В этой главе мы рассмотрим три произведения трех великих художников XVI–XVII веков. Это Доменикос Теотокопулос, известный как Эль Греко, Франсиско де Сурбаран и Диего Веласкес.
Эль Греко и четвертое измерение
Доменикос Теотокопулос, известный как Эль Греко, создал картину «Крещение Христа» для коллегии доньи Марии де Арагон в Мадриде приблизительно в 1598 году. Эта картина имеет большие размеры (350 х 144 см) и очевидно делится на две части. В нижней части Иоанн Креститель льет на голову Иисуса воду из Иордана; в верхней части Бог Отец, окруженный ангелами, архангелами и херувимами, любуется крещением Христа с небес. Над головой Христа изображена красная мантия как символ жертвы и голубь с распростертыми крыльями, соединяющий верхнюю и нижнюю части картины. После долгих перипетий картина попала в мадридский музей Прадо, где хранится в настоящее время и является частью постоянной коллекции музея.
В 1596 году Эль Греко получил заказ на роспись монастыря и семинарии Энкарнасьон, который в течение двухсот лет своего существования был больше известен по имени своей покровительницы доньи Марии де Кордоба и Арагон, служившей при дворе королевы Анны Австрийской (1549–1580), супруги Филиппа II, и инфанты Изабеллы Клары Евгении (1566–1633) , дочери Филиппа II от брака с Елизаветой Валуа. Коллегия располагалась на северо-западе города близ королевской резиденции Реаль Алькасар, неподалеку от современного здания Сената.
Донья Мария де Арагон была покровительницей монастыря, но руководителем работ по его постройке был другой выдающийся деятель — монах Алонсо де Ороско (1500–1591) . Этот писатель-мистик был одним из величайших интеллектуалов периода правления Филиппа II. При его беатификации в качестве свидетелей выступали инфанта Изабелла Клара Евгения и писатели Лопе де Вега и Франсиско де Кеведо. Алонсо де Ороско был причислен к лику святых папой Иоанном Павлом II в 2002 году.
Эль Греко . «Крещение Христа» (ок. 1598). Музей Прадо, Мадрид.
Возможно, именно Алонсо де Ороско вдохновил Эль Греко на создание его картин. Работа имела большую важность ввиду особой роли коллегии и ее местоположения, а также из-за объема работ и их стоимости. Эль Греко получил крупную сумму денег за роспись всего алтаря, по всей видимости, включавшую шесть больших картин, а также за работу над опорами для картин, которые не сохранились. Возможно, он также был автором нескольких скульптур и седьмой, меньшей картины, располагавшейся в центре над остальными, которая также не сохранилась.
Монастырь был закрыт в 1809 году указом короля Испании Жозефа Бонапарта. В 1814 году алтарь разобрали, в здании монастыря был размещен зал суда, а изначально прямоугольное здание с апсидой было перестроено и приняло форму прямоугольника, дополненного с меньших сторон полукруглыми помещениями. В течение недолгого времени здание использовалось как церковь, однако алтарь Эль Греко не был возвращен на прежнее место. Его элементы были конфискованы и в итоге стали частью коллекции музея Прадо, за исключением картины под названием «Поклонение пастухов», которая хранится в Национальном музее искусств Румынии в Бухаресте.
ль Греко работал над алтарем с 1596 по 1600 год в своей мастерской в Толедо, законченные произведения поочередно перевозились в здание монастыря. Шесть сохранившихся картин, изображающих распространенные сюжеты христианской иконописи, являются абсолютно передовыми для своего времени. Три картины нижней части алтаря делятся на две части, где изображается земное и божественное (разумеется, земное расположено внизу, божественное — вверху). В трех случаях композиция напоминает песочные часы, а ее центр совпадает с центром картинной плоскости. И в «Благовещении», и в «Крещении Христа» в центре изображен Святой Дух в виде голубя, который с композиционной точки зрения является связующим элементом между человеческим и божественным.
