Парадоксы климата. Ледниковый период или обжигающий зной?

Кароль Игорь

Киселев Андрей

Глава седьмая

Если не солнце, то что?

 

 

Причины современных изменений климата

Наше «путешествие в эмпирей» подошло к концу, пора возвращаться на грешную Землю. Аналогично тому, как повышенная температура у человека – не причина, а следствие недомогания, обсуждаемое увеличение температуры в ХХ веке является результатом нарушения радиационного баланса между приходящей – коротковолновой и уходящей – длинноволновой радиацией (рис. 11).

Рис. 11. Иллюстрация к оценке радиационного баланса на поверхности Земли. КВР – коротковолновая радиация; ДВР – длинноволновая радиация

В связи с увеличением температуры чаша с коротковолновой радиацией стала «весить» несколько больше чаши с радиацией длинноволновой. По каким причинам это произошло и где эти причины искать? Помнится, герой старой рязановской комедии утверждал, что кого-кого, а Бабу Ягу следует воспитывать в своем коллективе. Так и нам искать эти причины придется в своей климатической системе, больше негде! Собственно, основных направлений поиска два: либо уменьшились «транспортные издержки» доставки коротковолновой радиации от верхней границы атмосферы к земной поверхности, либо сократился отток длинноволновой радиации в открытый космос. Вариант с одновременным изменением как притока, так и оттока радиации («кто кого переборет») отложим пока в долгий ящик. Но если с первым направлением как будто все ясно, то второе нуждается в дополнительном пояснении. Задержка части уходящего излучения обусловлена наличием в атмосфере группы газов и аэрозолей, способных поглощать такое излучение. Естественно, газы эти «работают» не только сейчас, «работали» они, по О. Бендеру, и «до исторического материализма». Весь вопрос в том, изменилась ли, и если изменилась, то насколько, продуктивность этой «работы» в течение прошлого столетия. Постараемся в этом разобраться.

 

Под одним «одеялом»: парниковый эффект и вызывающие его газы

Идею по поводу механизма парникового эффекта в 1827 г. изложил французский ученый Ж. Фурье (1768–1830). Чуть позже, в 1860 г., ирландский физик Д. Тиндаль (1820–1893) экспериментально установил, что углекислый газ CO2 «не пропускает» исходящее от Земли тепловое излучение. Детальное же исследование парникового эффекта было проведено в 1896 г. шведским химиком С. Аррениусом (1859–1927).

О парниковом эффекте пишут много, но часто его смысл искажается.

Суть парникового эффекта – в поглощении атмосферой, точнее – парниковыми газами атмосферы и некоторыми аэрозолями, длинноволновой радиации, испускаемой нагретой подстилающей поверхностью. Поглощенная всяким парниковым газом энергия длинноволнового излучения вызывает повышение температуры воздуха. Увеличенное содержание парникового газа и подобное повышение температуры вызывают рост потока длинноволнового излучения вниз, к подстилающей поверхности, и вверх, к верхней границе атмосферы. В теплом воздухе повышается влажность, а водяной пар – самый сильный парниковый газ. Поглощение им длинноволнового излучения приводит к резкому повышению температуры воздуха. Так несколько положительных обратных связей [13] многократно усиливают парниковый эффект и делают его самым значительным среди всех других антропогенных климатоформирующих факторов (рис. 12 и рис. 10 цв. вклейки).

В иерархии эффективности парниковых газов на первом «королевском» месте безоговорочно располагается водяной пар. Его господство среди парниковых газов столь же незыблемо, как превосходство Солнца над прочими влияющими на климат Земли факторами. Водяной пар поглощает длинноволновую радиацию почти на всех частотах (иначе – полосах поглощения) инфракрасного излучения (λ > 0,7 мкм) и делает это много интенсивнее прочих парниковых газов. Лишь в диапазоне длин волн 8 мкм < λ < 13 мкм поглощение водяным паром минимально, и, как следствие, излучение с такими длинами волн может покидать атмосферу почти беспрепятственно. Поэтому специалисты обычно говорят об этом явлении как о «прозрачности» атмосферы в указанном интервале длин волн, а сам интервал именуют окном прозрачности. В этой связи главным критерием значимости всякого другого парникового газа является его способность эффективно поглощать инфракрасное излучение внутри такого окна прозрачности или вблизи его границ. Рис. 13 иллюстрирует, на каких длинах волн (отложенных на оси абсцисс) излучение поглощается газами (заштрихованная область), а на каких такое поглощение отсутствует. Снизу стрелками показаны основные полосы поглощения, а также газы, «ответственные» за каждую из этих полос.

На почтительном отдалении от «короля» – его «свита», в которой по ранжиру значимости выстраиваются углекислый газ (СО2), метан (СН4), озон (О3) и оксид азота (I) (N2О). Но, как известно, «короля делает свита»: если стабильность климата поддерживается водяным паром, то ответственность за последовавшие в ХХ веке его (климата) изменения ложится на «малые газы».

Рис. 12. Схема строения и состава атмосферы. Кривая – вертикальный профиль температуры стандартной атмосферы (средних широт); в скобках – длины волн интервалов поглощения радиации (1 мкм = 1 ·10-6 м)

Рис. 13. Спектр пропускания атмосферы Земли в оптической и инфракрасной областях. Отмечены полосы поглощения кислорода (O2) (ультрафиолет), водяного пара (H2O), углекислого газа (CO2) и озона (О3) (инфракрасная область)

«Малые» потому, что 78 % воздуха составляет азот, еще 21 % – кислород, а следовательно, на все остальные компоненты, в том числе и вышеперечисленные, остается всего около 1 %. Однако недаром говорят: «Мал золотник, да дорог». Самое время познакомиться с некоторыми из наших героев.

 

«Первый парень на деревне»: углекислый газ

В конце 1970-х гг. в адрес ЦК КПСС пришло письмо от учительницы физики одной из станиц Краснодарского края. Оно начиналось словами: «Недавно довелось прочитать…». Как вы думаете, какая информация настолько поразила педагога, что она поспешила обратиться, по сути, в высшую инстанцию на шестой части суши? А информация эта была по поводу… массы кислорода, содержащегося в атмосфере. Увидев соответствующее массе число – около 1015 т, автор письма вооружилась медицинским справочником, из которого извлекла величину еще одной массы кислорода – на сей раз вдыхаемого взрослым человеком в течение одних суток. Умножив последнюю на количество жителей планеты, она получила суточную потребность в кислороде населения Земли. Заключительным аккордом вычислений стало деление общей массы атмосферного кислорода на только что найденную суточную потребность. И тут (о, ужас!) выяснилось, что кислорода «осталось» всего-навсего на 50 лет! Именно об этой надвигающейся катастрофе бдительная учительница и поставила в известность высший партийный орган, сопроводив информацию настоятельной просьбой принять незамедлительные меры. В соответствии с заведенной тогда процедурой, письмо было переадресовано в научную организацию, занимающуюся изучением атмосферы, с требованием дать оперативный исчерпывающий ответ на тревожный сигнал «из глубинки». Так письмо оказалось в наших руках.

Успокоить встревоженную женщину не составило большого труда: достаточно было лишь напомнить, что с расходом кислорода и образованием углекислого газа при дыхании людей и животных конкурирует не менее эффективный процесс фотосинтеза в растениях, в результате которого молекулы углекислого газа оказываются связанными водой и образуются кислород и ряд сложных органических молекул. В упрощенном виде сказанное можно записать следующим образом:

настоящее время доминирующую роль в поддержании определенной концентрации кислорода в атмосфере играют доступность и высокая скорость реакций с органическим материалом углекислого газа (CO2), а значит, самим фактом существования люди обязаны наличию именно его в атмосфере. Однако подаривший нам жизнь «благодетель» в последнее время ее и серьезно осложняет.

Как уже говорилось, CO 2 – важнейший парниковый газ. На нем, по современным оценкам, лежит примерно 60 % ответственности за усиление парникового эффекта (рис. 14).

Рис. 14. Модель молекулы углекислого газа (слева); сухой лед – углекислый газ в твердом виде (справа)

Его главная полоса поглощения приходится на длину волны λ = 15 мкм. Интересно, что именно на этой же длине волны находится и максимум интенсивности излучения поверхности Земли при вышеупомянутой среднегодовой среднеглобальной температуре поверхности 14 °C. Это обстоятельство еще более повышает значимость CO2 в парниковом эффекте. Это ли не повод поговорить о нем.

Углеродный цикл – один из основных природных циклов как на Земле, так и во Вселенной, в частности, углекислый газ обнаружен в составе атмосферы Марса и Венеры. Основной запас углерода сосредоточен в недрах Земли, и лишь небольшая его доля («обменный резервуар») участвует в обмене с другими геосферами. Схема цикла углерода на Земле представлена на рис. 11 цв. вклейки.

На ранних стадиях формирования нашей планеты CO2 образовывался в результате процессов окисления как естественный компонент атмосферного воздуха. Позже бо́льшая часть изначального количества CO2 в форме известняка CaCO3 и других карбонатов (солей угольной кислоты) была захвачена литосферой.

И в современную эпоху львиная доля поступающего в атмосферу углекислого газа имеет естественное происхождение, а вклад человека (при сжигании им углеродосодержащих веществ – топлива) во второй половине 1970-х гг. оценивался всего лишь в 4 %.

Атмосферный резервуар углекислого газа во многом определяется биосферой суши с короткоживущей (трава и листва деревьев) и долгоживущей (гумус почвы) составляющими. В целом, по весьма приблизительным оценкам, перегнивание органического материала обусловливает ежегодный выброс 220 миллиардов тонн углекислого газа, еще 330 миллиардов тонн дает океан, вклад вулканов составляет 130–230 миллионов тонн CO2.

Главный атмосферный источник CO 2 – дыхание растений (в основном ночью ). Снижение же его концентрации происходит в результате фотосинтеза в зеленых частях растений ( днем ). Поэтому в областях с богатой растительностью (в лесах) максимальная концентрация CO 2 бывает рано утром и в конце зимы, а минимальная – в конце дня летом и осенью. При этом отклонение от среднего ее значения (амплитуда колебаний) составляет 10–15 %. Значительный источник CO 2 в атмосфере – гниение растительности (в частности, опавших листьев) и других органических остатков составляющих углеродного цикла. Таким образом, в лесах, неспроста называемых «легкими планеты», углекислый газ не только разрушается, но и образуется.

Вклад в продукцию CO2, наряду с сезонным листопадом, вносят процессы старения и деградации лесных массивов, болезни растений, а также выгорание лесов в результате пожаров. Следовательно, бесперебойность «дыхания» планеты напрямую зависит от состояния ее «зеленого моря» (неслучайно 2011 г. был объявлен ООН Международным годом защиты лесов). В первую очередь это относится к вечнозеленым тропическим и субтропическим лесам, однако и вклад растительности России также достаточно весом (приблизительно 20–30 %).

Важную роль в углеродном цикле играют болота и зоны вечной мерзлоты, которые аккумулируют углерод в торфе и мерзлом грунте, но высвобождают CO2 при осушении болот и таянии мерзлоты. Нельзя не упомянуть о других «носителях» углерода. Среди несметного их числа выделим метан (о нем наш рассказ впереди) и монооксид углерода СО (угарный газ). Антропогенные выбросы СО примерно в 1,5 раза превосходят его естественную эмиссию, при этом около 60–80 % такого угарного газа обусловлены автомобильным транспортом. Как метан, так и монооксид углерода, вступая в химические реакции с OH-радикалами, окисляются в атмосфере до CO2.

