбрека, использовал машину Герике для того, чтобы «зарядить электричеством» воду в стеклянной колбе, которую держал в ладонях. Зарядка осуществлялась при помощи цепочки, подсоединенной к машине. Цепочка спускалась через горлышко колбы в воду. Когда, по мнению Кюнеуса, зарядка была окончена, он решил убрать цепочку — вынуть ее рукой из сосуда. И тут он получил такой страшный электрический удар, что чуть не скончался.

Лейденский профессор Мушенбрек (Мушенброк, Мушенброек, Мушенбрюк, Мушенбрук), который оспаривает честь открытия лейденской банки у своего студента, пишет об аналогичном ощущении так: «Хочу сообщить вам новый и страшный опыт, который никак не советую повторять. Я делал некоторые исследования над электрической силой и для этой цели повесил на двух шнурах из голубого шелка железный ствол, получавший через сообщение электричество от стеклянного шара, который приводился в быстрое вращение и натирался прикосновениями рук. На другом конце свободно висела медная проволока, конец которой был погружен в круглый стеклянный сосуд, отчасти наполненный водой, который я держал в правой руке, другой же рукой я пробовал извлечь искры из наэлектризованного ствола.

* * *

Немецкий ученый Клейст в 1745 году доложил Берлинской академии наук о своих опытах с «медицинской банкой». Несправедливость Клейста все забыли, и открывателями «лейденской банки» считаются Кюнеус и Мушенбрек.

* * *

Вдруг моя правая рука была поражена с такой силой, что все тело содрогнулось, как от удара молнии. Сосуд, хотя и из тонкого стекла, обыкновенно сотрясением этим не разбивается, но рука и все тело поражаются столь страшным образом, что и сказать не могу, одним словом, я думал, что пришел конец…»

Выяснилось, что в сосудах того типа, о котором пишет Мушенбрек, электричество может накапливаться в весьма значительных количествах. Так была открыта прославленная впоследствии «лейденская банка» — простейший конденсатор.

Новость о лейденской банке с большой скоростью распространилась по Европе. Мушенбрек, и до того известный, стал лейденской достопримечательностью. С ним, в частности, познакомился Петр Великий, когда работал на верфях в Голландии. Позже Петр приказал для новой Академии наук различные приборы именно Мушенбреку «сделать повелеть». Однако Мушенбрек не был ученым высокого класса. Его представления о мире можно проследить по его курсу физики. Курс был составлен из 42 разделов, самых разнокалиберных: О фонтанах. О зрении. О метеорах. О ветрах. Ему не хватало широты взглядов, способности к обобщению. Может быть, этим можно объяснить, что он вошел в историю не как великий физик, а как человек, один из первых испытавший на себе электрический удар лейденской банки: «…ради французской короны я не согласился бы еще раз подвергнуться столь жуткому сотрясению…»

Итак, новость о лейденской банке с быстротой электрического удара начала распространяться по Европе и не слишком просвещенной тогда Америке. В лабораториях, аристократических салонах, на ярмарках ставились удивительные опыты, неприятные, забавные и волнующие одновременно.

Французская столица, разумеется, не могла остаться в стороне от «лейденского поветрия». 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, вскрикнули с ужасом.

180 королевских мушкетеров тоже провели перед королем подобный опыт в Версале. Даже гвардейская дисциплина оказалась бессильной перед ударом лейденской банки: «Первый держал в свободной руке банку, а последний извлекал искру; удар почувствовался всеми в один момент. Было очень курьезно видеть разнообразие жестов и слышать мгновенный вскрик, исторгаемый неожиданностью у большей части получающих удар».

Провел этот эксперимент придворный «электрик» короля, специально ведавший различными электрическими увеселениями, аббат Нолле.

Несмотря на неприятное ощущение, тысячи и тысячи людей хотели подвергнуться эксперименту.

Изготавливались новые банки, все более мощные.

Лейденская банка стала непременным атрибутом электрических исследований. С ее помощью получали крупные электрические искры — иной раз до нескольких сантиметров.

Электрические опыты приобрели необыкновенную популярность. Они стали одним из изысканнейших развлечений.

Целые представления, занимательные, чуть не театральные зрелища разыгрывались перед восторженными зрителями.

Лекторы, а может быть, вовсе не лекторы, а послы новой эпохи, искусители душ, воспламенители сердец глашатаями новых открытий разъезжали по свету, оставляя повсюду яркие воспоминания о необычных опытах и, как модно теперь говорить, «ощущение интеллектуального дискомфорта».

Зрители уходили с представлений взволнованные.

Несомненно, рано или поздно среди них должен был оказаться человек, на которого опыты произведут более глубокое впечатление, чьи скрытые дотоле силы будут разбужены вдруг неприятным ударом лейденской банки, кому суждено увидеть больше, чем другим…

Этого не произошло ни в Лейдене, ни в Санкт-Петербурге, ни в Париже, ни в Женеве, ни в Лондоне. Это произошло в далекой Америке.

 

Eripit coelo fulmen scemprumgue turannis

[5]

Итак, шел 1747 год… По городам и селениям Европы и Нового Света разъезжали предприимчивые экспериментаторы, совершающие «электрические чудеса». Они воспламеняли спирт, убивали цыплят, вызывали странный свет в темноте.

Особенно кстати пришлись эти представления в Америке, где до тех пор основными развлечениями были распродажи да скачки. Колонисты валом валили на представления некоего доктора Спенсера, проделавшего долгий путь из Глазго до Бостона для того, чтобы показать американцам новые электрические опыты и немало заработать на этом.

Шел 1747 год… На лекцию по электричеству в Бостоне попал средних лет джентльмен, высокий, импозантный, прекрасно сложенный, окруженный друзьями и почитателями.

Завороженный, смотрел он на синие электрические искры, со смешанным чувством прикасался к оголенным кондукторам большой лейденской банки, жадно вдыхал пахнущий озоном воздух.

Этим человеком был Бенджамен Франклин. Трудно себе представить более выдающуюся и популярную личность своего времени. Он, пятнадцатый ребенок мелкого ремесленника, родился в 1706 году в Бостоне, жил 84 года и занимался физикой всего лишь семь лет — с 1747 по 1753 год.

Франклин ввел в науку понятие положительного и отрицательного электричества. Когда мы пользуемся словами «батарея», «конденсатор», «проводник», «заряд», «разряд», «обмотка», мы вряд ли помним о том, что Франклин первым дал названия всем этим вещам.

В последние свои годы Франклин стал одной из выдающихся фигур политической жизни Америки, активным борцом за освобождение Америки от английского колониального ига.

В 27 лет он, помимо всего прочего, был популярнейшим писателем Америки. Его «Бедный Ричард» выдержал бессчетное количество изданий. «Я мог бы попытаться вызвать к себе добрые чувства, провозгласив, что я пишу эти выпуски не для чего иного, как для блага общества; но это было бы неискренне, и кроме того, современники мои слишком умны для того, чтобы быть обманутыми таким образом… Истина же в том, что я крайне беден, а издатель обещал мне значительную часть выручки…» — не без юмора писал Франклин по поводу своей литературной деятельности.

«Альманах Бедного Ричарда» был чем-то вроде календаря, содержащего практические советы, изречения (типа «нельзя заставить пустой мешок держаться прямо», «своим можешь назвать лишь то, что съел») и занимательные рассказы. Образ Бедного Ричарда — «полуголодного ученого старикана, допекаемого сварливой женой, рассуждающего о пользе бережливости, подмигивающего молоденьким женщинам», — оказался необычайно популярным и жизнеспособным. «Альманах» издавался около 30 лет. Для нас во всем этом, помимо иллюстрации разносторонней одаренности Франклина, важно и то, что «Альманах», так же как и издававшаяся им же «Пенсильванская газета», дали ему возможность разбогатеть и к 40 годам «отдалиться от дел». Наличие свободного времени и свободных денег немало способствовали успехам Франклина в области электричества.

Франклин был обаятельнейшим, образованнейшим человеком своего времени. Веселый и жизнерадостный, атлетически сложенный, Франклин всегда окружен интересными и влиятельными людьми — дипломатами, принцами, учеными и очаровательными женщинами.

Но вернемся к семи «электрическим» годам из жизни Франклина, точнее, к тем из них, которые были связаны с доказательством электрической природы молнии.

После случайно прослушанной популярной лекции Франклин, решив систематизировать все, что он узнал от других и понял сам, развил довольно простую, но стройную и, как впоследствии оказалось, правильную теорию статического электричества и его передачи от одного тела к другому — ту самую теорию, которую мы проходим в школе, впервые знакомясь с электричеством.

Сейчас мы сделали бы лишь одну поправку к этому учению — Франклин наугад принял, что то тело, которое накапливает электричество («электрическую жидкость» — по терминологии Франклина), заряжается положительно. Мы знаем сейчас, что носителем электричества в проводниках является отрицательно заряженный электрон. Поэтому заряд наэлектризованного тела, на наш взгляд, должен быть отрицательным. Естественно, что Франклин не мог предугадать этого, и для того, чтобы не ломать установившиеся со времени Франклина представления, сейчас направление тока (от плюса к минусу) принимают обратным направлению происходящего реального процесса — движения электронов.

Франклин вдохновенно творил новую теорию. Идеи вытекали друг из друга, обретали мелодию, гармонию, изящно модулировали и образовали, наконец, блестящую симфонию статического электричества. Атмосферу необыкновенной легкости, игры, но игры, в тайных закоулках которой могут скрываться великие открытия, атмосферу, в которой творил он свою теорию, передал Бенджамен Франклин в одном из писем к английскому другу:

«Ввиду того, что наступает жаркая погода, когда электрические опыты доставляют мало удовольствия, мы думаем покончить с ними на этот сезон, завершив все довольно веселым пикником.

Искра, переданная с одного берега реки Скулкилл на другой без какого-либо проводника, кроме воды, зажжет одновременно на обоих берегах спиртовки (этот опыт, к изумлению многих видевших его, мы уже проделывали некоторое время тому назад)… Индейка к нашему ужину будет умерщвлена электрическим ударом и зажарена на электрическом вертеле огнем, зажженным наэлектризованной банкой; мы выпьем за здоровье всех известных физиков… из наэлектризованных бокалов под салют орудий, стреляющих от электрической батареи». [6]

Теория статического электричества помогла Франклину сделать сенсационное открытие — он первым доказал, что молния, с грохотом прорезающая небо, и искра, полученная с помощью лейденской банки, это одно и то же явление, только в разных масштабах.