Коллегия доньи Марии де Арагон, Мадрид.
Возможное исходное расположение картин Эль Греко на алтаре Коллегии Марии де Арагон.
О шестиграннике и тессеракте
Чаще других многогранников на школьных досках рисуют шестигранник, или куб. Как правило, на уроках математики его обычно изображают так, как показано на рис. 1 на следующей странице, то есть в виде двух квадратов, соединенных четырьмя линиями, один из которых смещен относительно другого. Это «порождающее» представление куба. Квадрат «порождается» движением отрезка в направлении, перпендикулярном ему, на расстояние, равное длине отрезка. Аналогично можно получить куб движением квадрата в направлении, перпендикулярном ему, на расстояние, равное длине отрезка, «породившего» квадрат. Отрезок можно считать одномерным квадратом, и тогда он будет «порождаться» движением точки на определенное расстояние. Обобщив это представление, можно вести речь о тессеракте, или четырехмерном гиперкубе, который порождается перемещением куба в измерение, перпендикулярное традиционным трем измерениям, на расстояние, равное длине стороны квадрата. Однако представление куба в перспективе Кавалье (см. рис. 1) является далеко не единственным. На рис. 2 приведено изображение куба в центральной конической перспективе. Именно так мы будем видеть куб, если приблизимся к одной из его граней (которая считается прозрачной) достаточно близко. На рис. 3 изображен куб в изометрической перспективе. Три грани, сходящиеся в одной вершине (рис. 4), на этом изображении куба выглядят как ромбы.
Аналогичным образом можно изобразить тессеракт, или гиперкуб. На рис. 5 представлено трехмерное изображение тессеракта в центральной конической перспективе. На рис. 6 приведено его изображение в изометрической проекции. Все грани гиперкуба имеют форму ромбов. Внешняя часть фигуры состоит всего из 12 граней, так как остальные оказываются спрятанными внутри. Таким образом получается ромбододекаэдр. Подобная фигура изображена на рис. 3, где видны всего три из шести граней куба, а остальные три оказываются по другую сторону листа бумаги, на котором они изображены. В случае куба (рис. 4) в одной вершине сходятся три квадратные грани, а в случае тессеракта в одной вершине сходятся четыре куба (рис. 7). Наконец, на рис. 8 предпринята попытка изобразить два перпендикулярных между собой куба, которые имеют общую грань, аналогично тому, как две смежных грани куба перпендикулярны между собой и имеют общее ребро.
Так как страницы этой книги плоские, то вы можете видеть лишь 20-проекции трехмерных проекций четырехмерного куба. Однако это не проблема: если читатель хочет увидеть эти проекции в 3D, ему всего лишь потребуется запастись терпением, скопировать следующие развертки и склеить их. Так он сможет увидеть проекции тессеракта в 3D, которые можно представить на страницах этой книги только в двух измерениях. Склейка разверток также поможет понять «порождающий» процесс перехода в новое измерение.
Развертка трехмерной центральной конической проекции четырехмерного гиперкуба.
(источник: FMC)
Развертка трехмерной изометрической проекции тессеракта.
(источник: FMC)
Читатель может спросить, что общего у кубов и тессерактов с картиной «Крещение Христа» Эль Греко. Далее мы дадим несколько метафорический, но от этого не менее математический ответ на этот вопрос.
Перефразируя «Рукопись, найденную в кармане» Хулио Кортасара (ее название, в свою очередь, является перефразированным названием «Рукописи, найденной в Сарагосе» Яна Потоцкого), ответ мы спрятали в заглавии предыдущего раздела — «Эль Греко и четвертое измерение».
Если мы рассмотрим его картину с точки зрения математики, то увидим, что сцены, изображенные в ее нижней и верхней части, не соответствуют какой-то одной точке зрения — ни в живописи, ни в иконописи, ни в богословии. Небо и земля, изображенные на картине, в некотором роде подобны двум кубам, имеющим общую грань, но перпендикулярным между собой. Эль Греко изображает их в виде отдельных трехмерных реальностей, которые тем не менее соприкасаются между собой. И на этой общей грани, которой соприкасаются воображаемые кубы, находится Святой Дух.