Сам же углекислый газ химически малоактивен, лишь в стратосфере его молекулы разрушаются под действием ультрафиолетового излучения, но процесс этот протекает настолько вяло, что им обычно пренебрегают. Последнее обстоятельство решающим образом определяет характерное время пребывания молекулы CO 2 в атмосфере («время жизни»): по современным оценкам, оно близко к ста годам.

Океанический резервуар CO2 пополняется при растворении углекислого газа в воде с образованием угольной кислоты и продуктов ее диссоциации (распада). Растворимость CO2 в воде увеличивается с уменьшением ее температуры и, наоборот, падает с ее увеличением (наглядный тому пример – появление пузырьков газа на стенках стакана с газированной водой при ее согревании – знаком, несомненно, каждому). Поэтому на зиму углекислый газ «отправляется погостить» из атмосферы в океан через холодные моря и реки Севера и возвращается в атмосферу летом из теплых вод и южных рек. Много углекислого газа выбрасывает Тихий океан при явлениях Эль-Ниньо. Растворимость CO2 зависит также от состава воды и от уровня ее кислотности (pH). Часть оказавшегося в морской воде углерода связывается, образуя соли угольной и серной кислот, и в последующем участвует в гидрохимических преобразованиях. В морской воде мелкие и мельчайшие водоросли (фитопланктон) поглощают растворенный CO2 в процессе фотосинтеза, затем по пищевым цепочкам углерод переходит в зоопланктон и в организмы морских животных, а в дальнейшем выпадает на дно океана с их отмершими частями и продуктами жизнедеятельности. Молекулы карбоната кальция (CaCO3) из донных отложений при некоторых условиях могут снова переходить в воду и участвовать в гидрохимических процессах. Кроме того, карбонатные породы литосферы при выветривании горных пород способны растворяться в воде, создавая значительный по величине потенциальный источник CO2, замыкая круговорот углерода в природе.

Обратите внимание, что наш рассказ об углекислом газе почти не содержит количественных оценок, характеризующих обсуждаемые процессы, и тем более – их взаимосвязь. Это, безусловно, не случайность, а отражение уровня современных знаний об углеродном цикле. Проблемы, возникающие при его изучении, те же, что и при исследовании климатической системы в целом. О них мы говорили выше, и повторяться нет особого смысла. Однако к тому, чтобы численно охарактеризовать изменения концентрации CO2 в воздухе, нет никаких препятствий.

На рис. 15 и 16 видно, как изменялась концентрация CO2 в различные эпохи истории Земли (на врезке – за последнее тысячелетие) и за последние 50 лет. Важно отметить, что за четыре последних ледниковых и межледниковых периода она не превосходила 300 ppm (англ. рarts per million, или «частей на миллион», т. е. молекул CO2 на миллион молекул воздуха), а именно: 270–290 ppm в межледниковые и 190–200 ppm в ледниковые периоды.

В настоящее время средняя по земному шару концентрация CO 2 достигает 392 ppm, а в доиндустриальный период она находилась на уровне межледниковой (около 280 ppm) и была почти на треть ниже современной.

Концентрация эта, вследствие химической пассивности CO2, почти не зависит ни от географических координат точки на земном шаре, ни от высотного уровня. Поэтому в большинстве исследований она принимается одинаковой во всей атмосфере Земли.

Рис. 15. Изменения концентрации углекислого газа в палеоэпохи

Даже беглого взгляда на рис. 15 достаточно, чтобы отметить ускоренный рост концентрации CO2, за последние 50 лет: ежегодно в среднем на 1 ppm или приблизительно на 0,3 % в год в 1960–1980-х гг., а с конца 2000-х – до 2,2 ppm или 0,6 %. Считается, что небывалый рост связан с интенсификацией антропогенной деятельности, хотя существуют и другие версии. Согласно имеющимся версиям, подобное можно объяснить:

а) уменьшением содержания углекислого газа в поверхностных водах или уменьшением поглощения CO2 поверхностью океана (например, из-за увеличения температуры);

б) вызванным чем-то ускорением окисления отмершей растительности;

в) вызванным чем-то сокращением скорости фотосинтеза или усилением дыхания растений;

г) увеличением масштабов окисления углерода из-за сжигания человеком углеродсодержащего топлива.

Рис. 16. Изменения концентрации углекислого газа за последние 50 лет

Выше отмечалось, что доля антропогенного фактора в углеродном цикле исчисляется лишь немногими процентами, но, согласитесь, и ежегодное увеличение концентрации CO2 на 0,3–0,6 % по темпам вполне соизмеримо с размером антропогенного фактора (вышеупомянутыми 4 %). В пользу последней версии говорят следующие соображения. Во-первых, в биосфере Земли последний век не отмечен какими-либо глобальными изменениями, способными заметно повлиять на интенсивность процессов, упомянутых в версиях б и в. Во-вторых, наблюдаемого в течение ХХ века увеличения температуры воды в океане недостаточно для объяснения (в соответствии с физическими законами для жидкостей и газов) столь значительного роста атмосферной концентрации CO2. В-третьих, методы современного анализа позволяют оценить вклад сжигаемого топлива в общем изменении содержания углекислого газа в атмосфере с помощью соотношения изотопов12Си 14С, благодаря тому, что изотоп 14С практически не входит в состав ископаемого топлива.

Проведенная оценка показывает сопоставимость темпов роста потребления топлива и увеличения содержания CO 2 в атмосфере.

Упомянем еще об одной проблеме, связанной с увеличением содержания CO2, – биологической. Растворение дополнительной массы углекислого газа в морской воде влечет за собой увеличение уровня ее кислотности, а это, в свою очередь, представляет большую опасность для существования многих живых организмов. Так, лабораторные исследования показали, что увеличение кислотности морской воды губительно сказывается на раковинах моллюсков, известковых скелетах коралловых полипов, которые буквально разъедаются угольной кислотой.

Итак, увеличение атмосферной концентрации CO 2 в ХХ столетии – непреложный, доказанный измерениями факт. И где-то на 2 /3 глобальное потепление обусловлено именно этим фактом.

Как ни печально, но приходится признать, что сколь-нибудь существенно воздействовать на природный углеродный цикл мы не в состоянии, а, значит, контролировать содержание CO2 в атмосфере нам не по силам.

По большому счету, что-либо сделать можно лишь с теми самыми 4 % из «зоны нашей ответственности», но и эта задача, ой, как непроста: нужно повсеместно отказаться или хотя бы значительно сократить промышленное использование ископаемого топлива в ближайшие десятилетия. Такая цель поставлена, но вряд ли может быть осуществлена, поскольку требует глобальной и затратной модернизации мировой экономики, а также энергичных согласованных действий. Это путь, который еще только предстоит пройти. А пока зададимся вопросом: нет ли других путей, если не альтернативных, то дополняющих данный? Для этого рассмотрим другие парниковые газы.

 

Многоликий метан: второй по значимости парниковый газ

Упоминание о метане (CH4) у большинства людей обычно ассоциируется со взрывами и человеческими жертвами на угольных шахтах. «Явление метана народу», т. е. атмосфере, происходит по многим каналам. В их череде «шумный» выход метана на поверхность по стволам угольных шахт – канал, пожалуй, самый эпатажный, но совершенно не типичный. Как вскоре убедится читатель, метан предпочитает просачиваться в атмосферу без лишнего шума, тихой сапой. Между тем данные измерений свидетельствуют о том, что с начала индустриальной эпохи (около 1750 г.) содержание в атмосфере метана увеличилось в 2,5 раза (для сравнения: концентрация CO2 за тот же период возросла примерно на 30 %).

Повышенного внимания к себе метан заслужил благодаря его сегодняшнему вкладу в усиление парникового эффекта, оцениваемому в 20 %. Конечно, это не 60 %, вносимые углекислым газом, но, согласитесь, тоже немало – «твердое» второе место.

Замахнуться на гегемонию CO2 в обозримом будущем ему едва ли по силам, но тем не менее…

Молекула СН 4 (рис. 17) в десятки раз эффективнее поглощает инфракрасное излучение, чем молекула CO 2 . Главенствущая же роль последнего достигается лишь тем, что количество молекул углекислого газа в атмосфере примерно в 200 раз превышает число молекул метана. Но поскольку концентрация СН 4 в индустриальную эпоху росла гораздо быстрее концентрации CO 2 , очевидно, что при сохранении существующей тенденции уже в недалеком будущем вклад метана в усиление парникового эффекта будет еще более весомым.

Чтобы сократить темпы глобального потепления, резонно попытаться замедлить рост концентрации этого газа (как, впрочем, и других парниковых газов) в атмосфере. В этой связи насущно необходимо познакомиться с ним поближе.

Рис. 17. Шаростержневая модель молекулы метана

Содержание всякого газа в атмосфере определяется соотношением мощности его источников и стоков (т. е. разрушения в атмосферных химических реакциях и – для некоторых газов – вымывания осадками), а срок пребывания в атмосфере (время жизни) – совокупной скоростью его химического разрушения и механического удаления из атмосферы.

Атмосферная химия метана очень проста и не составляет какой-либо загадки. Молекулы метана не обладают высокой реактивной способностью и взаимодействуют лишь с очень активными радикалами гидроксила ОН* и атомами хлора Cl, а также возбужденного кислорода О(1D). В тропосфере разрушение СН4 происходит главным образом в реакции с ОН* (на ~90 %), однако в верхней стратосфере (выше 35 км) с ней успешно конкурирует реакция метана с атомарным хлором. Доля реакции СН4 с О(1D) в фотохимическом стоке метана относительно невелика. Разрушение молекул СН4 солнечными лучами (фотолиз), происходящее в верхней стратосфере, столь незначительно, что в расчетах им часто пренебрегают. Кроме того, метан поглощается почвами в сухих субтропических лесах со скоростью большей, чем во влажных умеренных и тропических.

В результате молекула СН 4 , по разным оценкам, живет в атмосфере 8–12 лет.

Рис. 18. Характерное содержание метана, ppbv (parts per billion by volume, 10–9 молекул на молекулу воздуха). В стратосфере разрушение метана гидроксилом приводит к образованию другого важного парникового газа – водяного пара

Химическим путем метан не образуется, поскольку для синтеза его молекул необходимо большое количество энергии. Поэтому атмосферные источники СН4 отсутствуют, и поступление метана в атмосфере полностью определяется его потоками с поверхности Земли (рис. 18). Метан возникает и накапливается в недрах Земли в среде, где гниение отмершей растительности происходит при дефиците свободного кислорода. Таким образом, среди источников метана преобладают микробиологические процессы с участием анаэробных метанобразующих бактерий:

Молекулярный водород (Н2) для осуществления этой реакции выделяется бактериями, не синтезирующими метан, но развивающимися в той же самой среде, что и метаногены. Метан продуцируют также жвачные млекопитающие (в первую очередь, крупный рогатый скот), в кишечнике которых создаются оптимальные условия для существования выделяющих метан микроорганизмов. По оценке Н. М. Бажина, «продуктивность» одной коровы составляет 250 л СН4 (целая бочка!) в сутки.

Все источники метана обычно делят на две большие группы: естественные и антропогенные. К первым относят потоки СН4 с поверхности заболоченных территорий, пресноводных водоемов, океанической поверхности, а также метан, образующийся в колониях термитов и выделяемый при сжигании огромных объемов биомассы в результате пожаров.