Нельзя сказать, что такая аналогия была очень уж новой. Еще великий Ньютон писал в одном из своих писем в 1716 году:

«Тот, кто копается в глубоких шахтах знания, должен, как и всякий землекоп, время от времени подниматься на поверхность подышать чистым воздухом.

В один из таких промежутков я и пишу вам… Я много занимался замечательными явлениями, происходящими, когда приводишь в соприкосновение иголку с кусочком янтаря или смолы, потертой о шелковую ткань. Искра напомнила мне молнию в малых размерах…»

Но «напомнила» — это еще не доказательство. Нужно было очень ясно представить себе электрические процессы, происходящие в атмосфере, чтобы сделать решающий шаг — поставить ясный эксперимент, со справедливостью доказывающий, что молния и искра — одно и то же.

…О нежные воспоминания детства! Призрачный и светлый мир, населенный умными, добрыми существами, большими яркими цветами, бабочками и стрекозами!

Мир, где наслаждаются самым обычным: небом, облаками, запахами с такой остротой, которая, быть может, придет во всей последующей жизни лишь несколько раз.

О как прекрасен и ярок мир, который мы в спешке взрослых будней не успеваем заметить.

В один из незабываемых дней своего детства великий Франклин, тогда еще мальчик Бен, смастерил с помощью взрослых белоснежное трепещущее чудо, стремящееся при малейшем ветре выпорхнуть из тонких детских рук на свободу, в высокие голубые глубины, где хозяин лишь ветер, теплым потокам которого должен повиноваться новый воздушный змей. Тонкая, но прочная веревка с палкой (чтобы крепко держать вырывающийся змей) — все, что связывает маленького Бена с большим белым парусником — или птицей? — неслышно несущимся где-то высоко впереди. Бен бежит за ним по улочкам, выбегает на зеленый луг, полный травы, цветов и пчел; но корабль несется выше и дальше, и некогда Бену отдохнуть, перевести дух. Он бежит по колено в траве, обнаженное тело омывается теплым летним воздухом, а впереди препятствие — пруд. Безрассудность детства?

Бен в пруду, в руках — крепко зажатая палка с веревкой. Бен переворачивается на спину, и вдруг начинает плавно скользить по поверхности воды, влекомый воздушным парусником; опасный и невыразимо приятный для Бена эксперимент, к счастью, благополучно окончился на другом берегу пруда…

Это детское воспоминание Франклина, «отнявшего молнию у небес и власть у тиранов», по выражению его биографа Тюрго, конечно же, сыграло свою роль в осуществлении знаменитых франклиновских экспериментов с воздушным змеем.

«Когда змей и веревка намокнут от дождя и вследствие этого станут проводить электричество, — писал Франклин, — то поток его обильно исходит из ключа при приближении суставов пальцев. От него можно зарядить банку. Электрическим огнем, полученным таким образом, можно зажечь спирт и сделать все опыты, совершаемые обычно с натираемым шаром или трубкой.

Этим полностью доказывается тождество электрического вещества с веществом молнии».

Здесь уже не ньютоновское «напоминает». Франклин определенно указывает, что «вещество молнии» и «вещество электричества» «тождественны». Интересно заглянуть, так сказать, в «творческую лабораторию» Франклина, пришедшего к этому выводу. Вот что писал он 1 ноября 1749 года:

«Электрическая жидкость имеет с молнией следующее сходство: 1. Дает свет. 2. Тот же цвет света. 3. Ломаное направление. 4. Быстрота движения. 5. Проводится металлами. 6. Создает треск или шум при взрыве. 7. Встречается в воде или во льду. 8. Разрывает предметы, через которые проходит. 9. Убивает животных. 10. Плавит металлы. 11. Зажигает легко воспламеняющиеся вещества. 12. Серный запах».

Открытие Франклина было высоко оценено М. В. Ломоносовым, а один из видных тогдашних русских поэтов несколько позже, уже после опытов Гальвани и Вольта, откликнулся на открытие связи между электрической искрой и молнией следующим шутливым стихотворением:

Итак, узнал я наконец, Тебя, Зевес самодержавный! Узнал, что мир — большой глупец, А ты — проказник презабавный! Два металлических кружка Да два телятины куска С цепочкой медной за ушами — Вот тайна молний и громов, Которыми, как чудесами, Ты нас стращал из облаков, Гальвани с мертвою лягушкой В лаборатории своей Нам доказал, что ты людей Всегда считал одной игрушкой! Сын праха, слабый и глухой, Под руководством гальванизма, Едва ль, Зевес почтенный мой, Я не дойду до атеизма! К чему мне ты? Я сам Зевес! Перуны, молнии и громы Мне без обманов и чудес Теперь торжественно знакомы! Огонь и блеск в моих очах, И гром и треск в моих ушах!..

Когда стала ясна электрическая природа молнии, Франклин смог осуществить главное изобретение своей жизни — громоотвод.

Громоотвод, по словам Франклина, «…либо предотвращает удар молнии из облака, либо уже при ударе отводит его в землю без ущерба для здания.

Нижний конец прутка должен уходить в землю настолько, чтобы достичь влажного грунта, возможно, на глубину в два или три фута. А если пруток изогнут так, чтобы он отходил под землей в горизонтальном направлении на расстояние в шесть — восемь футов наружу от фундамента и затем снова изгибался вниз на три-четыре фута, то он предохранит от повреждения любую часть кладки фундамента.

Лицо, опасающееся молнии и находящееся во время грозы в не совсем надежном доме, поступит хорошо, избегая садиться около камина, зеркала или любой позолоченной картины и панели. Безопаснее всего сесть в кресло посреди комнаты, положив свои ноги на другое (только не под металлической люстрой, спускающейся с потолка на цепи). Еще безопаснее положить два-три матраца или перины на середине комнаты, сложить их вдвое и водрузить на них кресло, и поскольку те проводят хуже стен, молния не может пойти по ломаному пути через воздух комнаты и матрацы, если она имеет лучший и сплошной проводник в стене.

Там, где это возможно, следует подвесить на шелковых шнурах на равном расстоянии от стен, пола и потолка гамак или подвесную кровать, что даст самое надежное укрытие, которое только можно создать в комнате и которое действительно может считаться совершенно безопасным от удара «молнии».

* * *

Опыты Бенджамена Франклина с громоотводом состоялись в 1760 году. Но еще в 1754 году чешский священник Прокопий Дивиш, проживавший в Прендице (Богемия), установил на своем доме десятиметровый железный шест, основательно заземленный. Соседи взбудоражили окрестных крестьян, и те разрушили громоотвод, полагая, что именно он виновник неурожая 1754 года. Возможно, что Прокопий Дивиш использовал идеи Франклина о природе электричества, возможно, он дошел до них самостоятельно, но факт остается фактом — он построил громоотвод раньше Франклина.

* * *

Эти предостережения, которые сегодня могут показаться забавными, во времена Франклина были вполне злободневны.

После того как Франклин в 1760 году установил первый громоотвод на доме купца Веста в Филадельфии, Европа и Америка разделились на два лагеря — ярых приверженцев громоотвода и столь же ярых противников его. В Париже в те годы даже женские шляпы изготовлялись с громоотводами.

В то же время буржуа де Визери, поставивший на своем доме в Сент-Омере громоотвод, подвергся яростным нападкам соседей, которые в конце концов подали на него в суд. Это было уже в 1780 году. Процесс длился четыре года. Защитником громоотвода на процессе выступал никому еще не известный адвокат Максимилиан Робеспьер. Именно этот процесс стал началом его большой популярности. На стороне противников громоотвода экспертом выступал Жан-Поль Марат. (Кстати, Марат был известным писателем-популяризатором: его перу принадлежат три книги по электричеству — одни из первых.)

В конце концов де Визери был оправдан.

В Филадельфии в 1782 году было установлено 400 громоотводов. Крыши всех общественных зданий, за исключением гостиницы французского посольства (Франция громоотвод официально не признавала), были увенчаны металлическими штырями. Во время сильной грозы 27 марта 1782 года именно в дом-исключение ударила молния. Гостиница была частично разрушена, а живший в ней французский офицер убит. После этого случая, имевшего широкий общественный резонанс, громоотводы были установлены уже на всех филадельфийских зданиях.

* * *

На вопрос «Ставить ли громоотвод на здание храма?» Эдисон ответил: «Непременно. Провидение бывает иной раз очень рассеянным».

* * *

Франклин не мог пройти мимо важных общественных событий своего времени. Граждане города Филадельфии неоднократно избирали его на важные посты. Так, в 1754 году Франклин был избран делегатом Пенсильвании на съезд представителей английских колоний в Америке. Дело в том, что отношения Англии и Франции в то время обострились; в любой момент можно было ожидать нападения французов на английские колонии в Америке. Для защиты от возможного нападения Франклин предложил на съезде свой план объединения английских колоний в Америке, план, который впоследствии лег в основу создания государства Соединенных Штатов.

Однако Англия, видя опасность, связанную с объединением ее американских колоний, возражала против плана создания федерации. Отношения между Англией и ее американскими колониями неуклонно ухудшались.

В 1757 году Франклин отправляется в Англию представителем Пенсильвании и затем — всех английских колоний в Америке. Его миссия была трудной. Англия не могла сдержать стремление ее американских колоний к объединению и независимости. В 1770 году — первое вооруженное столкновение между колонистами и английскими солдатами. В 1775 году — открытые военные действия и отъезд Франклина в Америку, где он участвует в составлении Декларации независимости. Благодаря дипломатическим способностям Франклина Америке удалось в борьбе против Англии привлечь на свою сторону Францию. Затем — подписание мирного договора с Англией, в котором она признала полную независимость американских колоний. Немалое значение для победы колоний имела позиция России, по инициативе которой (декларация 1780 года) ряд европейских государств объявил «вооруженный нейтралитет», направленный против Англии.

Франклин боролся против «рабства в свободном государстве», выступал за освобождение негров.