Вселенная в представлении Эль Греко как минимум четырехмерна, и наша трехмерная Вселенная лишь одна из ее граней. Небеса — другая трехмерная реальность, еще одна грань гиперкуба, перпендикулярная нашей трехмерной Вселенной. А небо и земля — смежные гиперграни одного тессеракта, имеющие общую плоскость, на которой обитает третья ипостась Бога — Святой Дух.
«Крещение Христа» Эль Греко . Схема двух перспективных проекций.
Разумеется, непросто поверить, что Доменикос Теотокопулос при работе над картиной мыслил в четырех измерениях. По меньшей мере, бессознательно, возможно, на основе мистических произведений Алонсо де Ороско это виртуальное изображение, которое мы называем четырехмерным, витало в его голове.
Поскольку математики при формировании абстракций как раз переходят от реальности к представляющей ее метафоре, мы можем трактовать эту картину и с мистическо-религиозной, и с геометрико-пластической точки зрения. Так, вытянутые фигуры, характерные для работ Эль Греко, получены в результате проекции подобно тому, как квадратные грани куба в изометрической проекции принимают форму ромбов. Если Эль Греко смог прочувствовать это силой своего воображения, нет никаких сомнений, что в своем воображении он представлял картину словно в ином измерении.
Анаморфоз на картине Сурбарана
Проанализируем картину Франсиско де Сурбарана «Оборона Кадиса против англичан». Это произведение предназначалось для украшения Зала королей дворца Буэн-Ретиро в Мадриде. В этом зале находилось 12 картин, изображавших битвы времен правления Филиппа IV, выполненные выдающимися художниками того времени, среди которых «Сдача Бреды», или «Копья», Веласкеса. Коллекцию дополняли картины его же авторства с изображением десяти подвигов Геркулеса; конные портреты Филиппа III и его жены; портреты Филиппа IV и его жены, а также портрет принца Бальтазара Карлоса.
Короли Испании жили в резиденции Реаль Алькасар в Мадриде, который должен был стать новой столицей, придя на смену Толедо. На месте этой резиденции, уничтоженной пожаром в ночь под рождество 1734 года, сейчас находится королевский дворец. Будучи изначально построен как крепость эмира Кордовы Мухаммада I в IX веке, Реаль Алькасар был перестроен и расширен при Энрике II, а затем при Карле V и Филиппе II, особенно после 1561 года, когда последний решил перенести свою резиденцию в Мадрид. Филипп III продолжил работы по перестройке дворца, однако его преемник Филипп IV хотел иметь в своем распоряжении вторую, более удобную резиденцию, для досуга и развлечений. Так было принято решение возвести новый дворец в восточных окрестностях Мадрида, в местности под названием Прадо, близ садов, расположенных на пологом склоне, который вел от реки Мансанарес в центр города.
Заказчиком выступал Гаспар де Гусман-и-Пиментель, граф Оливарес и герцог Санлукар-ла-Майор, известный как граф-герцог де Оливарес, который выбрал место для строительства рядом с королевскими покоями, которые Филипп II повелел пристроить к монастырю Святого Иеронима. Строительство дворца должно было завершиться в кратчайшие сроки, и граф-герцог взял на себя обязательство закончить проект в 1634 году. Граф Оливарес, фаворит короля, назначил руководителем работ Алонсо Карбонеля.
Здание было составлено из различных архитектурных элементов и представляло собой настоящий дворец. Было запланировано построить два огромных внутренних двора для приемов, размеры одного из которых при строительстве были уменьшены. Из-за спешки и нехватки средств в казне пришлось использовать не самые благородные материалы. Этот недостаток было решено компенсировать пышным убранством залов, дорогой мебелью, прекраснейшими гобеленами и картинами самых знаменитых художников той эпохи.