Здесь необходимо небольшое отступление. Определение суммарного количества метана, поступающего в атмосферу от каждого из источников, – несомненно, важная, но вряд ли решаемая инструментальными средствами задача. Поток СН 4 , например, с поверхности заболоченных территорий, существенно зависит от температуры поверхности, типа болота (торфяного, сфагнового и др.), характера растительности и ее плотности, наличия или отсутствия воды на поверхности и других факторов. Поскольку заболоченные территории встречаются довольно часто (исключая полярные области), и каждой местности присущи свой климатический режим и своя растительность, величины потока СН 4 с разных увлажненных территорий будут заметно различаться, а организация регулярных измерений потока СН 4 в столь большом количестве мест практически неосуществима. Да и смешно представить каждую корову (лошадь, козу и пр.) с индивидуальным датчиком, замеры которого регулярно собирались бы и аккуратно архивировались. А поэтому мощность каждого источника метана определяется с помощью решения обратной задачи: подбирается значение, которое, будучи подставленным в модель, обеспечивало бы максимальное соответствие расчетных концентраций СН 4 измеренным. Естественно, получаемые оценки зависят от класса и особенностей используемой модели и заметно различаются у разных авторов. Обзор таких экспертных оценок и комментарии к ним приведены в Scientific Assessment of Ozone Depletion, 1994 [15]WMO Global Ozone Research and Monitoring Project. Report № 37. Geneva, 1994.
. Далее мы воспользуемся именно этим источником. Давность указанной публикации не должна смущать читателя. Несомненно, за почти 20 лет, прошедших с момента ее выхода в свет, приведенные оценки как-то изменились, однако с абсолютной уверенностью можно утверждать, что они не вышли за рамки разброса приведенных в этом обзоре значений. В такой ситуации мы не ставим перед собой задачу сообщить читателю «последние известия с метаноносных полей» и призываем рассматривать приведенные ниже числа лишь для получения представления о порядке величины отдельных источников и соотношении между ними. Однако вернемся к обсуждению существующих источников метана.

Среди естественных источников метана наиболее интенсивен поток СН4 с поверхности заболоченных территорий. Его величина оценивается экспертами в 110 Мт/год (1 Мт = 106 т) с разбросом значений от 55 до 150 Мт/год, причем более половины (около 60 Мт/год) приходится на тропики, а на северные широты почти все оставшееся – 40 Мт/год. На порядок меньше поток с поверхности океана – 10 Мт/год и с пресноводных поверхностей – 5 Мт/год. Ежегодная производительность термитников оценивается в 20 Мт метана. Еще 40 Мт/год поступает в атмосферу в результате сгорания биомассы при пожарах, в большинстве своем происходящих в тропической зоне. Таким образом, ежегодно благодаря естественным источникам в атмосферу попадает около 200 Мт СН4 (с разбросом оценок от 101 до 355 Мт/год) (рис. 19).

Рис. 19. Мировая эмиссия метана (Мт/год) от естественных (а) и антропогенных (б) источников

В число антропогенных источников входят потоки, попадающие в атмосферу при добыче ископаемого топлива, с мусорных свалок и при последующем сжигании бытовых отходов, очистке сточных вод, расширении сельскохозяйственных угодий (в том числе рисовых плантаций), при разведении крупного рогатого скота.

Совместные усилия угле-, газо– и нефтедобывающих предприятий во всем мире увеличивают эмиссию метана в атмосферу на 100 Мт/год (в природном газе на его долю приходится 77–99 %, в попутных нефтяных – 31–90 %, в рудничном – 34–40 %). Из этих 100 Мт/год промышленной эмиссии примерно 47 дает добыча и сжигание угля, а 37 и 17 Мт/год соответственно – утечка из скважин и при транспортировке газа и нефти.

Подсчитано, что крупный рогатый скот продуцирует 80 Мт СН4 в год. (В 2000 г. насчитывалось чуть больше 1 млрд голов, из них 314 млн – в Индии, 150 – в Бразилии, 130 – в Китае и около 100 млн – в США.)

Ежегодный поток СН4 в атмосферу с рисовых плантаций оценивается в 60 Мт, еще около 30 Мт СН4 в год попадает в атмосферу при других способах землепользования; при накоплении и переработке мусора – 57 Мт в год. Географическое распределение этих потоков напрямую зависит от экономического развития страны, численности и плотности населения, отчасти от национальных традиций. Примерно вдвое меньше, 25 Мт СН4 в год, обеспечивает очистка сточных вод.

В итоге из антропогенных источников в атмосферу попадает около 360 Мт/год (от 259 до 537) СН4 при общем его объеме в 560 Мт/год (от 360 до 892).

Следовательно, примерно 2 / 3 глобальной эмиссии метана обусловлено деятельностью человека, хотя деление источников на антропогенные и естественные несколько условно – осушаются естественные болота, метан присутствует в продуктах жизнедеятельности не только домашних, но и диких травоядных животных.

Понятно, что основные источники метана размещаются в Северном полушарии, где находится подавляющее большинство экономически развитых государств. К тому же площадь суши, на которой в основном располагаются источники СН4, здесь значительно больше, чем в Южном полушарии. А что же Россия? Сколь велик наш вклад в глобальную эмиссию метана?

В силу своего географического положения наша страна не является родиной термитов и рис – далеко не главный среди производимых в России зерновых. Поэтому российский вклад в эмиссию СН 4 складывается в основном из потоков метана с поверхности переувлажненных территорий (включая болота, открытые водоемы, тундру и т. д.), его утечек, сопутствующих добыче ископаемого топлива, а также метана, выделяемого в результате жизнедеятельности крупного рогатого скота и при утилизации мусора.

По оценкам, гниение и сжигание российского мусора увеличивает ежегодный поток метана примерно на 2,5 Мт.

В 1990-х годах в России и странах СНГ резко сократилось количество крупного рогатого скота, и к 2000 г. в России насчитывалось лишь 27 млн голов (в 1991 г. в СССР – 57 млн). Как следствие, в данный период уменьшился и выброс СН 4 , обусловленный этим источником: в 2000 г. он оценивался в 1,8 Мт/год. Из-за экономического спада 1990-х закрылись шахты в России, на Украине, в Казахстане, значительно сократилась добыча угля. Существующая на этот счет статистика весьма противоречива, что, конечно, осложнило расчеты, поэтому экспертные оценки имеют большой разброс – от 2,5 до 5 Мт СН 4 в год.

Как известно, Россия обладает огромными запасами природного газа, добыча которого – приоритетная отрасль ее экономики. Вопрос о необходимости оценки объема утечки газа неоднократно поднимался российскими и международными природоохранными организациями (по расчетам 1990-х годов, в результате утечки в атмосферу может попадать от 1,42 до 17±13 Мт СН4 в год).

По нашей оценке, эмиссия СН4 от российских переувлажненных территорий, расположенных в поясе 30–60° с. ш., составляет около 21 Мт/год. Общие же выбросы СН4 с территории России можно оценить в 40–45 Мт/год (рис. 20).

Рис. 20. Российские источники выбросов метана (Мт/год) в атмосферу: 1 – болота, тундра, открытые водоемы; 2 – газо– и нефтедобыча; 3 – угледобыча; 4 – мусор; 5 – крупный рогатый скот

Ввиду того, что молекула СН 4 живет в атмосфере 8– 12 лет, а на перемещение воздушных масс из одного полушария в другое достаточно нескольких месяцев, содержание метана в воздухе почти одинаково в разных уголках земного шара.

В частности, средняя концентрация СН4 в Южном полушарии всего на 6 % ниже, чем в Северном, где, как уже отмечалось, расположены его основные источники. В связи с относительной химической пассивностью метана его содержание в атмосфере не подвержено заметным сезонным изменениям, которые не превышают нескольких процентов, причем самые низкие концентрации СН4 приходятся на конец лета, а наибольшие – на зиму и весну. Исключение составляют северные высокие широты, там наблюдается резкое увеличение концентрации метана к осени, связанное с освобождением ото льда болотистых почв.

Анализ образцов из ледовых кернов, отобранных в Антарктиде и Гренландии, позволил проследить ход изменения концентрации СН4 в атмосфере. Во время последнего ледникового максимума (18–20 тыс. лет назад) она составляла в нижней тропосфере 350 ppb (молекул метана на миллиард молекул воздуха), к 1850 г. возросла до 820 ppb, в 1950 г. – уже до 1180 ppb, в 1990 г. – 1694 ppb, в 2000 г. – 1752 ppb и в 2010 г. – около 1850 ppb (рис. 21).

Налицо беспрецедентно быстрый рост концентрации атмосферного метана за последние 60 лет – на 56,8 %.

Рис. 21. Среднегодовое по земному шару содержание метана в приземном воздухе

Как изменится содержание метана в атмосфере в будущем, ближайшем и отдаленном? Вопрос достаточно трудный, ответ на него зависит от множества объективных и субъективных факторов, главный из которых – наши недостаточные знания, в частности о механизме обмена метана между геосферами (недрами Земли, океаном, атмосферой). Например, до сих пор не объяснено наблюдавшееся в начале XX в. резкое, но непродолжительное замедление скорости роста его содержания в атмосфере. Другой важный фактор неопределенности будущего метана – стратегия национальных и мировой экономик, технических и технологических новаций. Так, англичане разработали и успешно внедряют методику консервирования закрытых шахт, надежно препятствующую проникновению метана в атмосферу. Голландцы начинают использовать технологии очистки коровников, предотвращающие утечку метана.

Рост населения ведет к увеличению потребности в продовольствии, а значит, грядет увеличение сельскохозяйственных площадей и поголовья скота. Но площади сельскохозяйственных угодий будут распределяться по-разному, в зависимости от пищевых пристрастий и сбалансированности рациона тех или иных народов: где-то будут увлажняться новые территории под овощеводство, где-то – осушаться под зерновые. Но наряду с этим из-за неумелой ирригации появятся новые болота.

Конечно, отказ от традиционных источников энергии – угля, газа, нефти – в пользу альтернативных, экологически более чистых, вряд ли реален в ближайшем будущем.

Наиболее вероятным представляется умеренный рост содержания метана в ближайшие десятилетия, что подтверждает Межправительственная группа экспертов по изменению климата, разработавшая 35 сценариев возможного изменения концентрации важнейших компонентов атмосферного воздуха. В этих сценариях рассмотрены последствия различных путей развития мировой экономики в XXI в., при этом в большинстве из них рост концентрации метана к 2050 г. оценивается в 40–50 %.

Остается открытым вопрос о глобальных запасах метана в газогидратах – кристаллических образованиях, скрытых под океанической толщей и ледяным покровом в зоне вечной мерзлоты. По немногочисленным измерениям, общее содержание СН4 в поддонных отложениях в районе Мексиканского залива, в Северном Ледовитом и Тихом океанах оценивается в 1,3 · 107 Мт, масса метана в арктических газовых гидратах – 104–107 Мт, а залежи СН4 под ледяным покровом – в2,7·106 Мт (правда, с возможной десятикратной (!) ошибкой).

Для сравнения: общее содержание метана в современной атмосфере оценивается примерно в 4600–5000 Мт, т. е. составляет всего несколько сотых процента от его глобальных запасов!

Иногда высказывается опасение (в основном в геологической периодике), что наблюдаемый и прогнозируемый рост температуры окружающей среды может стать причиной полного или частичного высвобождения метана из его резервуаров при изменении интенсивности обмена между донными и вышележащими слоями океана, а также таяния в зонах вечной мерзлоты. При повышении температуры на 1–1,5 °C в таких районах, занимающих 2/3 территории России, приток метана может увеличиться на 100 млрд м3, или примерно на 70 Мт.

В недавней статье в журнале «Science» утверждается, что высвобождение метана из гидратов уже случалось 200 миллионов лет назад. Тогда, по мнению авторов статьи, в атмосферу было выброшено около 12 триллионов тонн СН 4 , в результате последовал резкий рост температуры, вызвавший триасово-юрское вымирание, унесшее примерно половину видов живых существ и «расчистившее» дорогу динозаврам.