Естественно, что столь бурные события оторвали Франклина от его электрических экспериментов. Но, быть может, не следует жалеть об этом. Еще не пришло время новых открытий, еще не дернулась лапка лягушки на столе у физиолога Гальвани, еще не начался новый этап развития электричества. А первую эпоху — эпоху статического электричества уже пора было закрывать.

Эта роль и выпала на долю великого Франклина.

 

Не путать с поэтом того же имени…

До нас дошло всего три его портрета, да и то выполненных «друг с друга». Как писал один ученый впоследствии, на всех трех портретах изображен отменно упитанный господин средних лет с двумя подбородками.

Господин облачен в роскошно расшитый золотом сюртук. Холеные, с припухлостями руки господина сложены очень элегантно, правый мизинец оттопырен с тем непременным изяществом, с каким положено было его оттопыривать в лучших домах Петербурга середины XVIII века. Господин держит гусиное перо, взор его устремлен вдаль: господии «мечтает мечту».

Официальный художник явно хотел подогнать оригинал под одному ему известный идеал процветающего, сытого и мечтательного придворного. Возможно, художник был вечно голоден, худ, плохо одет, а руки его были в красках. Поэтому и придал он модели столь «прекрасные», по его мнению, черты. (Пример одного такого художника нам известен — это живописец праздности французского двора, островов любви, роскошных дам и богато убранных кавалеров — Антуан Ватто, нищий и больной, материализовавший в полотнах свои мечты и представления о счастье.) Может быть, так было и с портретистом Ломоносова?

Во всяком случае только привычкой к портрету можно объяснить притупление чувства протеста против образа, столь не вяжущегося с нашим представлением о прямолинейном, простом и невероятно трудолюбивом человеке, вышедшем из самой гущи русского народа.

Обильно напудренный и тщательно завитой парик — едва ли не главный объект внимания художника — Ломоносов, по свидетельству его племянницы Матрены Евсеевны, использовал своеобразно: он им «утирался, когда принимался за шти». Руки его были грубы, по-медвежьи сильны, обожжены и съедены кислотой. Ходил он чаще всего в затрапезном лабораторном фартуке.

Раньше считали, что родился Ломоносов в глухой деревне Денисовке, недалеко от Холмогор; но последние исследования выявляют, что он родился в еще более глухой деревне Мишанинской, «недалеко от Денисовки».

В доме своего односельчанина X. Дудина молодой Михаил Ломоносов увидел однажды странные книги, совсем не церковного содержания. Мы не знаем их точных названий, но исследователи утверждают, что это, по всей видимости, были «Грамматика» Мелентия Смотрицкого и «Арифметика» Леонтия Магницкого. После смерти односельчанина книги перешли Ломоносову в наследство, открыв перед ним, по его собственному выражению, «врата его учености». Стали они первой искрой великого огня, засверкавшего в темноте российской глубинки.

Ломоносов впоследствии вспоминал о тех временах:

«…имеючи отца, хотя по натуре доброго человека, однако в крайнем невежестве воспитанного, и злую и завистливую мачеху, которая всячески старалась произвести гнев в отце моем, представляя, что я всегда сижу по-пустому за книгами. Для того многократно я принужден был читать и учиться, чему возможно было в уединенных и пустых местах и терпеть стужу и голод, пока я ушел в Спасские школы».

Он стремился в Москву, он знал, куда идти. От выпускников Московской славяно-греко-латинской академии Ломоносов много был наслышан о московском образовании, о высокой культуре Москвы. Но тяжело пришлось ему здесь. Не было ни родственников, ни денег.

Ночевал в розвальнях, на которых прибыл из Холмогор.

Затем его приютили знакомые, а уж потом стал он выбирать себе место для учения. В Москве были тогда Славяно-греко-латинская академия, или в просторечии — Спасские школы, Артиллерийская инженерная и Навигацкая школы, Медицинское училище, цифровые школы.

Поначалу Ломоносов пошел было в Навигацкую школу. Размещалась она в центре Москвы, близ Сухаревской башни. В школе учили грамоте, арифметике, геометрии, тригонометрии. Обучение носило практический характер, и это разочаровало Ломоносова, который хотел вкусить учености во всей ее возможной полноте и начать приобретать ее именно с латыни, с международного языка наук.

Вот почему в студеном январе еще несмело стучится он на Никольской улице в ворота Заиконоспасского монастыря близ самого Кремля, где размещалась Славяно-греко-латинская академия.

Основанная в 1685 году, она была первым учебным заведением, где изучались не только классические языки, но и естественные науки. Академия выпестовала славных питомцев: В. Т. Постникова — первого русского, получившего за рубежом ученую степень доктора медицины, Л. Ф. Магницкого, давшего России знаменитую «Арифметику, сиречь науку числительную», бывшую в свое время энциклопедией математики. Здесь учился С. П. Крашенинников, известный путешественник, первооткрыватель Камчатки и других дальних земель; сподвижник Ломоносова Д. И. Виноградов, много сделавший для создания в России фарфорового производства.

При Петре академия была самым крупным научно-просветительным центром России, а после его смерти многое было сделано для того, чтобы превратить ее в духовное учебное заведение. Вот почему и принимали туда только детей священнослужителей. Специальный указ Синода предписывал изгонять оттуда «помещиковых людей и крестьянских детей… и впредь таковых не принимать».

Ломоносов скрыл свое «подлое» происхождение, понравился ректору и 19 лет был зачислен в самый низший класс академии, где испытал много горя и обиды.

Вообще учиться в академии всем 236 ученикам было нелегко. За 13 лет следовало пройти восемь «школ», включавших четыре низших класса («фера», «инфима», «грамматика», «синтаксима»), два средних («пиитика», «риторика») и два высших («философия» и «богословие»). Каникул для учеников не предусматривалось. Михаилу было особенно тяжело — он находился среди младших по возрасту своих собратьев. Долго вспоминал он, как «школьники, малые ребята, кричат и перстами указывают: смотри-де какой болван лет в двадцать пришел латыни учиться». Приходилось заниматься денно и нощно, за год оканчивать по три класса. А жить ему было негде, снимал углы у москвичей-доброхотов, денег не было. В 1753 году Ломоносов писал: «Жалование в шести нижних школах получал по три копейки на день, а в Седьмом — по четыре копейки на день». И далее так характеризовал свою жизнь в академии: «Обучаясь в Спасских школах, имел я со всех сторон отвращение от наук, пресильные стремления, которые в тогдашние лета почти непреодоленную силу имели. С одной стороны, отец, никогда детей, кроме меня, не имея, говорил, что я, будучи один, его оставил, оставил все довольство (по тамошнему состоянию), которое он для меня кровавым потом нажил и которое после его смерти чужие расхитят. С другой стороны, несказанная бедность; имея один алтын в день жалованья, нельзя было иметь на пропитание в день больше как на денежку хлеба и на денежку квасу, прочее на бумагу, на обувь и другие нужды. Таким образом жил я пять лет и наук не оставил».

Читал в эти годы Ломоносов очень много и в числе прочих изучил несколько физических книг. Он все более и более влюблялся в науки. Овладел уже и латинским языком, мог читать по-гречески, знал арифметику, географию, историю.

Часто думал Ломоносов о своем научном предначертании. Влекли его путешествия, открытие новых земель.

Необычайно заинтересовался он российской экспедицией в Киргиз-кайсацкие и Каракалпакские земли, устраиваемой в 1734 году знаменитым географом И. К. Кирилловым. Эта экспедиция должна была не только изучить степи Закаспия, но и освоить их, защитить народы Средней Азии от постоянных набегов. Экспедиции по штату положен был «ученый священник». Вот на эту роль и претендовал Ломоносов. И быть бы ему священником и географом, кабы не вскрылась его ложь: ведь при поступлении в академию сказался он духовного звания, говорил, что отец у него «холмогорской церкви Пресвятыя богородицы поп Василий Дорофеев». Не знал молодой Ломоносов, что все сведения об учениках проверяются и перепроверяются в камер-коллегии, а как только узнал, бросился в ноги ректору и рассказал ему свою горестную историю.

Едва спасен был Ломоносов от тяжкого наказания.

Говорили, что помог ему просветитель Феофан Прокопович — сподвижник Петра, поборник наук и просвещения России, увидевший большой талант и особое тщание Ломоносова.

Чем далее продвигался в науках Ломоносов, тем яснее понимал, что нужны новые знания, новые книги и учителя. Решил податься в Киево-Могилянскую академию, где, считалось, хорошо преподавали естественные науки. Это, однако, не оправдалось. «Против чаяния своего, — писал биограф Ломоносова в XVIII веке, — нашел только словопрения Аристотелевой философии; не имея же случая успеть в физике и математике, пробыл там меньше года, упражняясь больше в чтении древних летописцев и других книг, писанных на славянском, греческом, латинском языках».

Ломоносов возвращается в Москву и поступает в Предпоследний класс Славяно-греко-латинской академии — «философию». Но тут в конце 1735 года из Санкт-Петербурга был получен приказ отобрать 20 наиболее способных юношей для продолжения обучения в Академии наук. Таких достойных оказалось лишь 12, в их числе— Ломоносов. Отобранные, как говорил ректор академии тогдашнему президенту академии И. А. Корфу, «были остроумия не последнего».

Так начиналась удивительная по яркости и выразительности научная судьба российского самородка.

Хотя сам Ломоносов считал главным занятием жизни своей химию и физику, в нем видели прежде всего поэта и забавника, разрабатывающего, например, проекты дворцовых иллюминаций. В часах, истраченных на науку, Ломоносов должен был чуть ли не оправдываться.

Так, в 1753 году он писал графу Шувалову: «Полагаю, что мне позволено будет в день несколько часов времени, чтобы их вместо бильяру употребить на физические и химические опыты…»

По-видимому, для многих в то время было неожиданностью узнать мнение знаменитого ученого Леонарда Эйлера о его научных работах: «Все записки Ломоносова по части физики и химии не только хороши, но превосходны, ибо он с такой основательностью излагает любопытнейшие, совершенно неизвестные и неизъяснимые для величайших гениев предметы, что я вполне убежден в верности его объяснений. При этом случае я готов отдать г. Ломоносову справедливость, что он обладает счастливейшим гением для открытия физических и химических явлений, и желательно было бы, чтобы все прочие академики были в состоянии проводить открытия, подобные тем, которые совершил г. Ломоносов».