Граф-герцог завершил работы в заданный срок, однако для украшения дворца ему пришлось закупать картины в спешке. Он заказал все картины испанским художникам, а мебель и другие декоративные элементы заимствовал из дворцов знатных вельмож, которые отнеслись к этому сравнительно благосклонно.
Самым пышным залом дворца Буэн-Ретиро был Зал королей, получивший это название потому, что на его стенах были изображены гербы 24 королевств, которыми правил Филипп IV. Зал королей был тронным залом, в нем король принимал послов и знатных сановников. Его было решено украсить картинами, где изображались победы, одержанные королевскими войсками в знаменитых сражениях в самых далеких странах мира. Зал королей располагался в одном из крыльев дворца, имел прямоугольную форму размером 10х30 м. Лучшим художникам того времени — Веласкесу, Майно, Сурбарану, Хусепе Леонардо, Эухенио Кахесу и другим — было заказано 12 батальных картин, а также несколько работ, которые должны были дополнить убранство зала. Большинство этих картин в настоящее время хранится в музее Прадо.
* * *
ЗАЛ ДЛЯ КОРОЛЯ
Помимо Касон деяь Буэн-Ретиро, который сейчас является частью мадридского музея Прадо, все, что сохранилось от древнего дворца Буэн-Ретиро, — это одно крыло, стена которого выходила в большой внутренний двор. В нем до недавнего времени располагался Военный музей. Это здание также планируется включить в музейный комплекс Прадо. Именно в нем находится Зал королей.
* * *
Битвы, изображенные на этих полотнах, произошли в сравнительно короткий промежуток времени. Хотя победы в них превозносились властями, со временем стало ясно, что с политической точки зрения они не имели большого значения. Пропаганда заслуг короля Филиппа IV и отчасти его фаворита графа-герцога де Оливареса велась по нескольким направлениям. Помимо великолепных картин эти сражения были воспеты лучшими драматургами, и порой спектакли появлялись раньше, чем картины.
Например, 2 июня 1625 года защитники города Бреды, возглавляемые Юстином Нассауским, сдались испанским войскам под командованием Амброзио Спинолы, маркиза де Лос-Бальбасес. В том же году прошла премьера пьесы «Осада Бреды» Педро Кальдерона де ла Барка. Ключевой сценой произведения является сцена передачи ключей от города.
Возможное расположение картин «Сдача Бреды» и «Оборона Кадиса» в Зале королей дворца Буэн-Ретиро.
(источник: FMC)
Юстин:
…Сии ключи от города,
и заверяю, что нет такого страха,
что меня заставил
вам передать бы их,
пусть и под страхом смерти. <…>
Спинола:
Юстин, я принимаю их
и вашей доблести почтенье отдаю,
ведь доблесть побежденного славнее делает
того, кто победил.
Во имя Филиппа Четвертого,
что правит на века
и по числу побед ему нет равных,
я принимаю города ключи.
Несомненно, эта пьеса позднее вдохновила Веласкеса на создание картины «Сдача Бреды».
Изображение битвы
Еще одной картиной, предназначавшейся для украшения Зала королей, была «Оборона Кадиса против англичан» кисти Франсиско де Сурбарана размером 302х323 см, которая хранится в музее Прадо.
Первого ноября 1625 года английская эскадра, насчитывавшая сто кораблей и десять тысяч человек, под командованием сэра Эдварда Сесила, виконта Уимблдонского, атаковала город Кадис. Обороной командовал дон Фернандо Хирони-Понсе де Леон, который был военным советником Филиппа IV и был назначен губернатором Кадиса несмотря на то, что страдал подагрой и был практически парализован. Поэтому Сурбаран изобразил его сидящим и отдающим приказания заместителю, Диего де Руису. В обороне также участвовал Хуан Мануэль Перес де Гусман; Силва, герцог Медина-Сидония, и генерал армии Андалусии, который, возможно, изображен на картине одетым в черное, с крестом ордена святого Иакова, стоящим позади Понсе де Леона.