Интерес к проблеме метана в ближайшие годы наверняка сохранится. Считается, что с помощью именно этого газа можно наиболее эффективно регулировать избыточный парниковый эффект. Действительно, на две трети антропогенная эмиссия СН4 несравнимо более доступна для контроля, чем источники «гуляющего сам по себе» CO2. К тому же полный цикл пребывания молекулы метана в атмосфере (8–12 лет) во много раз короче аналогичного для молекулы углекислого газа, а значит, результатов регулирования не придется ждать десятилетиями. Наконец, вклад СН4 в усиление парникового эффекта – второй по значимости, и если нет возможности регулировать поведение лидера – CO2, логично остановить свой выбор на метане.

Обеспокоенность продолжающимся глобальным потеплением и его вероятными последствиями – достаточный стимул для дальнейшей дискуссии вокруг парниковых газов среди ученых, журналистов, политиков. В этой связи Россия, как обладательница колоссальных запасов природного газа, одна из ведущих стран по добыче и экспорту нефти, изрядная часть площади которой занята переувлажненными территориями, неизбежно будет оставаться в центре всеобщего внимания.

Когда речь идет о метане, объектом для проведения любых исследований, как теоретических, так и с сугубо практическими целями, могут служить лишь данные натурных измерений, причем обязательно представленные в достаточном объеме. К сожалению, на территории России есть лишь несколько постоянно действующих станций, ориентированных на мониторинг парниковых газов, но отсутствует их разветвленная сеть. Безусловно, объективные трудности для создания такой сети существуют, например труднодоступность тех же болот на российском Крайнем Севере. Однако перспектива участия России в ближайшем будущем в новых международных природоохранных проектах вызывает необходимость в систематическом мониторинге парниковых газов на достаточно густой сети станций и анализе всей поступающей информации в режиме онлайн.

Подводя черту в разговоре о метане, отметим, что главная неопределенность в наших знаниях о нем кроется в невозможности удовлетворительно оценить запасы этого газа в недрах Земли и океана, а также в недостаточной осведомленности о механизмах обмена метаном между атмосферой и другими составляющими климатической системы нашей планеты.

В то же время именно метан видится специалистам «слабым звеном», через которое можно регулировать избыточный парниковый эффект. А значит, этот газ еще не раз напомнит о себе.

 

О пользе одной сенсации, или страсти по озону

«Звездой» мирового масштаба озон стал лет 30 назад. Открытый в 1840 г. немецким химиком К. Ф. Шенбейном (1799–1868), он долгие годы был известен лишь узкому кругу специалистов.

Озон – не просто один из многих, это газ уникальный. Несмотря на то что его масса не дотягивает даже до 0,0001 % массы атмосферы, он имеет особое значение для поддержания жизни на Земле и формирования ее климата: полностью поглощает поток коротковолновых ультрафиолетовых (УФ) лучей с длиной волны 200–280 нм и около 90 % ультрафиолетового излучения с длиной волны 280–320 нм (так называемая полоса УФ-Б излучения Солнца). Наблюдения показали, что если общее содержание озона сократится не более чем на 10–20 %, то на каждый процент такого сокращения придется приблизительно двухпроцентное увеличение потока в полосе УФ-Б.

Первый шаг к славе был сделан в первой половине 1970-х, когда в связи с появлением трех статей в научной периодике на него обратили свое внимание СМИ. В первых двух, одна из которых была написана будущим нобелевским лауреатом, а тогда сотрудником Стокгольмского университета П. Крутценом, а вторая химиком из Калифорнийского университета в Беркли Г. Джонстоном, высказывалась гипотеза о возможности разрушения стратосферного озона оксидами азота. Вскоре список гипотетических врагов озона пополнился атомарным хлором, и до 1974 г. сдержанный оптимизм вызывало лишь то, что количество хлора естественного происхождения в атмосфере сравнительно невелико. Однако ситуация кардинально изменилась с выходом в свет третьей статьи, в которой также будущие нобелевские лауреаты М. Молина и Ш. Роуленд из Калифорнийского университета в Ирвине утверждали, что дополнительными источниками хлора в стратосфере являются хлорфторуглеродные соединения (ХФУ), массово используемые в холодильных установках, аэрозольных упаковках и т. д. Будучи негорючими, нетоксичными и химически пассивными, эти вещества медленно переносятся восходящими воздушными потоками от земной поверхности в стратосферу, где их молекулы разрушаются под действием УФ-излучения, в результате чего выделяются свободные атомы хлора. Вся эта информация, эмоционально «усиленная» журналистами, была донесена широкой общественности.

Развитие (и какое!) эта тема получила через 10 лет. Сообщение об обнаружении английскими учеными в конце 1985 года большого дефицита озона над Антарктидой – «озоновой дыры» (термин был предложен еще в 1930-е гг. С. Чепменом) стало сенсацией года, а реакцию мировой общественности на это сообщение легче всего охарактеризовать одним коротким словом – шок. Одно дело, когда угроза разрушения озонового слоя существует лишь в отдаленной перспективе, другое – когда мы поставлены перед свершившимся фактом. К этому никто не был готов.

«Подумаешь, одним газом больше, одним – меньше. Вон сколько видов флоры и фауны исчезло, и ничего, мир продолжает существовать», – мог бы возразить наивный читатель, но такой едва ли сегодня найдется.

Солнечное излучение в умеренных дозах вызывает загар и тонизирует работу человеческого организма, но при их повышении наблюдается повреждение клеток кожи (их нуклеиновых кислот), которое впоследствии может привести к заболеванию открытых участков кожи.

Установлена зависимость между заболеваемостью раком кожи и степенью ультрафиолетового излучения Солнца, с наибольшим риском заболеть у представителей белой расы. Другим следствием усиления ультрафиолетовой радиации стал рост случаев поражения хрусталика глаза катарактой. Лабораторные опыты показали, что повышенный поток ультрафиолетового излучения также влечет за собой – через подавление процесса фотосинтеза и сокращение фитопланктона в Мировом океане – уменьшение популяции некоторых видов рыб.

Кроме того, от поглощения озоном ультрафиолетовой радиации во многом зависит и температура атмосферы: стратосферный воздух нагревается под действием УФ-излучения на несколько десятков градусов. Происходит это благодаря наличию в атмосфере ряда газов, включая озон, поглощающих это излучение и выделяющих при этом тепло. Весной и летом УФ-излучение интенсивнее, чем осенью и особенно зимой, поэтому и нагрев в весенне-летний период больше. Более того, этот нагрев в полярной области во время полярного дня (когда Солнце светит круглосуточно) больше нагрева в тропиках (где ночь ежесуточно сменяет день) в тот же период.

Одновременно, озон, как парниковый газ, интенсивно поглощает инфракрасную (тепловую) радиацию. Его полоса поглощения приходится на середину «окна прозрачности» (λ = 9,6 мкм, см. рис. 13 на с. 83), и потому вклад данного газа в общий радиационный эффект, а следовательно, в вертикальное распределение температуры и циркуляцию атмосферы, весьма значителен. Безусловно, столь пристальным вниманием к себе озон обязан, главным образом, своей способности защищать биосферу Земли от жесткого ультрафиолетового излучения и в меньшей степени тем, что является парниковым газом. И все же «по совокупности достоинств», он заслуживает подробного рассказа на этих страницах.

Была и еще одна, пожалуй, самая важная причина для беспокойства за сохранность озонового слоя. Подобно тому, как, например, избыточное потребление кальция приводит к постепенному накоплению его в организме человека, повышенные дозы ультрафиолетовой радиации могут иметь отдаленные по времени последствия для организма человека. Таким образом, истощение озонового слоя может сказаться спустя годы и десятилетия. Чем не бомба замедленного действия?

Но если ущерб, причиненный обычной бомбой, очевиден сразу же, то в нашем случае закрадывается сомнение, действительно ли случившееся уходит корнями в далекое (или не очень) прошлое или такая связь – плод чьего-то корыстного расчета и масштабной рекламы. Вспоминается любопытный эпизод, произошедший в середине 1990-х. Одному из авторов этой книги довелось дать интервью, посвященное озоновой проблеме, весьма толковому журналисту. После того как все вопросы были заданы и ответы на них получены, он, повинуясь извечной журналистской тяге к сенсациям, с надеждой в глазах спросил: «А не известен ли какой-нибудь случай, когда компания отправилась на пикник полакомиться шашлычками, но в тот день дефицит озона привел к резкому росту ультрафиолетовой радиации, и от полученной дозы кто-то через день-два скончался?» Надежда угасла вместе с моим отрицательным ответом.

Воздадим должное «акулам пера»: ведь именно их публикации сподвигли политиков, вряд ли читающих «в свободное от работы время» научные труды, на активные действия. Была поставлена задача: как можно быстрее выявить причины возникновения озонной дыры и оценить вероятность распространения этого феномена на другие, особенно густонаселенные, регионы земного шара. На ее решение были выделены значительные средства, и сегодня уже можно с уверенностью констатировать, что вложения эти оправдались.

Наступление велось по всем фронтам. Перво-наперво был налажен бесперебойный мониторинг в самой Антарктиде, охватывавший не только озон, но и другие газы и аэрозоли, участвующие в его химических превращениях, а также метеорологические величины (температуру, скорость ветра, давление и др.). Одновременно были разработаны и осуществлены международные программы, направленные на проведение аналогичных комплексных измерений в течение определенных периодов (обычно от нескольких дней до месяца) в различных уголках Земли. Далее были созданы лаборатории, определявшие и уточнявшие скорости протекания атмосферных химических реакций (до той поры погрешности значений таких скоростей составляли 30–300 %).

Как грибы после дождя, множились группы теоретиков, анализировавших поступающую информацию и, как правило, с помощью ими же разработанных моделей пытавшихся выделить главные механизмы образования и разрушения озона и предсказать его эволюцию в будущем. Было организовано большое число рабочих совещаний и крупных международных конференций для оперативного обмена информацией, результатами исследований и, что важнее всего, возникающими идеями. Такая широкомасштабная «мозговая атака» вскоре принесла успех. Загадка «озоновых дыр» была решена (подробнее об этом чуть позже): главными виновниками оказались вышеупомянутые ХФУ. На этом основании вскоре (в 1987 г.) был принят Монреальский протокол (позже несколько раз уточнявшийся), регламентировавший производство, применение и использование озоноопасных химикатов. Он предписывал поэтапное сокращение их применения с последующей заменой таких химикатов более «дружественными» к озону.

Для включения в список «врагов» озона, подпадающих под действие Монреальского протокола, или исключения из него, требовалось соразмерить степень «агрессивности» того или иного вещества по отношению к озону. С этой целью Д. Уэбблс из Ливерморской национальной лаборатории (США) предложил ввести два вычисляемых по некоторым предписанным правилам индекса. Первый из них, озоноразрушающий потенциал, показывал, во сколько раз молекула такого вещества сильнее (или слабее), чем молекула СFCl3 (фреона-11), воздействует на атмосферный озон. Фреон-11 – один из самых широкоиспользуемых в то время ХФУ – подлежал первоочередному запрещению и замене менее озоноопасными веществами, а потому его озоноразрушающий потенциал был принят равным 1. Подавляющее большинство ХФУ первого поколения, как и многие пришедшие им на смену, являются одновременно парниковыми газами. Поэтому каждый из них характеризовался также вторым индексом – потенциалом глобального потепления, который позволял сравнить вклады в разогрев атмосферы одной молекулы такого химиката и молекулы CO2. Как и в случае с фреоном-11, потенциал углекислого газа считается равным 1.

Теперь пора уведомить читателя, каков он, атмосферный озон.