Еще большей неожиданностью, видимо, для многих явилось то, что в 1760 году Ломоносов был избран почетным членом Шведской академии наук, а в 1764 году — членом Болонской академии.

Лишь наиболее прозорливые умы России видели в Ломоносове прежде всего великого ученого. А. С. Пушкин считал его «первым русским университетом».

Но возникает странное положение. Ни люди, знавшие Ломоносова, ни те, что жили после него и называли его большим ученым, «не могли описать, что же действительно сделал в науке Ломоносов, за что его надо считать великим ученым» (П. Капица).

Лишь в 1904 году профессор Борис Николаевич Меншуткин взял на себя труд перевести с латинского и немецкого (обоими этими языками Ломоносов прекрасно владел) оригинальные научные труды Ломоносова, изучить их вместе с личной перепиской, заметками и лабораторными журналами. И только тогда, чуть ли не через полтора столетия после его смерти, выяснилось, как гениален был первый русский ученый. Любого из его открытий — законов сохранения вещества и энергии, понятия абсолютного нуля, атмосферы у Венеры, кинетической теории газов и, наконец, теории атмосферного электричества — было бы вполне достаточно, чтобы поставить его имя рядом с самыми великими именами.

Сам М. В. Ломоносов в написанной его рукой «Рукописи сочинениям и другим трудам советника Ломоносова» указывал на следующие свои заслуги в области физики.

«В физических науках.

1) Рассуждение, содержащее новую систему о причинах теплоты и стужи.

2) О подлинной причине упругости воздуха.

3) К тому ж прибавление.

4) Метеорологические наблюдения, учиненныя во время солнечного затмения.

5) О новом манометре, или о махине для измерения ветра.

Физический сочинения, читанный в публичных академических собраниях.

6) О явлениях электрических на воздухе, где изъяснено о громе, о северном сиянии и о кометах.

7) Новая теория о цветах, утвержденная многими новыми опытами физическими и химическими.

8) О сыскании точного пути на море, со многими новыми инструментами.

9) О твердости и жидкости тел и о замерзании ртути.

10) Наблюдения физическия, при прохождении Венеры по Солнцу учиненныя, где примечена великая атмосфера около Венеры…»

Широко известен вклад Ломоносова в создание молекулярно-кинетической теории теплоты, непосредственно связанной с его же атомно-молекулярной концепцией строения материи. Отвергая гипотезу о существовании теплорода, Ломоносов в своем труде «Размышления о причине теплоты и холода» писал: «В наше время причина теплоты приписывается особой материи, которую большинство называет теплотворной, другие — эфиром, а некоторые — элементарным огнем… Это мнение в умах многих пустило такие глубокие корни и настолько укрепилось, что повсюду приходится читать в физических сочинениях о внедрении в поры тел названной выше теплотворной материи, как бы привлекаемой каким-то приворотным зельем; или, наоборот, — о бурном выходе ее из пор, как бы объятой ужасом. Поэтому мы считаем нашей обязанностью подвергнуть эту Гипотезу проверке».

Далее Ломоносов приходит к поистине гениальному прозрению: «…нельзя назвать такую большую скорость движения, чтобы мысленно нельзя было представить себе другую, еще большую. Это по справедливости относится, конечно, и к теплотворному движению, поэтому невозможна высшая и последняя степень теплоты как движения. Наоборот, то же самое движение может настолько уменьшиться, что тело достигает, наконец, состояния совершенного покоя, и никакое дальнейшее уменьшение движения невозможно. Следовательно, по необходимости должна существовать наибольшая и последняя ступень холода, которая должна состоять в полном прекращении вращательного движения частиц».

Это — концепция «абсолютного нуля».

Как могло случиться, что Ломоносов, в трудах которого можно найти мысли, опережающие его время иной раз на сотню лет, открывший наиболее фундаментальные законы Вселенной — законы сохранения количества движения и закон сохранения материи, ученый, широко известный за границей и опубликовавший десятки книг, при жизни не оказал существенного влияния на ход мировой науки?

Разные авторы отвечают на этот вопрос по-разному.

Среди предполагаемых причин — и полное одиночество Ломоносова-ученого в России, и его смелые идеи, опередившие состояние науки того времени на век, и засилье иностранцев, и борьба Ломоносова с ними в Академии наук. Рассматривая этот же вопрос, академик П. Л. Капица считает, что не последнюю роль здесь сыграло и то, что Ломоносов со времени своего возвращения из-за границы, где он учился, в Россию не имел никакого личного контакта с зарубежными европейскими учеными, не мог рассказать им о своей работе. Видимо, и тогда, хотя научной литературы было в то время не в пример меньше, чем сейчас, не все, что писалось, читалось, а тем более понималось. Нужно было иной раз и просто пропагандировать свои идеи, тем более что большинство их было действительно гениально, непривычно, необычно!

Трудно даже вообразить себе те условия, в которых пришлось работать гениальному человеку. К двухсотлетию со дня смерти Ломоносова в Академии наук СССР был выпущен сборник «Летопись жизни и творчества Ломоносова». Один исследователь взял наудачу один год из этой летописи и проанализировал содержание документов, касающихся жизни Ломоносова за год.

Документов набралось 60. Из них 26 отражали различные «инциденты», происшедшие между Ломоносовым и окружавшими его «господами академиками-профессорами». Документы следственной комиссии, протоколы собраний, на которых разбиралась жалоба на Ломоносова его коллеги конференц-секретаря Винцегейма по поводу его «непристойных», «неморальных» поступков, распоряжение об аресте Ломоносова и т. п.

19 документов касаются денежных затруднений Ломоносова, задержки ему жалованья, просьб Ломоносова о выдаче ему в счет жалованья денег «для расплаты долгов и пропитанья».

В небольшом числе прочих документов — бумаги, относящиеся к организации химической лаборатории, где, собственно, и проходила вся работа Ломоносова как по химии, так и по физике.

Кабинетом физики заведовал Георг Вильгельм Рихман, один из крупнейших физиков того времени, друг Ломоносова. Рихман живо интересуется электричеством, проводит многочисленные опыты. В его распоряжении целое собрание электрических машин (речь идет здесь, разумеется, не об электрических машинах в современном смысле этого слова, а об электростатических машинах типа машины Герике, а точнее, типа сегодняшней школьной электростатической машины), многие выполнены знаменитым первооткрывателем «лейденской банки» Мушенбреком. (Когда Петр Первый понял, что России необходима Академия, он сделал следующее указание: «О новых машинах и инструментах, как в физике, так и в математике потребных, ведение взять. О цене и поелику возможно и о употреблении их спросить и сюды прислать… Господину Муссенброку машины и инструменты, к физике экспериментальной принадлежащие, сделать повелеть… Из Англии промыслить такого человека, который бы с экспериментами обходиться и инструменты к тому принадлежащие изготовляти мог»). Инструменты Мушенбрека исправно служили в кабинете Рихмана.

Однако все эксперименты, производившиеся с этими приборами, нельзя было оценить цифрами — и это очень сдерживает научную деятельность Рихмана. Ведь все явления приходилось описывать лишь качественно. Так, Ломоносов разработал своеобразную школу качественной оценки электричества: «синеватые искры», «ясные синеватые», «весьма красные», «вишневые».

Ясно, что для того, чтобы электричество превратить в настоящую, точную науку, такой способ оценки «силы» электричества не годился. Электричеству для его дальнейшего процветания нужно было уже число. Величайшей исторической заслугой Рихмана явилось то, что был он одним из первых, если не первым, кто превратил электричество в точную науку. К сожалению, в руководствах по физике иной раз Рихман упоминается прежде всего как случайная жертва молнии, а не как один из великих ученых-электриков. Для нас особую ценность имеет еще и тот факт, что Рихман и Ломоносов были первыми русскими учеными-электриками (Рихман, правда, был эстляндский немец, один из тех, кого «выписали» специально для Санкт-Петербургской академии наук за большие деньги; однако он не ставил обогащение своей первой задачей, как иные окопавшиеся в академии иностранцы, и неоднократно подчеркивал, что все его открытия принадлежат России).

Ломоносов электричеством занимался относительно немного, будучи невероятно занятым как «прочими против физики делами», так и другими в физике отраслями. Но и то, что он сделал, уже ставит Ломоносова в ряд с наиболее выдающимися физиками всего мира.

Будучи убежденным материалистом, Ломоносов, естественно, не мог признать какого-то электрического действия на расстоянии — «ни через что, просто на расстоянии». Его теория электричества — логическое продолжение его теорий теплоты, справедливых и по сей день.

«Все электрические явления, притяжение, искры и т. п. состоят в движении: движение же не может возбуждаться в теле без другого движения. Поэтому должна быть нечувствительная материя вне электризованного тела, которая и производит эти действия…»

Но что это за нечувствительная материя (надо, видимо, иметь в виду, что «нечувствительная» — здесь не та материя, которая не может чувствовать, а та, которую мы не можем чувствовать, то есть воспринимать с помощью своих чувств). Может быть, это воздух, передающий электричество с помощью такого же механизма, которым через воздух передается теплота? Но нет, эксперименты показывают обратное — пушинки прилипают к янтарю, например, и в безвоздушном пространстве.

И Ломоносов уверенно пишет: «Так как электрические явления происходят в пространстве, лишенном воздуха, то зависят от эфира, а потому, вероятно, нечувствительная материя и есть эфир».

А что это за новое слово? Не происходит ли здесь всем известный процесс «изгнания Сатаны с помощью Вельзевула», подмена туманного термина другим, еще более неопределенным? Что за таинственный эфир, какие свойства приписываются ему Ломоносовым? Эфир, по его мнению, — «нечувствительная» среда, заполняющая весь мир, все промежутки между телами и их мельчайшими частичками. Эфир служит для передачи тепла и света; он способен двигаться и состоит из мельчайших частичек.

Можно даже попытаться вызвать в сознании образ, видимо, стоявший перед Ломоносовым при писании и произнесении слова «эфир». Это какая-то жидкая волнующаяся среда, движение которой дает электричество.