Франсиско де Сурбаран . «Оборона Кадиса против англичан». Музей Прадо, Мадрид.
Утром 8 ноября испанцы перешли в наступление, и деморализованные англичане под непрекращающимся обстрелом покинули поле сражения. Этот подвиг, как и взятие Бреды, изобразил на театральной сцене драматург Родриго де Эррера в пьесе La fe no ha menester de armas у venida del inglés a Cadiz («Вере не страшно оружие и нападение англичан на Кадис»).
Привлекает внимание историческая точность картин, ставшая возможной благодаря тому, что между изображаемыми событиями и написанием картины прошло всего несколько лет. Король и граф-герцог де Оливарес, несомненно, были знакомы с героями картин, поэтому эти полотна также выступали в качестве групповых портретов. Однако композиция картин выглядит странно: передний план, на котором изображены действующие лица, и задний план, где изображен пейзаж, плохо согласуются между собой. Можно подумать, что на картине изображен эпизод театральной постановки, то есть персонажи показаны на фоне плоской декорации. Кроме того, портреты действующих лиц непропорционально вытянуты.
В настоящее время картина выставлена в музее Прадо, где занимает целую стену небольшого зала и отстоит от пола менее чем на полметра. Создается впечатление, что Сурбаран не владел законами перспективы — именно это утверждают многие критики.
Если взглянуть на картину с точки зрения математики, то станет ясно, что причина этому в неверном расположении картины в музее. Сурбаран деформировал изображение умышленно, чтобы скомпенсировать искажения, возникавшие при взгляде на картину, когда она располагалась в предназначенном для нее месте. Таким образом, при взгляде на картину зритель должен был видеть безупречное изображение.
Математический взгляд на «Оборону Кадиса»
Первая гипотеза, которую мы рассмотрели, заключалась в том, что картина должна висеть выше. Попробуем определить, насколько именно. Если мы поместим прямоугольник на возвышение и будем смотреть в его центр, то нам будет казаться, что он имеет форму равнобедренной трапеции. Величина искажения будет зависеть от высоты h, на которой расположен прямоугольник, и расстояния d между картиной и зрителем. Значение d, соответствующее размерам картины, равняется примерно 4,5 м. Осталось определить величину h, а еще лучше — зависимость длины верхней стороны трапеции и ее высоты от h. Оценить эту зависимость нетрудно, если произвести некоторые тригонометрические расчеты. Расчеты показывают, что картина, скорее всего, располагалась так, что нижний край рамы находился на уровне глаз наблюдателя. Однако, как вы увидите далее, рассуждения можно упростить, применив некоторые законы геометрии. Примем эту гипотезу в качестве исходной и попробуем доказать ее экспериментально.
Проекция главного луча зрения наблюдателя на картину «Оборона Кадиса против англичан».
(источник: FMC)
Перенесемся в Зал королей и посмотрим на картину Сурбарана с расстояния примерно в 4,5 метра. Предположим, что картина расположена на уровне наших глаз, как показано на предыдущем рисунке. Точка схода располагается в центре линии горизонта и обозначена на рисунке. Справа приведем изображение этой сцены в профиль. Для этого перенесем на рисунок справа отрезок АВ, длина которого равна высоте картины, и точку схода С. Зритель смотрит в точку С, следовательно, изображение, которое он видит, располагается в плоскости AD. Эта плоскость перпендикулярна линии, соединяющей точку С и точку зрения. Картина будет казаться наклоненной: верхняя часть будет располагаться дальше от наблюдателя, чем нижняя, поэтому будет казаться более узкой. Кроме того, из-за наклона высота картины будет казаться меньше. Попробуем определить, как изменятся воспринимаемые размеры картины.
Зритель видит картину так, как будто бы она наклонена внутри рамки, обозначенной буквами AEFD. Спроецируем верхнюю точку картины В на эту рамку и получим точку Е. Если зритель посмотрит сначала в точку Е, а затем в точку В, то лучи зрения пересекут плоскость изображения в точках Е' и В' соответственно.