Озон – газ, состоящий из трех атомов кислорода. Его концентрация в атмосферном воздухе сильно меняется с высотой. Но даже в слое 20–30 км над уровнем моря, где концентрация озона максимальна, на миллион молекул воздуха приходится лишь несколько молекул озона. В разных широтных зонах Земли слой озонового максимума располагается на разных уровнях: в полярных районах – на высоте около 20 км, в тропиках – 25–26 км, а в умеренных широтах – между этими уровнями.

Здесь нелишне уточнить, какой смысл вкладывается в понятие «озоновый слой». Употребляя термин «слой», мы обычно подразумеваем часть пространства, заполненную однородным или кажущимся однородным веществом (например, слой снега в поле или на крыше). Однако нигде в атмосфере нет области, содержимое которой составляли бы только молекулы озона! Поэтому озоновый слой правильнее сравнить с золотоносным песком в реке, где среди мириад простых песчинок изредка попадаются золотые крупицы.

Ниже слоя озонового максимума концентрация озона растет с высотой, но при этом она в 10–100 раз меньше своего максимального значения в стратосфере. Вблизи поверхности Земли характерная концентрация озона составляет всего лишь несколько десятков молекул на миллиард молекул воздуха. Таким образом, на тропосферу приходится лишь 10–15 % общего количества молекул озона, а основная их часть сосредоточена в стратосфере. На рис. 22 показаны типичные вертикальные профили концентрации озона для разных широт.

Рис. 22. Среднее вертикальное распределение парциального давления озона в различных районах земного шара: а – январь, б – апрель, в – июль, г – октябрь: 1 – тропики (Бальбоа, Панама, 9° с. ш.); 2 – умеренные широты (Хоэннейссенберг, Германия, 48° с. ш.); 3 – Арктика (Туле, Гренландия, 76,5° с. ш.)

Распределение озона по географическим зонам земного шара также очень неравномерно (рис. 12 цв. вклейки). Для того чтобы сопоставить количество озона в воздухе над разными регионами, обычно используют понятие общее содержание озона (ОСО) – суммарное количество молекул озона в атмосферном столбе с площадью основания 1 см2, а в качестве единицы измерения ОСО – единицу Добсона (1 е. Д. = 2,7·1016 молекул озона/см2). Наибольшее ОСО приходится на северную полярную и южную субполярную зоны, а в экваториальной зоне оно наименьшее. Характерные до 1980-х (т. е. до открытия «озоновых дыр») значения ОСО составляли 300–450 е. Д. для северной полярной области, 280–400 е. Д. для южной субполярной области и умеренных северных широт и 260–280 е. Д. в экваториальной зоне.

Повсюду вне тропиков ОСО сильно изменяется от сезона к сезону: наибольшие его значения приходятся на конец весны – начало лета, а наименьшие – на осенне-зимний период, причем амплитуда сезонных колебаний составляет 30–40 %. Неравномерность распределения озона наблюдается и внутри пояса умеренных широт: область повышенного ОСО располагается над Восточной Сибирью и Дальним Востоком, а пониженного – над Северо-Западом.

Чем же вызваны столь значительные перепады величин ОСО?

Для ответа обратимся к особенностям формирования озонового слоя. Механизм образования озона довольно прост (рис. 13 цв. вклейки). Молекула кислорода О2 разрушается под действием солнечного света (ультрафиолетовой радиации), в результате чего появляется пара атомов кислорода. Эти атомы вступают в реакцию с молекулами кислорода, в результате чего и образуется озон:

О+ О2 → О3

Продуктивность механизма образования озона определяется двумя факторами – наличием солнечного света (т. е. формирование озона всегда происходит в светлую часть суток) и количеством свободных атомов кислорода, благо молекул О2 в атмосфере предостаточно. Локальный источник атомарного кислорода в атмосфере возникает также во время гроз, когда молекулы О2 разрушаются при электрических разрядах. Эффективность обоих этих источников максимальна в тропиках и минимальна у полюсов. Поэтому и основная масса озона образуется в экваториальной зоне, распространяясь затем атмосферными движениями к полюсам.

Озон разрушается в результате его фотолиза (разложения под действием фотонов света) ультрафиолетовым и видимым излучением, а также в реакции с атомарным кислородом. Однако основной вклад вносят катализаторы – гидроксил ОН-, монооксид азота NО, атомы хлора (Cl) и брома (Br), металлы и др. Схема гибели озона в каталитических циклах тоже проста (вместо Х можно подставить любой из перечисленных катализаторов):

Нетрудно видеть (см. строку под чертой), что в результате действия пары каталитических реакций разрушаются только молекулы озона, в то время как катализатор изменениям не подвержен и может продолжать свое «черное дело» до тех пор, пока не будет разрушен или связан в какой-либо другой реакции.

Так, один атом хлора может поспособствовать гибели до ста тысяч молекул озона.

Во второй половине ХХ века концентрации газов-катализаторов росли вследствие усиления их антропогенных источников, а концентрация О2, а с ней и атомов кислорода, оставалась неизменной. Следовательно, в стратосфере складывалась ситуация, когда скорость образования озона оставалась почти неизменной, в то время как интенсивность разрушения озона увеличивалась год от года, приводя к его истощению.

Фотохимия тропосферы более сложна, она критически зависит от количества находящихся в ней оксидов азота. Оценки свидетельствуют, а измерения подтверждают, что в загрязненной тропосфере хорошо освещаемых Солнцем географических областей процессы образования озона превалируют над процессами его разрушения, и концентрация озона перманентно увеличивается. На первый взгляд рост содержания озона заслуживает положительной оценки, так как при этом увеличивается ОСО, а значит, потенциальный риск пострадать от опасной ультрафиолетовой радиации сокращается. Но это лишь на первый взгляд…

Озон – чрезвычайно ядовитый газ. Для иллюстрации следующий факт: в Германии предельно допустимая концентрация (ПДК) озона в воздухе принята равной ПДК хлора, успешно использовавшегося в годы Первой мировой войны в качестве боевого отравляющего вещества.

В нашей стране также введены ПДК озона в воздухе (Перечень и коды веществ, загрязняющих атмосферный воздух. СПб., 1998), согласно которым максимальная разовая ПДК не должна превышать 0,16 мг/м3, а среднесуточная – 0,03 мг/м3.

Кроме того, озон является сильным окислителем. Его молекула, распадаясь при контакте с объектами живой и неживой природы, выделяет атом кислорода, окисляющий гораздо активнее, чем молекула кислорода, вещества клеток живых организмов и неорганические материалы.

В условиях крупных промышленных центров и регионов, атмосфера над которыми буквально насыщена тысячами органических и неорганических газов-загрязнителей, создаются благоприятные условия для образования озона (классический пример: смог в присутствии высокой влажности – лондонский и при ее отсутствии – лос-анджелесский). Именно там, по сравнению с сельской или неосвоенной человеком местностью, химическое воздействие озона на материалы – самое интенсивное, особенно в сочетании с другими окислителями. Так, коррозия металлов и строительных материалов происходит сильнее при совместном действии озона и сернистого газа во влажном воздухе. Отмечено прямое воздействие озона на органические материалы: ткани, пластмассы, резину, краски, особенно масляные (список можно продолжать).

Увеличение концентрации озона в тропосфере отражается и на региональном климате, неслучайно в Четвертом Докладе Межправительственной группы экспертов по изменению климата эффекты стратосферного и тропосферного озона обсуждаются раздельно (см. таблицу 4 на с. 148).

Отметим еще одну важную особенность: так как озон не поступает в атмосферу извне, его общая масса полностью зависит от химических процессов в атмосфере. Масса, но не распределение озона в пространстве, определяемое главным образом циркуляцией атмосферы. Убедиться в справедливости последнего утверждения легко: вблизи полюсов озон не производится в течение продолжительного времени – длящейся почти полгода полярной ночи. Этого времени с лихвой достаточно, чтобы весь произведенный ранее, при свете полярного дня, озон был разрушен в химических реакциях, и, следовательно, к моменту окончания ночи в полярных областях концентрация озона должна равняться нулю. Однако регулярно проводимые наблюдения не подтверждают этого. Причина такого расхождения теории с реальностью кроется в существовании постоянного атмосферного воздухообмена от экватора к полюсам и обратно, называемого меридиональной циркуляцией. Поэтому богатые озоном тропические стратосферные воздушные массы перемещаются к полюсам и в значительной степени компенсируют там «ночной» дефицит озона. Динамическими процессами, на сей раз меньшего – регионального – масштаба, объясняется и разница в ОСО над российскими Дальним Востоком и Северо-Западом.

Таковы основные механизмы формирования озонового слоя Земли. «А как же «озоновые дыры»?» – напомнит нам внимательный читатель. Действительно, пора к ним вернуться.

Антарктическая «озоновая дыра» возникает ежегодно в момент окончания полярной ночи и остается на весь весенний период. Долгое время весеннее падение ОСО усиливалось от года к году, «озоновая дыра» охватывала все большую площадь. В настоящее время антарктическая «озоновая дыра» появляется примерно в одно и то же весеннее время и занимает приблизительно одинаковую площадь, не проявляя пока тенденций к ее сокращению, хотя, согласно модельным оценкам, оно должно произойти во второй половине XXI в. (рис. 23 и рис. 14 цв. вклейки).

Рис. 23. В октябре 2001 г. общая толщина озонового слоя над Антарктидой сократилась до 105 е. Д. (при нормальных значениях на уровне 450–500), при этом именно в слое озонового максимума его практически не было обнаружено

На сегодняшний день механизм формирования и эволюции «озоновой дыры» в основных деталях установлен. Он достаточно сложен, и потому не может быть подробно изложен в данной книге. Базируется этот механизм на следующих физико-химических процессах, происходящих в антарктической атмосфере.

1. В конце зимы – начале весны над Антарктикой возникает ситуация, когда воздушные массы перемещаются по кругу 60–70° ю. ш. столь интенсивно, что блокируется воздухообмен вдоль меридиана (явление циркумполярного вихря). А так как основная масса озона поступает в полярные области из тропиков в результате меридионального переноса, то в течение августа – ноября в антарктическую атмосферу озон извне практически не поступает. Кроме того, в течение полярной ночи отсутствует местный фотохимический источник озона, в начале же весны он еще очень мал. Таким образом, запас озона над Антарктикой в течение нескольких месяцев не пополняется. Однако эта особенность атмосферной циркуляции существовала и до обнаружения «озоновых дыр», и значит только ею нельзя объяснить весеннего дефицита ОСО.

2. Озон разрушается в химических реакциях с участием хлора. Интенсивность этого процесса росла из года в год по мере того, как в стратосфере увеличивалось содержание хлора и его соединений, образующихся из ХФУ (с начала 1970-х до конца 1980-х гг. оно выросло в 6–8 раз). Но модельные расчеты показали, что и это явление не может полностью объяснить наблюдаемого быстрого и сильного падения концентрации озона.

3. Антарктида является уникальным естественным холодильником на Земле. В отсутствие солнечного нагрева в конце зимы низкие температуры (порядка -85 °C… – 75 °C) приводят к образованию в сильно охлажденной нижней стратосфере особого вида полярных облаков. На поверхности кристаллов, из которых состоят эти облака, протекают так называемые гетерогенные реакции, усиливающие в конечном итоге разрушение озона.

Совокупностью перечисленных причин и обусловлено почти полное исчезновение озона над Антарктикой.

На другом конце Земли – в Арктике – «озоновая дыра» была отмечена несколько позже, в начале 1990-х, ее размеры и глубина значительно меньше, чем в Антарктиде. И это неудивительно, если учесть, что температура стратосферы здесь, как правило, существенно выше антарктической, а потому полярные стратосферные облака появляются лишь на короткие промежутки времени, а циркумполярный вихрь не настолько силен, чтобы полностью прервать перенос озона к полюсу из южных широт. Когда же в Арктике устанавливается очень холодная погода, дефицит озона над ней и севером Атлантики и Европы увеличивается, так было, например, в марте 1997 г., когда он достигал в отдельные дни 46 % (для сравнения: дефицит ОСО в предыдущие годы составлял около 10 %). Аналогичная ситуация имела место и в марте 2011 г.