Образ ее — сверкающая, раскаленная, тончайшая жидкость. Ломоносов так и переводит слово «эфир» на латинский (его диссертация «Теория электричества, матически выведенная автором М. Ломоносовым» написана по-латыни) — «сжигаю», «сверкаю».

Здесь же перл гениальности: «…вероятнейшей причиной электричества будет движение эфира…» Если учесть, что вкладывал Ломоносов в понятие «эфир», особенно в части электрического воздействия одного тела на другое посредством вполне материальной среды, то ясно, что ломоносовское понимание «эфира» чрезвычайно близко введенному впоследствии Фарадеем понятию электромагнитного поля. Интуитивно чувствуя, что «эфир» недостаточно полно соответствует свойствам предполагаемой промежуточной среды, Ломоносов сознательно не ограничивается эфиром. Он пишет так: «…вероятнейшей причиной электричества будет движение эфира… если потом не найдется какая-нибудь другая материя…» (!!!). Вот он, почерк гения!

Здесь, конечно, не следует и упрощать: электричество, известное Ломоносову и Франклину, — статическое электричество. До электричества «гальванического», мощного, движущегося, нужны еще десятки лет, нужны открытия Вольта и Гальвани. Да и «движение» здесь — не совсем то движение, которое имел в виду через десятки лет Фарадей. Но Ломоносов, естественно, не мог предусмотреть этих открытий. И тем более достойна удивления его прозорливость. Когда все стало относительно ясным, оказалось, что на скуднейшем материале, имевшемся в то время, Ломоносов смог сделать глубочайшие обобщения, не потерявшие своей справедливости и по сей день, особенно если учесть, что эфир Ломоносова — нечто близкое современному понятию «поля». Электричество имеет своей причиной движение поля, — пишется и в современных учебниках.

До сего времени не потеряла своего значения и теория атмосферного электричества, разработанная Ломоносовым. Особую роль в ней играют восходящие и нисходящие вертикальные потоки воздуха, электризующиеся от трения при своем движении. Так считают и сейчас, через 200 с лишним лет!

Теория эта создавалась Ломоносовым еще до того, как он узнал об экспериментах Франклина. «Франклину в своей теории атмосферического электричества я ничего не должен», — писал он.

Когда Петербурга достигли вести об опытах Франклина, Ломоносов с увлечением принимает близкие ему самому идеи Франклина, причем безоговорочно и решительно — это ценно, если учесть, что Америка считалась тогда научной провинцией, и любая американская теория должна была еще пробивать себе дорогу в воззрениях европейских ученых. В предыдущей главе мы показали, как трудно утверждались в жизни идеи Франклина — вопреки государственным запретам, «протестам общественности» и даже иной раз с помощью судебных процессов. Ломоносов писал по поводу работ Франклина:

«Никто бы не чаял, чтобы из Америки надлежало ожидать новых наставлений об электрической силе, а однако учинены там наиважнейшие изобретения. В Филадельфии, в Северной Америке, господин Вениамин Франклин столь далеко отважился, чтобы вытягивать из атмосферы тот страшный огонь, который часто целые земли погубляет».

Ломоносов и Рихман решают повторить опыты Франклина и углубить их. Рихману, кроме того, не терпелось приспособить свой электрометр к измерению электрической силы молнии.

В «Петербургских ведомостях» № 50 за 1752 год подробно описывалась созданная Рихманом у себя дома установка (аналогичные установки были построены и Ломоносовым у него дома и в Усть-Рудицах).

«Понеже в разных ведомостях объявлено важнейшее изобретение, а именно: что электрическая материя накая с материей грома, то здешний профессор физики г. Рихман удостоверил себя о том и некоторых смотрителей следующим образом. Из середины дна бутылочного выбил он иверень, сквозь бутылку продел железный прут длиною от 5 до 6 футов, толщиною в один палец и заткнул горло бутылки коркою. После велел он из верхушки кровли вынуть черепиц и пропустил туда прут, так что он от 4 до 5 футов высунулся, а дно бутылки лежало на кирпичах. К концу прута, который под кровлею из-под дна бутылочного высунулся, укрепил он железную проволоку и вел ее до среднего апартамента все с такою же осторожностью, чтобы проволока не коснулась никакого тела, проводящего электрическую силу.

Наконец, к крайнему концу проволоки приложил он железную линейку, так что она перпендикулярно вниз висела, а к верхнему концу привязал шелковую нить, которая с линейкой параллельно, а с широчайшею стороною линейки в одной плоскости висела… и начал уже сначала одного месяца по вся дни следовать, отскочит ли нить от линейки, и произведет ли потому какую электрическую силу, токмо не приметил ни малейшей перемены в нити… Чего ради с превеликою нетерпеливостью ожидал грому, который 18 июля в полдень и служился. Гром, по-видимому, был не близко от строения, однако ж он после первого удара тотчас приметил, что шелковая нить от линейки отскочила…»

Ломоносову на подобной же установке удалось большее — он независимо от французского физика Л. Г. Лемонье обнаружил с помощью «электрического указателя» электрическое поле в атмосфере при отсутствии молнии и грома. Он наблюдал и в электрометре различные искры, которые классифицировал (мы уже говорили об этом) как «синеватые», «ясные синеватые», «весьма красные», «вишневые». Ничего подобного Рихману наблюдать не удалось, и поэтому Рнхман не соглашался с Ломоносовым.

Особенно широкий размах приобрели исследования летом 1753 года. На 6 сентября того года назначено было ежегодное публичное собрание Академии наук, на котором оба ученых должны были выступить с докладами по атмосферному электричеству. Времени оставалось мало, и ученым нельзя было пропускать ни одной грозы.

Вот почему, едва только 26 июля с севера поднялась большая грозовая туча, оба ученых заспешили к своим инструментам. Туча была гигантской, внутри нее грохотали громы, она черной стеной надвигалась на Васильевский остров, где жили Ломоносов и Рихман. Стояла страшная духота. Дождя не было. Все жители захлопывали ставни, спасаясь от возможных ударов молний.

«Сперва, — пишет Ломоносов, — не было электрической силы, но через некоторое время она появилась и из проволоки стали выскакивать искры при приближении к ней проводящих предметов. Внезапно гром чрезвычайно грянул в то самое место, как я руку держал у железа и искры трещали… Все от меня прочь бежали, и жена просила, чтобы я прочь шел». Кончилось тем, что решительная жена Ломоносова потребовала, чтобы он отошел от приборов и садился за стол — поданы были щи. И Ломоносов подчинился. «Да и электрическая сила почти перестала».

Рихман побежал домой, завидев первые же признаки грозы. Он захватил с собой гравера Соколова, который должен был зарисовать опыты.

Прибежав домой и не переменив даже парадного костюма, Рихман устремился к своей установке. Шелковинка электрометра была вертикальной, то есть в таком именно положении, в котором она и должна была быть по представлениям Рихмана — молнии еще не было, а «гром еще далеко отстоял».

«Теперь нет еще опасности, — сказал Рихман Соколову, — однако, когда туча будет близко, то может быть опасность».

Он повернулся к электрометру и тут прямо в лоб его ударил голубоватый огненный шар. Раздался страшный грохот, и оба — Рихман и Соколов — упали, первый — на сундук, второй — на пол.

Жена Рихмана, услышав грохот в сенях, вбежала туда и увидела мужа бездыханным, а Соколова — оглушенным. Она попыталась восстановить мужу дыхание, но тщетно. Кликнуты были люди и посланы бегом за лекарем и за Ломоносовым. Ломоносов писал впоследствии:

«Прибывший медицины и философии доктор X. Г. Кратценштейн растер тело ученого унгарской водкой, отворил кровь, дул ему в рот, зажав ноздри, чтобы тем дыхание привести в движение. Тщетно. Вздохнув, признал смерть…»

«Я пощупал у него тотчас пульс, — писал Кратценштейн, — но не было уже биения; после пустил я ему ланцетом из руки кровь, но вышла токмо одна капля оной. Я дул ему, как то с задохшимися обыкновенно делается, несколько раз, зажав ноздри, в рот, дабы тем кровь привесть паки в движение, но все напрасно: при осмотре нашел я, что у него на лбу на левой стороне виска было кровавое красное пятно с рублевик величиною, башмак на левой ноге над меньшим пальцем в двух местах изодрало, а вокруг изодранного места видны были малые белые пятнышки, на черном шелковом шнурке видны были такие же крапины, но чулка не обожгло.

Как скинули чулок, то под прошибленным местом нашли кровавое же и багровое пятно, а пята была синевата, на теле сверху у груди и под ребрами на левой стороне видны были багровые пятна такой же величины, как на лбу».

Оба ученых тщательным образом исследовали тело Рихмана и состояние квартиры. Все было отмечено — и важное, и неважное, или, точнее, казавшееся неважным.

«…Было у покойного Рихмана в левом кафтанном кармане семьдесят рублев денег, которые целы остались…», однако «…часы движение свое остановили» и «с печи песок разлетелся».

Все это нужно было не только для того, чтобы полностью разобраться в причине смерти первой жертвы планомерных исследований электричества, но и для того, чтобы лучше понять, как же надо оберегаться от гроз и как грозу все-таки можно исследовать.

Ломоносов сделал подробные продольный и поперечный планы дома Рихмана, где обозначил и местоположение участников драмы в момент удара, и все приборы, повреждения и другие особенности обстановки. Опрошены были и соседи. «Молнию, извне к стреле блеснувшую, многие сказывали, что видели».

Описание экспериментальной установки мы уже давали цитатой из «Санкт-Петербургских ведомостей». Установка, как мы видели, оканчивалась железной линейкой, то есть заземлена не была. Разумеется, к такой опасной установке и близко подпускать никого нельзя было. Однако чем больше читаешь рапорты Ломоносова и Кратценштейна, тем больше убеждаешься в том, что Рихман был не столько жертвой электрического эксперимента, сколько несчастного случая.

Например, в рапорте отмечаются повреждения от удара, непосредственно не связанные с электрической цепью, через которую могла бы пройти молния: «у дверей в кухне отшибло иверень в два фута длиною», он был разбит «в мелкие частицы» и далеко отброшен. Деревянная колода, находившаяся у дверей в сени, также разбита была «сверху донизу», ее «отшибло вместе с крючьями и вместе с дверью в сени бросило». «Посему неизвестно, не сей ли вшедший луч молнии, который по скоплению людей и в соседстве на улице жестоко шумел и пыль вертел и поднимал, без того прошел в сии двери и повредил там бывших». Ломоносов, анализируя положение дверей и окон, а также взаимное расположение аппаратуры и пострадавших, тоже отметил, что «однако отверено было окно в ближнем покое», и «двери пола была половина»… и поэтому «движение воздуха быть могло».