Наконец, луч зрения, направленный в точку С, пересечет плоскость изображения в точке С'. Теперь попытаемся изобразить картину так, как ее будет видеть зритель. Мы определили три точки на плоскости изображения: В', С' и Е'. Перенесем эти точки на картину, чтобы вычислить размеры трапеции, которую будет видеть зритель.
Расположим зрителя справа, перед картиной. Точки В', С' и Е' перейдут в точки В", С" и Е" соответственно. Точка В" определяет высоту, на которой для наблюдателя будет располагаться верхний край картины. Точка С" определяет положение линии горизонта. В центре линии горизонта будут сходиться линии пола, изображенные в перспективе. Наконец, проведя горизонтальную линию через точку Е', получим две точки пересечения с линиями, сходящимися в точке схода. Перенеся эти точки вертикально вверх, получим две точки, которые будут располагаться на горизонтальной линии, проведенной через точку В". Соединив эти две точки с линией основания картины, получим трапецию, в которую будет вписано изображение, видимое зрителем.
Если мы рассмотрим эту трапецию, обозначенную на картине белыми линиями, то нам покажется, что она будто наклонена к нам. Анаморфированное изображение картины будет вписано в трапецию.
Деформированное изображение картины «Оборона Кадиса против англичан», какой ее видит наблюдатель.
(источник: FMC)
Благодаря программам обработки изображения выполнить это преобразование несложно. Получив требуемое изображение с помощью одной из этих программ, мы сможем представить, какой эта картина выглядела в глазах зрителя, проходившего по Залу королей дворца Буэн-Ретиро. Она казалась бы ему примерно такой, как показано на иллюстрации:
Анаморфированное изображение картины «Оборона Кадиса против англичан». Именно так эту картину видели зрители, когда она располагалась на изначально задуманном месте.
Персонажи изменились внешне и не кажутся короткоголовыми и полными, фон обрел глубину и реалистичность. Теперь он действительно похож на реальный пейзаж, а не театральную декорацию. Всё встало на свои места и обрело должные пропорции.
Допускаем, что читатель может отнестись ко всему этому скептически. Действительно ли Сурбаран проводил подобные расчеты, когда создавал картину? Думаем, что на этот вопрос мы вполне можем ответить утвердительно. Похожие расчеты провел либо сам Сурбаран, либо художник, ответственный за украшение Зала королей, либо, возможно, Веласкес. Кто-то из них рассчитал искажения, которые требовалось внести в картину, чтобы она казалась реалистичной при взгляде из центра зала. Картина Сурбарана — не единственный пример анаморфоза в живописи.
В известнейшей картине Веласкеса «Сдача Бреды» использован тот же принцип, пусть и не столь явно.
«Оборона Кадиса» располагалась в конце длинной стены Зала королей, поэтому она несколько уже, чем «Сдача Бреды». Угол наклона боковых сторон трапеции зависит не от ширины картины, а исключительно от ее высоты. Боковые стороны трапеции наклонены под одним углом на обеих картинах, и поскольку «Сдача Бреды» шире, то искажения не столь заметны невооруженным глазом. Наконец, Остин Нассауский и сам Амброзио Спинола в центре картины Веласкеса изображены в поклоне, благодаря чему видимые искажения уменьшаются. Копья испанской армии, удачно использованные в композиции, также уменьшают искажения, однако если мы применим к этой картине то же преобразование, что и к «Обороне Кадиса», то увидим, что изображение станет более реалистичным.
Как отмечалось выше, из всех помещений дворца Буэн-Ретиро сохранился лишь Касон дель Буэн-Ретиро, сады и северное крыло, в котором находится Зал королей.
До недавнего времени в нем располагался Военный музей. Ожидается, что в будущем, когда Зал королей будет отреставрирован и станет частью музея Прадо, он снова будет сверкать, как во времена Филиппа IV, и батальные полотна займут свое прежнее место. Так зрители смогут увидеть то же, что смогли увидеть мы с помощью математических преобразований.