Однако необходимо констатировать, что превентивные ограничения по использованию ХФУ (согласно Монреальскому протоколу) начинают сказываться. Как показали измерения, с начала XXI века содержание соединений хлора в атмосфере стабилизировалось и наметилась тенденция к их пока небольшому снижению. Процесс этот не быстрый, поскольку некоторые из ХФУ являются «долгожителями» (например, фреоны -11 и -12 «живут» в атмосфере около 60 и 120 лет соответственно), и эффект пребывания ХФУ в атмосфере будет проявляться еще в течение нескольких десятилетий. Говорить о каком-либо заметном увеличении содержания озона пока преждевременно, хотя измерения уже показывают незначительный (около 1,5 %) рост ОСО в глобальном масштабе.

Восстановление озонового слоя до его «додырочного» уровня произойдет, согласно модельным оценкам, где-то в середине столетия.

Итак, подведем итоги. Открытие «озоновой дыры» породило сенсацию – не дутую, но вполне реальную. К чести деятельной части мирового сообщества, общая опасность в данном конкретном случае послужила международной консолидации. Благодаря совместным усилиям, за короткое время был осуществлен настоящий прорыв в изучении самых разных аспектов проблемы озонового слоя. Своевременное принятие озоноохранных соглашений, похоже, начинает давать желаемый эффект. Обратили ли вы внимание, что в последние годы публикации об озоне в обычных, неспециализированных СМИ встречаются все реже. Это верный признак того, что озоносфера [17]Озоносфера – часть атмосферы на высоте 10–50 км, в которой в значительном количестве присутствует озон.
«выздоравливает». А раз так: сенсация сделала свое дело – сенсация может уходить.

 

Рядовые парникового фронта: оксид азота(I), фреоны и другие

Итак, мы познакомились с «тремя китами», на которых более чем на 85 % зиждется феномен усиления парникового эффекта в ХХ столетии, – углекислым газом, метаном и озоном. Среди остальных отметим вклады в это усиление, вносимые оксидом азота(I) и солидной группой ХФУ, – меньшие, но соизмеримые и примерно равные вкладу озона.

Главными источниками оксида азота(I), как и метана, являются разнообразные бактерии, способные в анаэробных условиях (без кислорода) вырабатывать N2O, используя ионы NH4+ и NO3-. Другим важным источником оксида азота(I) является Мировой океан, он содержит примерно столько же N2O, сколько и атмосфера. Поток N2O в атмосферу из почвы и океана оценивается (с большой погрешностью) как 70 и 30 % соответственно и составляет 4,2–12,9 Мт/год. Человек также не является сторонним наблюдателем в этом процессе: его лепта составляет 2,1–6,3 Мт/год оксида азота(I) (т. е. около трети). Она складывается из N2O, образующегося в результате использования сельскохозяйственных удобрений, обработки почвы, сжигания топлива и биомассы, при производстве кислот и нейлона в химической промышленности. Кроме того, N2O выделяется в ходе ирригации и из сточных вод. О совсем новых источниках оксида азота(I) сообщает уже знакомый нам нобелевский лауреат П. Крутцен:

приблизительно 3 % от глобального источника N 2 O составляет его поток с поверхности бассейнов рыборазводных заводов, широко распространенных в Западной Европе и Юго-Восточной Азии; еще около 0,1 Мт N 2 O/год попадает в атмосферу в результате таяния вечной мерзлоты – маленький, но весьма «перспективный» в свете глобального потепления источник.

В тропосфере N2O образуется и разрушается в реакциях с одним и тем же реагентом – возбужденным атомарным кислородом O(1D). В стратосфере же он разрушается под действием света; интенсивность этого процесса оценивается примерно в 12 Мт/год (с разбросом 9–17 Мт/год). Концентрация оксида азота(I) в атмосфере неуклонно возрастает с начала индустриального периода: если в середине ХХ в. она составляла 265 ppb, то к концу первого десятилетия XXI в. ее величина достигла 324 ppb.

В настоящее время, из-за отсутствия ограничений на использование N 2 O, оксид азота(I) стал основным озоноразрушающим газом, сменив в этой малопочетной роли ограниченные Монреальским протоколом ХФУ.

Многочисленные ХФУ использовались и используются в качестве хладагентов в холодильных установках (ХФУ-11, -12, -115, -22, -123, -125, -134а), распылителей в аэрозольных упаковках (ХФУ-11, -12, -22, -124, -134а), пенообразователей (ХФУ-11, -12, -114, -22, -123, -124, -141b, – 142b, – 152a), растворителей (ХФУ-113, -123, -141b, – 142b). Особая роль у бромсодержащих химикатов (галоны-1211 и -1301) – они были до последнего времени незаменимы при тушении пожаров.

Чтобы получить представление о «парниковой активности» вышеперечисленных газов, приведем фрагменты таблицы значений потенциала глобального потепления (о нем упоминалось ранее).

Таблица 2. Потенциалы глобального потепления (ПГП) некоторых газов, присутствующих в воздухе (Источник: Отчет 2007 г. Межправительственной группы экспертов по изменению климата)

Каждому газу соответствуют три значения потенциала глобального потепления для разных периодов времени. Это связано с тем, что газы имеют неодинаковое «время жизни», например для CO2 и N2O оно составляет ~100 и 114 лет, для метана – в среднем около 11 лет, а для фреона-22 – 12 лет. Понятно, что за 20 лет молекулы метана, а также фреона-22 полностью выработают свой «ресурс», в то время как молекулы CO2 и N2O продолжат «развивать успех» и в последующие 80–90 лет. Таким образом, количества поглощенной, к примеру молекулой CO2, длинноволновой радиации за 20 и 100 лет будут заметно различаться. Поэтому, чтобы оценить вклады разных молекул в кратко-, средне– и долгосрочной перспективе, принято рассматривать значения потенциала глобального потепления, соответствующие периодам в 20, 100 и 500 лет.

Как видно из таблицы 2, потенциалы глобального потепления рукотворных ХФУ в сотни, тысячи, а иногда и десятки тысяч раз превосходят потенциал «эталонного» CO 2 . Тем не менее суммарный их вклад в усиление парникового эффекта значительно уступает вкладу углекислого газа. Объяснение этому то же, что и в случае с метаном: менее «вредных» молекул CO 2 в атмосфере в миллионы и миллиарды раз больше, чем молекул ХФУ. Если вспомнить о том, что ежегодный прирост производства, а значит в конечном итоге и выбросов отдельных ХФУ, достигал 10–15 %, и концентрация ХФУ в атмосфере удваивалась каждые 6–8 лет, то настигнуть лидера во вполне обозримом будущем им помешали только ограничения Монреальского протокола.

И еще несколько слов о двух атмосферных долгожителях.

Первый из них гексафторид серы SF6 («электрический газ»), широко используемый в качестве изолятора и теплоносителя в высоковольтной электронике, в электронной и металлургической промышленности, а также в качестве хладагента. Второй – тетрафторметан CF4 (фреон -14) тоже применяется в микроэлектронике и иногда как низкотемпературный хладагент. Из-за химической пассивности оба имеют очень большое «время жизни», и при наличии высоких значений ПГП (см. табл. 2) в течение всего «времени жизни» (т. е. 3200 и 50 000 лет для SF6 и CF4, соответственно) будут способствовать глобальному потеплению.

Джонатан Свифт однажды заметил: «Причина великих событий, как и источники великих рек, часто бывет очень мала». Казалось бы, небольшое (в сравнении с мощью природных стихий) усиление парникового эффекта, вызванное хозяйственной деятельностью человека, тем не менее ощутимо сказывается на климате нашей планеты.

Однако пора обсудить как «распоряжается» климатическая система поступающей от Солнца радиацией.

 

Что имеем, не храним: альбедо

Солнце нам не в чем упрекнуть: оно регулярно, без перекуров и реплик типа «подождете, вас много, а я одно!», доставляет к верхней границе атмосферы в течение суток в среднем 343 Вт/м2 энергии. Далее атмосфера и облака (в лучших традициях посредников) «отщипывают» свою долю за транзит. Но бережно ли сохраняется то, что все-таки дошло до «адресата» – поверхности Земли? Конечно, нет. Часть энергии, совершившей неблизкое путешествие от Солнца до Земли (149,6 миллионов километров), сразу же получает от ворот поворот в соответствии с законами физики: чем светлее поверхность, тем лучше она отражает падающий на нее свет. Для того чтобы численно охарактеризовать это явление используют соотношение отраженной и пришедшей солнечной радиации, называемое альбедо (от латинского albedo – «белизна»). Очевидно, что оно всегда меньше 100 %.

Альбедо характеризует отражательную способность поверхности любых объектов, с которыми взаимодействует излучение: суши и океана, облаков из капель и ледяных кристаллов, аэрозолей, часто состоящих из твердого ядра во влажной оболочке и пр. Для разных видов излучения альбедо неодинаково: одна и та же поверхность может, например, отражать коротковолновое излучение, но поглощать и излучать длинноволновое.

Зависит альбедо от разновидности грунта, типа и плотности растительности, вида покрытия улиц и мостовых в городах и пр.

Таблица с перечислением величин альбедо для различных типов поверхности занимает в специальных справочниках несколько страниц убористым шрифтом. Не желая обременять читателя излишними подробностями, приведем лишь ее фрагменты, позволяющие судить о пределах изменения альбедо земной поверхности.

Альбедо водной поверхности для прямой радиации зависит от того, под каким углом на нее падают солнечные лучи. Вертикальные лучи проникают в воду глубоко, и она усваивает их тепло. Наклонные лучи отражаются от воды, как от зеркала, и ее не нагревают. Поэтому альбедо водной поверхности при высоте Солнца 90° равно 2 %, при высоте Солнца 20°–78 %.

Таблица 3. Альбедо (А) некоторых естественных поверхностей

Для того чтобы проиллюстрировать значимость альбедо снежного и ледяного покрова, упомянем о двух гипотетических ситуациях, рассмотренных выдающимся российским климатологом М. И. Будыко (1920–2001). В первой из них он предположил, что вся Земля покрыта льдом и снегом и при этом отсутствует облачность. В такой ситуации, по его расчетам, температура поверхности снизилась бы на 100 °C! При реализации второй гипотетической ситуации полного отсутствия снежно-ледяного покрова в Арктике арктическая температура должна увеличиться на 40 °C!

Интересуясь количеством энергии, полученным, к примеру, пустыней с относительно однородной поверхностью, мы можем воспользоваться таблицей. Однако если необходимо оценить, сколько энергии поглощено поверхностью, например, Краснодарского края, придется прежде разбить его площадь на сектора, в каждом из которых преобладает свой тип поверхности, а затем просуммировать приток энергии по всем секторам. Несомненно, итог таких вычислений критически зависим от смены времен года, поскольку альбедо одного и того же участка Земли заметно меняется в период листопада, с появлением и сходом снежного покрова и т. д., да и приток солнечной энергии в разные сезоны неодинаков.

Между тем глобальное альбедо, а значит, и общее количество солнечной энергии, поглощаемой поверхностью земного шара, подвержены куда меньшим изменениям.