Отсюда напрашивается вывод, что первопричиной несчастья была, скорее всего, шаровая молния («луч молнии… пыль вертел и поднимал»), прошедшая через входную дверь к сеням, которая вовсе не обязательно должна была быть связана с экспериментами Рихмана.

Такая молния могла войти и разорваться в любом доме, где «окно было отворено», и «движение воздуха быть могло». Ведь и Соколов говорил насчет «шара». А шаровой молнии вовсе нет необходимости идти по железной проволоке для того, чтобы проникнуть внутрь помещения — для этого ей необходимы лишь слабые потоки воздуха.

К сожалению, соображения подобного толка (на таких настаивал и доктор Кратценштейн) не нашли в то время должного исследователя. Слишком уж гипнотизирующей, очевидной оказывалась в глазах людей, только что узнавших об электрической природе молнии, связь между смертью Рихмана — исследователя молнии — и его аппаратурой. Я написал выше «к сожалению» не случайно. Видимо, смерть Рихмана оказала очень сильное впечатление на ученых того времени. Положительным, конечно, было то, что стали применяться новые меры безопасности, но вместе с тем нельзя отрицать возможности охлаждения к наукам не только не слишком храбрых ученых, но и многочисленных людей, от которых в те времена зависело процветание наук. Ломоносов это прекрасно понимал. Так, в своем знаменитом (А. С. Пушкин восхищался им) письме к графу Шувалову он писал:

«Милостивый государь Иван Иванович! Что я ныне к вашему превосходительству пишу, за чудо почитайте, для того, что мертвые не пишут. Я не знаю еще или по последней мере сомневаюсь, жив ли я, или мертв. Я вижу, что господина профессора Рихмана громом убило в тех же точно обстоятельствах, в которых я был в то же самое время… Между тем умер господин Рихман прекрасною смертию, исполняя по своей профессии должность. Память о нем никогда не умолкнет… Между тем, чтобы сей случай не был протолковал противу приращения наук, всепокорнейше прошу миловать науки».

Из письма видно, что и сам Ломоносов полагал установку Рихмана виновной в его смерти. Такая точка зрения до сих пор широко распространена. Так, в книге «Дороги электричества» я прочел, что Рихман «схватился за стержень» своей громовой машины. В прекрасно иллюстрированной книге Митчела Уилсона об американских изобретателях одна гравюра изображает, как да-то сверху прямо в установку Рихмана бьет стремительный зигзаг молнии. В «Беседах о физике» стрела молнии устремляется из установки, словно быстрое жало змеи, прямо на Рихмана.

После смерти Рихмана Ломоносов один продолжает опыты по электричеству. Понимая важность проблемы, он даже предлагает в академии конкурсную задачу, чтобы «на 1755 год, к первому числу июня месяца… сыскать подлинную электрической силы причину и составить точную ея Теорию».

К сожалению, непомерная занятость, невозможность иметь большое число учеников и слабая оснащенность лаборатории оборудованием не позволили Ломоносову заняться разрешением этого чрезвычайно сложного вопроса. Однако в процессе опытов над электрическими явлениями в атмосфере Ломоносов делает еще одно открытие, способное сделать его имя знаменитым. Вот что сам он пишет об этом: «Возбужденная электрическая сила в шаре, из которого воздух вытянут, внезапные лучи испускает, которые во мгновение ока исчезают и в то же время новые на их место выскакивают, так что беспрерывное блистание бысть кажется. В северном сиянии всполохи или лучи, хотя не так скоропостижно происходят по мере пространства всего сияния, однако вид подобный имеют…»

Впервые после Ломоносова опыты по воспроизведению полярных сияний «в шаре, из которого воздух вытянут», проводили немцы Брюхе и Энде в 1929–1930 годах, то есть почти через 200 лет.

Два важнейших открытия сделаны Ломоносовым в процессе этого небольшого эксперимента. Во-первых, Ломоносов первым из ученых столкнулся здесь с искусственно созданным человеком веществом «в четвертом состоянии» — с плазмой. Во-вторых, ему удалось убедительно ответить на вопросы, поставленные им несколько лет назад в стихотворной форме под впечатлением грандиозного полярного сияния, наблюдавшегося в 1743 году в Петербурге:

Но где ж, натура, твой закон? С полночных стран встает заря! Не солнце ль ставит там свой трон? Не льдисты ль мечут огнь моря? Что зыблет ясной ночью луч? Что тонкий пламень в твердь разит? Как молния без грозных туч Стремится от земли в зенит?

Свечение плазмы родственно «сполохам или лучам» северного сияния — вот ответ Ломоносова на его же вопросы, казавшиеся риторическими.

Можно бессчетно находить перлы гениальности в записках, письмах, заметках, докладах, диссертациях Ломоносова… Он много, видимо, слишком много работал — здоровье его пошатнулось.

Он сам писал об этом: «Многими трудами пришло мое здоровье в великую слабость, и часто лом в ногах и раны не допускают меня больше к исправлению должности, так что прошлой зимы и весны лежал я двенадцать недель в смертной постеле и ныне тяжко болен». Печалью и унынием проникнуты последние письма Ломоносова.

«Бороться не могу, — сообщал он М. И. Воронцову 24 июля 1762 года, — будет с меня и одного неприятеля, то есть недужной старости. Больше ничего не желаю, ни власти, ни правления». И тем не менее малейшее улучшение в состоянии здоровья, перерывы в болезни он использует для научной деятельности: готовит диссертацию «О тягости по земному глобусу», составляет план работ «Система всей физики», а также «Испытание причины северного сияния и других подобных явлений».

С марта 1765 года болезнь начала сильно прогрессировать. Предсмертной тоской проникнуто его письмо: «…я не тужу о смерти: пожил, потерпел, и знаю, что обо мне дети Отечества пожалеют». Ломоносов умер 4 апреля 1765 года (по старому стилю) в пять часов вечера на 54-м году жизни.

Крупный русский просветитель XVIII столетия Н. И. Новиков, написавший первую биографию Ломоносова, так характеризовал его: «…нрав имел он веселый, говорил коротко и остроумно и любил в разговорах употреблять острые шутки; отечеству и друзьям своим был верен, покровительствовал упражняющимся в словесных науках и ободрял их; в обхождении был по большей части ласков, к искателям его милости щедр; но при всем том был горяч и вспыльчив».

Ломоносов умер, почитаемый больше за организатора русской науки или за стихотворца, но никак не за величайшего ученого, имя которого должно было бы стоять рядом с именами Ньютона и Франклина. И долгое время о нем вспоминали лишь в таком качестве; редко кто знал, что он был великим ученым. И только в руководствах по истории химии иной раз попадались краткие упоминания о Ломоносове-ученом подчас в несколько курьезном преломлении: «Среди русских химиков, которые стали известными химиками, мы упомянем Михаила Ломоносова, которого не надо смешивать с поэтом того же имени».

Было бы преувеличением сказать, что смерть Ломоносова была драматически воспринята руководством академии и двором. Князь Павел, в частности, отреагировал на смерть гениального ученого следующей памятной фразой: «А чего дурака жалеть? Только казну разорял, а ничего не сделал».

Ломоносова-ученого почти забыли до начала XX века, когда его труды стали внимательно изучать в связи со стопятидесятилетием созданной Ломоносовым первой русской научной лаборатории. И только тогда выяснилось, что в течение полутора веков находившиеся в забвении труды Ломоносова хранили величайшие откровения.

 

Гальвани — «воскреситель мертвых»

В конце 1780 года профессор анатомии в Болонье Луиджи Гальвани, 54 лет, занимался в своей лаборатории изучением нервной системы отпрепарированных лягушек, еще вчера квакавших в неотдаленном пруду.

Совершенно случайно получилось так, что в той комнате, где в ноябре 1780 года Гальвани изучал на препаратах лягушек их нервную систему, работал еще его приятель — физик, производивший опыты с электричеством. Одну из отпрепарированных лягушек Гальвани по рассеянности положил на стол электрической машины.

В это время в комнату вошла жена Гальвани. Ее взору предстала жуткая картина: при искрах в электрической машине лапки мертвой лягушки, прикасавшиеся к железному предмету (скальпелю), дергались. Жена Гальвани с ужасом указала на это мужу.

Галантные болонцы всегда с удовольствием подчеркивают: не Гальвани, а его жена — автор столь важного открытия. Ей был даже посвящен сонет:

Ее открытьем кто не восхищался, Умерших лягушачьих лапок жизнью быстрой, Когда исторглись из машины искры, И скальпель к нежным нервам прикасался…

Гальвани же по этому поводу был совершенно иного мнения. У нас сохранились подробные описания эксперимента Гальвани, сделанные им самим. Столкнувшись с необъяснимым явлением, Гальвани счел за лучшее особо позаботиться о детальном воспроизведении опытов.

«Я считал, что сделаю нечто ценное, — писал Гальвани, — если кратко и точно изложу историю моих открытий в таком порядке и расположении, в каком мне их доставил отчасти случай и счастливая судьба, отчасти трудолюбие и прилежание. Я сделаю это, чтобы дать как бы факел в руки тех, кто пожелает пойти по тому же пути исследования».

Последуем же за Гальвани в его знаменитых опытах:

«Я разрезал лягушку и положил ее безо всякого умысла на стол, где на некотором расстоянии стояла электрическая машина. Случайно один из моих ассистентов дотронулся до нерва лягушки концом скальпеля, и в тот же момент мускулы лягушки содрогнулись как бы в конвульсиях.

Другой ассистент, обыкновенно помогавший мне в опытах по электричеству, заметил, что явление это происходило лишь тогда, когда из кондуктора машины извлекалась искра.

Пораженный новым явлением, я тотчас же обратил на него свое внимание, хотя замышлял в этот момент совсем иное и был всецело поглощен своими мыслями.

Меня охватила неимоверная жажда и рвение исследовать это и пролить свет на то, что было под этим скрыто».

Гальвани решил, что все дело тут в электрических искрах. Для того чтобы получить более сильный эффект, он вывесил несколько отпрепарированных лягушачьих лапок на медных проволочках на железную садовую решетку во время грозы. Однако молнии — гигантские электрические разряды никак не повлияли на поведение отпрепарированных лягушек. Что не удалось сделать молнии, сделал ветер. При порывах ветра лягушки раскачивались на своих проволочках и иногда касались железной решетки. Как только это случалось, лапки дергались. Гальвани, однако, отнес явление все-таки на счет грозовых электрических разрядов.

«После успешных опытов во время грозы я пожелал, — пишет Гальвани, — обнаружить действие атмосферного электричества в ясную погоду. Поводом для этого послужило наблюдение, сделанное мною над заготовленными лапками лягушки, которые, зацепленные за спинной нерв медным крючком, были повешены на железную решетку забора моего сада: лапки содрогались не только во время грозы, но иногда, когда небо было совершенно ясно. Подозревая, что эти явления происходят вследствие изменения атмосферы в течение дня, я предпринял опыты.

В различные часы в продолжение ряда дней я наблюдал нарочно повешенную на заборе лапку, но не обнаружил каких-либо движений в ее мускулах. Наконец, утомленный в напрасном ожидании, я прижал медный крюк, который был продет через спинной мозг, к железным перилам с целью заметить какие-либо сокращения лапки, но, по-видимому, они не находились в связи с электрическим состоянием атмосферы.

Однако в то время, когда я производил опыт под открытым небом, я был склонен принять теорию, что сокращения возникают вследствие атмосферного электричества, которое, постепенно проникнув в животное и собравшись в нем, неожиданно разряжалось, когда крючок приходил в соприкосновение с железными перилами.

Так легко обманываем мы себя при опытах и думаем, что действительно видели то, что желаем видеть.

Когда я перенес лягушку в комнату и положил на железную дощечку и когда я прижал медный крючок, который был продет через спинной нерв, к дощечке, те же спазматические содрогания были налицо.

Я производил опыт с разными металлами в различные часы дня в разных местах — результат был один и тот же, разница была в том, что содрогания были более сильные при одних металлах, чем при других.

Затем я испытывал различные тела, которые не являются проводниками электричества, например, стекло, смолу, резину, камень и сухое дерево.

Явлений не было.

Это было несколько неожиданно и заставило меня предположить, что электричество находится внутри животного. Это подозрение усилилось наблюдением, что нечто вроде тонкой нервной жидкости (подобно электрическому разряду в лейденской банке) совершает переход от нервов к мускулам, когда происходит содрогание.

Например, в то время как я одной рукой держал препарированную лягушку за крючок, продетый через спинной нерв, так что она касалась лапками серебряной чашки, а другой рукой касался крышки или боков с помощью какого-либо металлического предмета, я, к своему удивлению, увидел, что лапка лягушки сильно содрогалась всякий раз, как я повторял этот опыт».

Эта несколько затянувшаяся цитата — интересная иллюстрация творческого метода Гальвани. Он провел, по сути дела, все эксперименты для того, чтобы сделать правильные выводы: отдадим дань его умению ставить эксперименты, он показал, что для эффекта необходимы металлы; он показал, что при телах, не являющихся проводниками электричества, никакого эффекта нет; наконец, он показал даже, что разные металлы дают разный эффект. Но он не обратил внимания на то, что эффект наблюдался только при наличии двух различных металлов — вчитайтесь в последний абзац, и вы увидите это.

Гальвани приписывал металлам лишь пассивную роль проводников электричества. Поэтому вывод его абсолютно (в его представлении) логичен: если при прикосновении к лапкам непроводников эффекта нет, стало быть, источник электричества, «лейденская банка», находится где-то внутри лягушки.

Трактат Гальвани «Об электрических силах в мускуле» вышел в 1791 году. Буря страстей, поднятая им, по свидетельству современников, была сравнима с политической бурей, вызванной поднимавшейся Французской революцией.

* * *

За много лет до Гальвани, в 1752 году, шведский философ Иоган Георг Зульцер опубликовал следующее наблюдение: «Если два куска металла, один — оловянный, другой — серебряный, соединить… и если приложить их к языку, то последний будет ощущать некоторый вкус, довольно похожий на вкус железного купороса, в то время как каждый кусок металла в отдельности не дает и следа этого вкуса». Это — видоизмененный опыт Гальвани: вместо лягушки индикатором электричества является язык. Более того, в 1756 году Марко Кальдани наблюдал и описал содрогание лапки лягушки вблизи электрической машины, но… не придал этому никакого значения.

* * *

Опыты Гальвани, в силу их интригующей необычности, сразу же завоевали громадную популярность — бессчетное множество физиков, химиков, философов, врачей стали одно время проявлять повышенный интерес к лягушкам, в особенности к их лапкам. Этот «интерес» попал даже в старую техническую энциклопедию.

«В течение целых тысячелетий холоднокровное племя лягушек беззаботно совершало свой жизненный путь, как наметила его природа, зная одного только врага, господина аиста, да еще, пожалуй, терпя урон от гурманов, которые требовали для себя жертвы в виде пары лягушачьих лапок со всего несметного рода. Но в исходе позапрошлого столетия наступил злосчастный век для лягушек. Злой рок воцарился над ними, и вряд ли когда-либо лягушки от него освободятся. Затравлены, схвачены, замучены, скальпированы, убиты, обезглавлены — но и со смертью не пришел конец их бедствиям. Лягушка стала физическим прибором, отдала себя в распоряжение науки. Срежут ей голову, сдерут с нее кожу, расправят мускулы и проткнут спину проволокой, а она все же не смеет уйти к месту вечного упокоения; повинуясь приказанию физиков или физиологов, нервы ее придут в раздражение и мускулы будут сокращаться, пока не высохнет последняя капля «живой воды». И все это лежит на совести у Алоизо Луиджи Гальвани».

Не только лягушачья «живая вода» подвергалась действию электричества. Итальянец Запотти добился стрекотания мертвого кузнечика. Сам Гальвани заставлял дергаться конечности свежезабитых овец и кроликов, а французский хирург Ларрей производил аналогичные опыты с только что ампутированной человеческой ногой.

Но особенно большие надежды возникли при исследовании нервной системы умерших людей. Вообще мысли о бессмертии, о восстановлении жизни умерших занимали большое место в попытках приложить электроды к трупу. Первые исследования, проведенные французами Дюпюитреном, Нистеном и Гильотеном, были, правда, не очень обнадеживающими. Зато племянник Гальвани— Жан Альдини добился некоторого успеха. В 1803 году он приложил электроды к телу повешенного. Губы трупа и его веки стали подергиваться.

Однако наибольший резонанс среди широкой публики вызвали эксперименты доктора Ура из Глазго. Он производил опыты с повешенными преступниками. Первый его успех — воспроизведение у трупа дыхательных движений. Но если у трупа можно восстановить дыхание, то, может быть, можно восстановить и другие функции организма? Однажды доктор Ура приложил один электрод к пятке трупа, другой — к ресничному нерву. Лицо повешенного внезапно ожило, он приоткрыл рот, глаза его стали оглядывать окружающих. Ужас сковал присутствующих, многие упали в обморок, другие не могли в течение нескольких дней прийти в себя…

Мечты о бессмертии! Сколько разбитых надежд породили вы во все времена! И одно из самых сильных разочарований — провал всех надежд на электрический ток, с помощью которого якобы можно оживлять трупы.

Однако за полтора века, прошедших со времени первых экспериментов, электричество все же спасло жизнь не одному человеку. Взять хотя бы случаи, когда остановившееся сердце больного, подстегнутое в современной клинике ударом электрического бича, вновь начинает свою непрерывную работу. В ряде случаев электрический удар оказывается полезным при параличах. Я уж не говорю об электротерапии, которая многим тысячам продлила полноценную жизнь.

Опыты Гальвани и его представления о «животном электричестве» развились за полтора столетия в стройное учение о биотоках живых организмов. Даже такие сложные процессы, как процесс запоминания, удалось объяснить с помощью электричества.

Одна из электрических теорий памяти предполагает, что поступающая в мозг информация преобразуется в индивидуальную систему электрических цепей, причем каждому «следу» соответствует своя электрическая цепь.

Поскольку нервных клеток в мозге человека более 10 миллиардов, то разнообразие «следов», которые могут остаться в этих клетках, бесконечно велико, во всяком случае, вполне достаточно для того, чтобы и на склоне лет в мозге человека «находилось место» для новых знаний и эмоций.

Прикладывание электродов к телу людей нашло еще одно неожиданное применение: для нахождения пуль в теле раненого. Методы отыскания пуль были разными. Так, французский хирург Нелатон искал пулю, глубоко засевшую в теле великого Гарибальди, с помощью зон да с наконечником из пористого фарфора. Когда зонд касался свинца, наконечник его чернел — это было единственным свидетельством того, что пуля именно здесь.

Врач Фабр предложил использовать острые электрические электроды: когда цепь замыкалась, было ясно, что зонды наткнулись на пулю. Преимущество такого способа в возможности распознать пулю, прикрытую обрывками ткани и не зачерняющую вследствие этого пористого наконечника зонда.

Заканчивая рассказ о Гальвани, особо отметим тот факт, что его открытие было сделано как раз вовремя.

Ведь за 100 с лишним лет до Гальвани, в 1678 году, физиолог Шваммердам показывал великому герцогу Тосканскому точно такой же, как у Гальвани, опыт с лягушкой, подвешенной на серебряной нити. Видимо, то открытие сделано было слишком рано. Шваммердама успели забыть. Гальвани ничего и никогда о нем не слышал.

 

Вольта держит две монеты во рту

В 1900 году, когда исполнилось 100 лет со дня великого открытия Алессандро Вольта, в городке Комо в Италии, где он родился, устроена была электрическая выставка, сопровождавшаяся пышными церемониями.

На выставке в особом павильоне представлены были любовно собранные уникальные приборы и личные вещи Вольта.