Причиной тому несколько обстоятельств. Во-первых, семь десятых поверхности Земли покрыто водой, а площадь периодически замерзающих акваторий невелика. Во-вторых, зоны, в которых «лето круглый год», или, напротив, «вечная зима», занимают изрядную часть суши. Ярко выраженная смена времен года имеет место только в умеренных широтах обоих полушарий (при этом вклад в изменение радиационного баланса, главным образом, вносит Северное, так как площадь суши в средних широтах Южного полушария много меньше).

Как следствие, принято считать среднегодовое глобальное альбедо земной поверхности равным 29 %.

Казалось бы, такой определенности можно только порадоваться, но, увы, на каждого Мальчиша-Кибальчиша находится свой Мальчиш-Плохиш. В нашем случае эту роль исполняет облачность. Облака, встречая солнечную энергию на «подходе» к Земле, поглощают ее, отражают обратно вверх и рассеивают во всех направлениях. Оценить их альбедо очень непросто из-за обилия существующих нюансов: имеют значение плотность и химический состав облаков, их толщина и однородность, высота над уровнем Земли и влагосодержание. Добавляет трудностей и то, что облака находятся в постоянном движении как в прямом, так и в переносном (вследствие микромасштабных процессов, непрерывно меняются их структура, влагозапас и состав) смыслах. Далеко не все из перечисленного можно определить непосредственно с Земли. И снова в этой связи отметим неоценимую помощь метеоспутников, но даже они не в состоянии обеспечить сколь-нибудь полного решения этой проблемы.

Проводя аналогию со спортом, можно сравнить солнечную радиацию с бросками по хоккейным воротам, поверхность Земли – с вратарем, а облака – с защитниками. Часть бросков отражает защита, часть – вратарь. Но большинство бросков реализуются: «вратарь» парирует лишь 2–4 броска из десяти. Лишь снег – «вратарь» почти «непробиваемый», «отбивающий 8–9 шайб» из каждого десятка.

Облака, особенно состоящие из жидких капель, очень интенсивно поглощают длинноволновое излучение с поверхности суши и океана и переизлучают его вверх и вниз. Поэтому облачные ночи всегда заметно теплее ясных: в первом случае «облачное одеяло» возвращает тепло к земле, а во втором тепло беспрепятственно уходит в космос.

При обсуждении альбедо поверхности не обойтись без упоминания еще об одном важном аспекте – антропогенном. Ни Солнце, ни траектории небесных тел, ни океанские глубины не подвластны человеку. Иное дело просторы поверхности родной планеты. Вырубка лесов, распашка земель, создание водохранилищ, возделывание рисовых плантаций (чеков) и т. п. – тут есть где разгуляться.

Всякий раз подобное вмешательство сопровождается изменением альбедо. Могли ли эти изменения стать «спусковым крючком» процесса глобального потепления ХХ века? Оценки показывают: нет, не могли. Любой эпизод, связанный с культивацией земель, имеет очень ограниченный пространственный масштаб. Он, конечно, сказывается на альбедо, а с ним и на микроклимате данной местности (и, возможно, соседних регионов), но не более того.

Значительно сложнее оценить отклик на каждый такой эпизод круговорота воды. С изменением альбедо (особенно при строительстве водохранилищ) меняется локальный режим испарения, что неизбежно сказывается на образовании облаков. Появившиеся в последние годы исследования, базирующиеся на анализе спутниковых данных, показывают, что в среднем по земному шару и количество облаков, и их радиационные свойства меняются мало.

Следовательно, можно заключить, что изменения альбедо способны несколько перестроить привычное распределение притока солнечной радиации в различных географических зонах, но не отразятся на общем количестве солнечной энергии, поглощаемой системой «Земля – атмосфера».

Что же получается? Ввиду неизменности альбедо, приход энергии от Солнца к Земле остался стабильным. Но ведь на радиационный баланс системы «Земля – атмосфера» оказывают также влияние твердые и жидкие частицы, постоянно присутствующие в атмосферном воздухе…

 

Две стороны одной медали: роль атмосферных аэрозолей в формировании климата

Итак, список важных факторов, сказывающихся на формировании климата, еще не исчерпан. Существенное влияние на климат оказывают атмосферные аэрозоли – совокупность находящихся в воздухе во взвешенном состоянии твердых или жидких частиц, размер которых составляет от 0,01 до 10 мкм. Значительная их часть – это частицы, содержащие серу. Обычно они образуются во влажной атмосфере из газов, присутствующих в выбросах электростанций и металлургических заводов, сжигающих ископаемое топливо – уголь, нефть, мазут. В течение нескольких дней или недель эти аэрозоли проникают в облачные частицы и выпадают на Землю с осадками. За это время они не успевают значительно удалиться от своих источников, расположенных в промышленных и густонаселенных регионах, в основном в умеренных и высоких северных широтах. Другую часть аэрозолей составляют минеральные частицы и морские соли, попадающие в атмосферу с поверхности суши и океана.

Аэрозоли (кроме сажи) рассеивают и ослабляют потоки излучения Солнца и этим производят «антипарниковый» эффект – второй по значимости в списке климатоформирующих глобальных факторов.

Этот «антипарниковый» эффект многократно усиливается после крупных извержений вулканов. Согласно статистике, их на Земле 1343 (в том числе, подводных), время от времени они извергаются, однако мощность подавляющего большинства относительно невелика.

Правда, в Сальвадоре есть вулкан Исалько, извергающийся почти постоянно, за что получил прозвище «маяк Центральной Америки».

Крупные извержения отличаются не только большой массой выбрасываемых газов и аэрозолей, но и высотой, на которую они выбрасываются.

В то время как продукты мелких извержений остаются в тропосфере и довольно быстро ее покидают, оседая на поверхности Земли, продукты крупных извержений вулканов достигают стратосферы и задерживаются там на несколько лет, создавая «аэрозольный экран».

В состав вулканических продуктов входят, в частности, вулканический пепел и газ – диоксид серы (SO2). Пепел отчасти поглощает коротко– и длинноволновую радиацию и способствует более интенсивному облакообразованию из-за конденсации водяных паров на поверхности мельчайших вулканических частиц, в том числе и частиц самого пепла. Диоксид серы в присутствии паров воды окисляется до серной кислоты (H2SO4), капельки последней образуют взвесь, которая может находиться в атмосфере очень долгое время.

«Аэрозольный экран» на время своего существования сокращает количество солнечной радиации, достигающей поверхности Земли, но одновременно, с ростом концентрации парниковых газов, увеличивается и парниковый эффект. Все же действие «экрана» пересиливает конкурента, и на период его существования наблюдается некоторое снижение температуры. Увы, с разрушением «экрана» «таможня снова дает добро» усилению потока коротковолновой радиации к земной поверхности, и происходит скачок температуры.

Судить о масштабах воздействия вулканов на климат нашей планеты можно на примере филиппинского вулкана Пинатубо. Его извержение в 1991 г. – самое мощное за последние полвека – принесло атмосфере около 20 миллионов тонн диоксида серы, а среднеглобальная температура на следующий год снизилась приблизительно на полградуса. Для сравнения: парализовавший в 2010 г. авиаперевозки над Европой исландский «триумф логопеда» Эйяфьядлайокудль «обогатил» тропосферу «лишь» 15 миллионами тонн пепла.

Тем не менее не все аэрозоли можно отнести к «борцам с глобальным потеплением». Противоположную роль играют частицы черного углерода (сажи) и аэрозоли органического происхождения (летучие органические соединения растительного происхождения, по-англ. Volatile Organic Compounds – VOC). Они не столько рассеивают, сколько поглощают солнечную радиацию, а нагреваясь, излучают к поверхности и в космос уже тепловую радиацию. Вместе с озоном в тропосфере и водяным паром в нагретом воздухе такие аэрозоли образуют короткоживущие субстанции, создающие дополнительный парниковый эффект. Появление сажевых частиц в атмосфере обусловлено работой транспорта, лесными пожарами и сжиганием органического топлива; они могут переноситься на значительные расстояния, прежде чем будут удалены из воздуха осадками.

В Арктическом секторе Евразии весной сажевые частицы образуют так называемую арктическую дымку, часто наблюдаемую на фоне низкого Солнца в отсутствие облаков. Выпадая на снег и лед, сажа заметно снижает их альбедо. Все это способствует ускорению их таяния и общему потеплению в Арктике.

Из сказанного следует, что воздействие аэрозолей на климат неодинаково. Оно зависит от их состава и местонахождения в атмосфере (в тропосфере или стратосфере) и на земной поверхности.

Но в целом это воздействие ограниченного масштаба как в пространстве, так и во времени, а потому не является решающим фактором в глобальном потеплении.

Пора подвести некоторые итоги.

 

«Яблоко раздора»: полемика вокруг климата

Итак, из всего вышесказанного вытекает, что «руководящая и направляющая» роль в глобальном потеплении ХХ века принадлежит самому человеку, обусловившему своей деятельностью усиление парникового эффекта (в отчете 2007 г. Межправительственной группы экспертов по изменению климата говорится, что этот факт установлен с 90 %-й вероятностью). Данный вывод разделяют большинство специалистов, но далеко не все: кто-то отрицает сам факт глобального потепления, кто-то – его антропогенные корни. Дискуссии в защиту и в опровержение такой точки зрения можно посвятить отдельную книгу, но наша задача значительно скромнее: познакомить читателя с современными представлениями о климате Земли. Поэтому мы ограничимся некоторыми общими соображениями и замечаниями.

Главная причина всех разногласий, бесспорно, кроется в чрезвычайной сложности климатической системы и, как следствие, – недостаточности наших знаний о ней, особенно в области взаимодействия ее отдельных частей.

Климатология как наука строится исключительно на данных наблюдений. Даже самые длинные ряды климатических параметров (прежде всего, температуры) охватывают период в лет 150 или немногим более. Эти ряды, конечно же, слишком коротки, чтобы по ним с уверенностью судить о состоянии климата Земли за продолжительное время. В такой ситуации открываются две возможности. Либо сидеть и ждать в течение нескольких столетий, пока длина ряда станет достаточной (как говорят статистики, репрезентативной) для того, чтобы делать научно обоснованные выводы (надеясь при этом, что, несмотря на текущие изменения, климат останется «совместимым с жизнью»…). Либо, базируясь на имеющемся недостаточном материале, выдвигать гипотезы, подтверждать или опровергать их и не без ошибок и отступлений выходить на новый уровень познания, в точном соответствии с притчей о двух попавших в молоко лягушках, в которой одна, покорившись судьбе, «опустила лапы» и пошла ко дну, а вторая отчаянно била лапками, в результате чего сбила молоко в масло и спаслась.

И сторонники, и противники глобального потепления основываются на одних и тех же рядах наблюдений. Почему? Да потому, что нет других! При этом противники глобального потепления настаивают на «ревизии» имеющихся рядов. Многократно приходилось сталкиваться с их публичным недоверием к части имеющихся данных мониторинга. Аргументация в таких случаях почти всегда одна: плохое качество измерительной аппаратуры, отсутствие должной выучки обслуживающего ее персонала, изменение условий в окрестностях метеостанций (сельскохозяйственное освоение близлежащих земель, урбанизация и пр.). Бесспорно, ошибки измерений случаются и действовавшие век и даже несколько десятилетий назад приборы уступали в точности современным. Однако отказаться от полученной с их помощью информации аналогично закрытию всех поселковых больниц на том основании, что в них нет такой, как в столице, аппаратуры и врачей уровня Л. Рошаля. И где гарантия, что через тридцать – сорок лет современные данные не будут отвергаться на том же основании? Иногда довод формулируется еще проще: «Эти данные не вызывают у меня доверия!» (помните реплику булгаковского кота Бегемота: «Мне это отделение известно! Там кому попало выдают паспорта! А я б, например, не выдал такому, как вы! Нипочем не выдал бы!»).