По иронии судьбы, богатая выставка, посвященная памяти одного из создателей электротехники, полностью сгорела в результате пожара, вызванного неисправностью электропроводки. В огне погибли драгоценные реликвии — приборы Вольта и его личные вещи. Избежал огня лишь сенаторский меч, некогда подаренный Вольта Наполеоном, и его награды. К счастью, к выставке выпущен был проспект с фотографиями экспонатов. Лишь эти сохранившиеся чудом фотографии могут дать нам сейчас представление о приборах, окружавших Вольта в момент величайшего прозрения, редкого, даже если рассматривать его в масштабе истории человечества.

И мы уже не сможем никогда, оставшись наедине с приборами Вольта, испытать «эффект присутствия», ощутить радость сотворчества с великим человеком.

Вольта родился в родовом владении, где предки его жили в течение многих веков. Отец — Филиппо Вольта запустил дела, будучи человеком весьма легкомысленным. Мать Вольта, герцогиня Маддалсна Инзаи, родила с детей. Все дети были как дети, даже дочери хорошо учились, стали как-никак монахинями, один Алессандро был плох — он развивался ненормально как физически, так и умственно. Долго его считали немым.

Считали до тех пор, пока четырехлетний заморыш не произнес свое первое слово: «Нет!»

Затем развитие «дефективного» ребенка пошло очень быстро. И вот мы уже можем наблюдать восемнадцатилетнего Вольта, бойко переписывающегося с одним из наиболее видных физиков-электриков того времени — преподобным аббатом Нолле (тем самым, который показывал королю Франции опыт с лейденской банкой, поражающей отряд мушкетеров).

В 30 лет он уже знаменит, он изобрел электрофор — прибор для опытов со статическим электричеством (в том и только в том смысле изобрел, в каком это можно говорить в науке. Вольта, например, прямо указывал, что многим в этом изобретении он обязан русскому академику Эпинусу).

Прибор Вольта был очень прост — он состоял из сургучной подушки, металлического диска со стеклянной ручкой, собственного пальца и… кошки (или кошачьей шкуры, однако кошка предпочтительнее, потому что для хорошей электризации шерсть должна быть теплой).

Принцип действия электрофора, по сути дела, тот же, что и у современных школьных электрофорных машин, и состоит в том, что заряд, сообщенный сургучу при трении его кошкой, может быть увеличен в произвольное число раз при повторении цикла опускания металлической плиты на сургуч и отведения ее назад. При этом палец экспериментатора служит тем мостиком, по которому из диска убегает при каждом цикле очередная порция зарядов «ненужного» противоположного знака.

На Вольта золотым дождем сыплются почести многих академий. Его электрофор — удобный прибор для получения мощных разрядов электричества, но электричества статического. Главные открытия Вольта впереди, за десятками лет — это изобретение источника электричества нового, невиданного типа, не электричества, скапливающегося на расческе, на куске янтаря, или сейчас — на нейлоновых вещах, а электричества движущегося, динамичного, мощного.

А пока Вольта — профессор, профессор прогрессивный и смелый. Он порывает с латинским языком и учит студентов по книгам, написанным на итальянском.

Он много путешествует: Брюссель, Амстердам, Париж, Лондон, Берлин. Его друзья — Франклин, в то время представитель английских колоний в Америке, и Лавуазье. Каждый город приветствует его собраниями ученых, вручением золотых медалей и другими почестями.

Впечатляющая картина. Но и она тускнеет перед той, что возникает через десятки лет, когда Вольта проедет по издавна знакомым ему иностранным городам создателем Вольтова столба — первой электрической батареи!

А пока Вольта чуть ли не на 15 лет отдаляется от электричества и занимается интересными, но не относящимися к нашей теме вещами.

И вот — сенсация! Профессору попадается на глаза только что вышедший трактат Гальвани «Об электрических силах в мускуле». Трактат потрясает его. Потрясают Вольта и слухи об опытах над мертвыми животными и людьми, проводимые Гальвани и его последователями.

Он перечитывает трактат и находит в нем то, что ускользнуло от внимания самого автора, — упоминание о том, что эффект содрогания лапок наблюдался лишь тогда, когда лапок касались двумя различными металлами.

Вольта решает поставить видоизмененный опыт, но не на лягушке, а на самом себе.

«Признаюсь, — писал он, — я с неверием и очень малой надеждой на успех приступил к первым опытам: такими невероятными казались они мне, такими далекими от всего, что нам доселе известно было об электричестве… Ныне я обратился, сам был очевидцем, сам производил чудное действие и от неверия перешел, может быть, к фанатизму!»

Теперь Вольта можно было увидеть за странным занятием: он брал две монеты — обязательно из разных металлов и… клал их себе в рот — одну на язык, другую — под язык. Если после этого монеты или кружочки Вольта соединял проволочкой, он чувствовал солоноватый вкус, тот самый вкус, но гораздо слабее, что мы можем чувствовать, лизнув одновременно два контакта батарейки. Из опытов, проведенных раньше с машиной Герике и электрофором, Вольта знал, что такой вкус вызывается электричеством.

Поставив теперь друг на друга свыше 100 металлических (цинк и серебро) кружков, разделенных бумагой, смоченной соленой водой, Вольта получил довольно мощный источник электричества — вольтов столб.

Присоединив к верхнему и нижнему концам столба проводнички и взяв их в рот, Вольта убедился, что его источник, в противовес машине Герике и электрофору, действует не одно краткое мгновение разряда статического электричества, а постоянно.

Сразу вслед за этим Вольта сделал еще одно изобретение — он изобрел электрическую батарею, пышно названную «короной сосудов» и состоявшую из многих последовательно соединенных цинковых и медных пластин, опущенных попарно в сосуды с разбавленной кислотой, — уже довольно солидный источник электрической энергии.

Солидный, конечно, по тем временам: сейчас с помощью «короны сосудов» можно было бы привести в действие разве что электрический звонок.

20 марта 1800 года Вольта сообщил о своих исследованиях Лондонскому королевскому обществу. Можно считать, что с того дня источники постоянного электрического тока — вольтов столб и батарея — стали известны многим физикам и нашли широкое применение. Распространению известности и расширению опытов с электричеством способствовало приглашение Вольта в Париж для чтения лекций перед видными физиками Франции.

Первого сентября Вольта выехал в Париж вместе с профессором Бруньятелли, проводившим эксперименты по золочению с помощью электричества.

Уже по пути в Париж, в Женеве, в их честь были даны невиданные пиры. Четыре недели занял путь до Парижа, долгое ожидание, почести неописуемые. Бертолле, Био, Лаплас, Кулон, Кювье, все «бессмертные», все академики, казалось, соревновались друг с другом в оказании почестей Вольта и его спутнику.

Через месяц Вольта принят Первым консулом — Наполеоном. Наполеон интересовался науками, справедливо полагая, что сила государства в новом веке немыслима без их процветания. Особенно Наполеона поразило разложение химических веществ при помощи электричества.

* * *

До сих пор неясно происхождение загадочных предметов, найденных археологами в отвердевшем иле нелодалеку от берегов Тигра, южнее Багдада. Этим предметам — несколько тысяч лет. Небольшие сосудики из обожженной глины, соединенные последовательно, содержат внутри необычную начинку: разъеденные медные цилиндрики и бруски, а также битум. Анализ показал, что разъедание цилиндриков скорее всего объясняется воздействием уксусной или лимонной кислот, хорошо тогда известных. Электрический элемент? Это подтверждается рядом косвенных данных. Электрический элемент за тысячи лет до Вольта?!

* * *

— Посмотрите-ка, — обратился он к своему лекарю Корвизару, — это прообраз жизни! Вольтов столб — это позвоночник, желудок — отрицательный полюс, а почки — положительный!

Вольта стал рыцарем Почетного легиона, получил звание сенатора и графа. Наполеон не упускал случая посетить заседания Французской академии наук, тем более что он был академиком по классу геометрии, каковым сам себя некоторое время назад избрал.

А однажды Наполеон, увидев в библиотеке академии лавровый венок с надписью «Великому Вольтеру», стер последние буквы таким образом, что получилось: «Великому Вольте»…

Однако Вольта не очень радовало повышенное внимание Наполеона. Он видел, как «ревнуют» французские академики, чувствовал, как постепенно начинает отдаляться от них.

Старость свою Вольта провел в Комо. 28 июля 1823 года апоплексический удар (ему было уже 78) уложил его надолго в постель; от удара Вольта так полностью никогда не оправился. Умер Вольта через четыре года, восьмидесятидвухлетним стариком.

Он был похоронен на старом кладбище, где через несколько лет его семья воздвигла над могилой сооружение, напоминающее небольшой замок, украшенный аллегорическими фигурами и горельефами, а также бюстом Вольта, выполненными известным скульптором Комолли.

В 1875 году наследники Вольта разрешили двум антропологам Цезарю Ломброзо и Паоло Мантегацца, по просьбе университета, где так много лет преподавал Вольта, вскрыть гробницу Вольта и обмерить его череп.

На церемонии вскрытия гробницы присутствовали представители правительства и всех итальянских университетов.

Результаты обмера черепа Вольта были впервые доложены антропологам в одном из научных итальянских учреждений — Институте Ломбардо. Череп Вольта был крупным, он напоминал черепа древних римлян, которые часто находили археологи. Объем мозга был значительно выше среднего. Некоторые особенности строения черепа Вольта позволяли, по данным науки того времени (вспомните пресловутые «шишки таланта»), уверенно сказать, что Вольта был… стяжателем.

Последнее заявление вызвало смех у присутствующих — настолько хорошо была известна всем безукоризненная честность, бескорыстность, прямота, высочайшая нравственность ученого.

О жизни Вольта, особенно личной, известно очень мало. Известно, что он был столь же любящим отцом и мужем, сколь когда-то преданным сыном. Он женился 39 лет на знатной Терезе Пеллегрини и имел от нее трех сыновей: Джованни, Фламино и Луиджи.

Он прожил долгую и счастливую жизнь. К сожалению, почти все его личные вещи, приборы, а также 11 громадных папок его трудов сгорели во время пожара.

А останки его самого не смогли рассказать ученым чего-либо нового.

Но Вольта вечен, несмотря на то что никто уже не пользуется вольтовыми столбами и уже редко кто называет «вольтову дугу», открытую Петровым, «вольтовой».

Вольта вечен в вольте — единице электрического напряжения.