Столь вольное обращение с без того короткими рядами наблюдений вовсе не так безобидно, как может показаться. Легко представить, как изменится результат примера измерения скоростей ветра (см. табличку на с. 28), если выбросить замеры № 4 и № 5, посчитав их нереально высокими, или оставить лишь отрицательные значения, поскольку положительные «не вызывают доверия», и к каким взаимоисключающим выводам в этом случае мы придем!

Антропогенное воздействие, как главная причина наблюдаемого потепления, также принимается не всеми. И вот почему.

Во-первых, мощь природных стихий не сопоставима с ничтожными возможностями человечества влиять на них (упомянутое соотношение энергии, вырабатываемой человечеством за год, и приходящей от Солнца, – лишнее тому подтверждение). А раз так, трудно представить, что людские деяния стали той каплей, которая переполнила чашу «стабильного» климата, и мысли устремляются в поисках причины куда более весомой. Где взять таковую? Геологи находят ее в недрах Земли, астрономы – в космосе и т. д.

Во-вторых, наблюдаемые изменения климата – результат совместных «усилий» разнообразных и разномасштабных природных явлений, функционирования их неисчислимых положительных и отрицательных обратных связей (о существовании некоторых мы, увы, пока даже не догадываемся). Многие из них усиливают или нейтрализуют действие парникового эффекта в том или ином регионе или в тот или иной момент, но при этом доминирующий вклад в глобальное потепление остается за ним. Как следствие, нет и быть не может теории, объясняющей абсолютно все данные мониторинга. А потому находятся факты, необъяснимые сегодня с позиций теории антропогенного потепления климата. Это с удовольствием подмечается авторами альтернативных теорий и гипотез, хотя подобный недостаток присущ их детищам в куда большей степени. Но увлеченные идеей люди, увы, всегда субъективны.

В-третьих, существует вненаучная составляющая. Факт признания значимости антропогенного влияния на климат предполагает в качестве логического продолжения принятие адекватных контрмер. Но любые ограничения и реформы порождают массу неудобств, требуют энергичных действий и больших вложений. Куда спокойнее существовать в привычном неизменном режиме! А для этого надо подвергнуть критике основы теории, несущей угрозу тихому благополучию. Было бы желание, а исполнители найдутся. Нынешняя ситуация очень схожа с той, что предшествовала подписанию и вступлению в силу Монреальского протокола. Тогда, в свете нежелательности закрытия отлаженного производства одних ХФУ и разработки и внедрения технологий по выпуску других, была организована кампания, ставящая под сомнение причастность ХФУ к возникновению «озоновой дыры». Сторонников «фреонной теории» тут же записали в «агенты Дюпона» («Дюпон де Немур», Du Pont de Nemours – американская химическая корпорация, обеспечивавшая своей продукцией значительную часть потребностей мировой экономики в ХФУ, оперативно перестроившаяся на выпуск «дружественных озону» ХФУ), обвинив «мировой империализм» в удушении советской холодильной промышленности и атаке на ее конкурентоспособность.

Приведенное ранее сравнение последствий истощения озонового слоя с бомбой замедленного действия в полной мере применимо и к последствиям глобального потепления. Именно отложенность «исполнения приговора» позволяет до поры до времени оппонентам антропогенной версии вальяжно защищать «суверенное право» бесконтрольного загрязнения окружающей среды (в том числе и парниковыми газами), оправдывая его неизбежной платой за цивилизацию. Однако еще Жан Жак Руссо утверждал, что «закон необходимости с ранней поры учит человека делать то, что ему не нравится, дабы предотвратить зло, которое еще больше пришлось бы ему не по вкусу».

Итак, можно заключить, что изменения климатической системы во времени и пространстве происходят при совместном действии антропогенных (т. е. возникших в результате различных аспектов человеческой деятельности) и естественных климатоформирующих факторов.

На рис. 15 цв. вклейки представлены графики изменений с широтой среднегодовых потоков излучения – солнечного, поглощенного системой «Земля – атмосфера», и длинноволнового теплового, уходящего в космос с верхней границы атмосферы, а также разность этих потоков, называемая радиационным балансом этой системы. Видно, что в зоне примерно 40° с. ш. – 40° ю. ш. радиационный баланс в среднем положителен, т. е. приход энергии от Солнца выше, чем ее уход с длинноволновой радиацией, а вне данной зоны среднегодовой радиационный баланс отрицателен. При этом в зонах 15–70° обоих полушарий радиационный баланс меняет знак с плюса летом на минус зимой, а полярные зоны выше 70° постоянно имеют отрицательный баланс.

Такая неоднородность распределения радиации порождает перенос тепла (энергии) от тропиков к полюсам (меридиональная циркуляция), способствующий пространственному выравниванию радиационного баланса. Этот перенос осуществляется движениями воздуха в атмосфере и воды в океанах, главным образом, – в Атлантическом и Тихом. При этом вклады атмосферы и океанов в перенос примерно одинаковы. В то же время на движущиеся массы воздуха и воды на вращающейся Земле действует сила Кориолиса, которая направляет эти массы вдоль кругов широты, образуя зональные потоки (зональная циркуляция) воздуха с запада на восток в тропосфере вне тропиков.

Конечно же, перенос воздуха в атмосфере происходит не только вдоль параллелей и меридианов. В нижней части тропической тропосферы (до уровня 8–12 км) существует система пассатов – постоянных ветров (в англ. языке они имеют «говорящее» название – «торговые» (trade winds)), дующих с северо-востока на юго-запад в северном и с юговостока на северо-запад в южном полушариях. Действующие также в тропической зоне муссоны, особенно развитые над южной Азией, представляют собой устойчивые сезонные ветры, меняющие направление на противоположное при переходе от зимы к лету или обратно. В зональных потоках вне тропиков существуют так называемые планетарные волны (волны Россби), длина и амплитуда которых в атмосфере достигают нескольких тысяч километров, образующиеся и разрушающиеся за несколько суток (иногда недель). Картину дополняют и усложняют ветры «местного значения», такие, например, как мистраль – северный или северо-западный холодный ветер, дующий с гор в южной Франции, или байкальский баргузин.

Вообще именно «географические» факторы зачастую формируют региональный и местный климат. На распределение температуры в пространстве, ее сезонные изменения и на формирование осадков сильно влияет земной рельеф, в первую очередь расположение материков и океанов, крупные горные системы и т. д.

Например, воздушная масса, несущая много влаги, испарившейся с поверхности океана, выносится зональным потоком на материк и поднимается по склону горного хребта. Водяной пар в этой массе, поднимаясь, охлаждается, конденсируется и выпадает в виде осадков. По мере удаления от океана (и морей) осадков выпадает меньше, климат становится более «континентальным», сухим с холодной зимой и жарким летом.

В итоге взаимодействия всех этих естественных факторов получается наблюдаемая картина климата. Антропогенные факторы, вызывающие изменения климата, воздействуют в основном на описанный выше радиационный режим атмосферы или на режим испарения с подстилающей поверхности.

Формирующие глобальный и региональный климат множество естественных и антропогенных факторов образуют разветвленную систему их взаимодействий с петлями положительных и отрицательных обратных связей.

Одной из самых сильных таких связей является связь «температура – альбедо»: при повышении температуры нижней атмосферы тают снега и льды, в результате чего альбедо уменьшается, а значит, растет доля солнечного излучения, поглощенного поверхностью; она нагревается и увеличивает температуру нижней атмосферы, образуя таким образом положительную обратную связь. Эта связь играет очень важную роль в современном глобальном потеплении климата.

Некоторые обратные связи в климатических факторах ведут себя не одинаково при разных условиях: так, потепление нижней атмосферы, увеличение ее влагосодержания приводят к росту балла (количества) облаков. Если это плотная (слоистая) облачность, она отражает солнечную радиацию и меньшее количество ее энергии поступает на подстилающую поверхность, которая соответственно охлаждается, – имеет место отрицательная обратная связь. Однако при росте балла облаков верхнего яруса, которые пропускают солнечную радиацию почти без задержки, но хорошо поглощают и переизлучают вниз и вверх тепловую, длинноволновую радиацию, поток суммарного излучения к подстилающей поверхности увеличивается, она разогревается, и имеет место положительная обратная связь.

Итак, круг процессов, способных зримо повлиять на климат Земли, очерчен. Процессы эти очень разные по своей природе, масштабам и степени воздействия на климат. Чтобы каким-то образом их систематизировать, выстроив в порядке значимости, нужен универсальный критерий. Требования к такому критерию очевидны. Он должен быть способным «приводить к единому знаменателю» самые разнородные явления и процессы. В то же время отличаться простотой и наглядностью, поскольку пользоваться им предстоит не только специалистам, но и всем заинтересованным лицам: политикам, бизнесменам, экономистам, журналистам. И все это должно быть сосредоточено «в одном флаконе», то есть в одной характеристике, имеющей ясный физический смысл. За последние 20 лет на эту роль пробовался добрый десяток индексов. Ни один из них, надо признать, до конца не удовлетворяет всем вышеперечисленным условиям, хотя каждый имеет свои преимущества перед «соперниками» и бывает удобен в том или ином направлении исследований. И все же в этом конкурсе побеждает радиационный форсинг (от англ. forcing – воздействие) – чаще других цитируемый в научной периодике и, следовательно, самый популярный индекс.

Радиационный форсинг определяется как

Δ F= Fвозм – Fневозм,

где F – разность потоков коротковолнового и длинноволнового излучения на уровне тропопаузы – границы раздела

тропосферы и стратосферы; F демонстрирует, насколько нарушен баланс между солнечной и уходящей от земной поверхности радиацией на этом уровне (невязку). Расчеты показывают, что F чутко реагирует на различные природные явления и катаклизмы, будь то крупные извержения вулканов или лесные пожары, усиление солнечной активности или массовый выброс в атмосферу парникового газа.

Радиационный форсинг – это разность величины F в возмущенном (Fвозм) и невозмущенном (Fневозм) состояниях. Например, для случая с вулканом в качестве Fневозм мы должны взять невязку баланса радиации в момент, предшествовавший извержению, а в качестве Fвозм – аналогичную невязку, но после того, как оно произошло. По существу радиационный форсинг представляет собой аналог частной производной в математике.

Чтобы дать представление читателю о значимости различных явлений для изменения климата, далее приведена таблица 4, в которой содержатся оценки значений радиационного форсинга, обусловленного отдельными климатоформирующими факторами, причем все они, за исключением солнечной радиации, относятся к разряду антропогенных. В последнем столбце указана суммарная оценка их совокупного действия.

Данные, представленные в таблице 4, предметно (в конкретных цифрах) подтверждают некоторые высказанные ранее положения.

А именно: превалирование углекислого газа над остальными парниковыми газами, значительный вклад атмосферных аэрозолей, а также разное по знаку влияние тропосферного и стратосферного озона на парниковый эффект.

Таблица 4. Оценки величин радиационного форсинга (Вт/м2) некоторых климатоформирующих факторов на 2005 г. (относительно «доиндустриального» периода – 1750 г.)*

* Концентрации CO2, СН4, N2O измерены (взяты) из ледовых кернов, ХФУ тогда не было (они почти все антропогенного происхождения и начали массово выпускаться в 1930-е), озон – модельный, остальное – либо косвенные, либо модельные оценки

Итак, мы уже имеем каркас здания наших знаний о явлениях и процессах, обеспечивающих современное состояние климатической системы. Здания, которому предстоят отделочные работы, а не исключено, и какая-нибудь реконструкция. Но неизменно на всех этапах, от закладки здания до «доведения его до ума», строительным материалом – «кирпичиками» – всегда являлись и будут являться многочисленные и разноплановые данные климатического мониторинга.