Анаморфоз и другие искажения
По определению, анаморфоз — это конструкция, созданная таким образом, что в результате оптического смещения некая форма, недоступная поначалу для восприятия, складывается в легко прочитываемый образ. Следовательно, анаморфоз — это проекция или перспектива, на которую нужно смотреть с помощью особого устройства, например цилиндрического или конического зеркала, либо с определенной точки. Только в этом случае изображение примет требуемый вид. С помощью компьютера можно исказить изображение так, что, взглянув на него в цилиндрическое зеркало, мы увидим исходное изображение. Используем в качестве примера обложку книги.
Преобразуем изображение так, что оно будет принимать исходный вид в цилиндрическом зеркале диаметром 35 мм под углом зрения в 45°. Результат вы можете видеть на иллюстрации внизу слева. Если мы правильно расположим зеркало, то получим изображение, показанное на рисунке справа.
То, что сегодня легко выполняется с помощью компьютера, ранее производилось путем разбиения картины на квадраты и преобразования каждого квадрата в сектор кольца.
* * *
ИЗВЕСТНЕЙШИЙ АНАМОРФОЗ ВСЕХ ВРЕМЕН
Известнейший пример анаморфоза в живописи — это, несомненно, «пятно», изображенное в нижней части картины «Послы» Ганса Гольбейна Младшего.
Ганс Гольбейн Младший . «Послы» (1533). Лондонская национальная галерея.
Эта картина изобилует символами, связанными с математикой. Персонажами картины являются Жан де Дентвиль (слева), в то время посол Франции в Англии, который выступил заказчиком картины, и Жорж де Сельв, епископ Лавура и друг Дентвиля, разделявший его увлечение математикой. Сельв также был послом в Священной Римской империи, Венеции и Ватикане, поэтому картина известна под названием «Послы». В центральной части картины изображено множество предметов, указывающих на увлечения персонажей. Эти предметы символизируют арифметику, геометрию, музыку и астрономию, составлявшие так называемый квадривиум, и грамматику, диалектику и риторику, из которых состоял так называемый тривиум. Дисциплины, входившие в тривиум и квадривиум, именовались «семь свободных искусств». Однако наибольшее внимание зрителя привлекает пятно на полу. Оно словно висит в воздухе и выбивается из общей картины. Это пятно является примером анаморфоза: достаточно наклониться и посмотреть на картину искоса, и это пятно примет форму человеческого черепа, который изображен в столь странной анаморфической перспективе.
При взгляде под правильным углом «пятно» превращается в человеческий череп.
* * *
Веласкес и абстрактное пространство
Обратим наш математический взгляд на картину «Пабло де Вальядолид», созданную Диего Веласкесом в 1633 году, которая также хранится в музее Прадо. Пабло де Вальядолид (1587–1648) был придворным актером, и на картине Веласкеса он изображен в одной из своих ролей.
Диего Веласкес . «Пабло де Вальядолид» (1633). Музей Прадо, Мадрид.
Великий французский художник Эдуард Мане, посетив Испанию в 1865 году, был очарован совершенством картины и сказал: «Возможно, самым удивительным произведением живописи из когда-либо созданных является «Портрет знаменитого актера времен Филиппа IV» (Пабло де Вальядолид). Фон исчезает. Человека, одетого в черное и полного жизни, окружает воздух».
Любой, кто посмотрит на эту картину математическим взглядом, сначала будет удивлен и озадачен подобно Мане. Где находится Пабло де Вальядолид? В каком пространстве?
Представление о пространстве
Представление о пространстве, которое является одним из важнейших элементов западной культуры, возникло в Древней Греции. Выделить путем наблюдения отдельные предметы и, абстрагировавшись от них, сформулировать «идею» в том смысле, который придавал этому слову Платон, непросто, но этот процесс доступен для понимания. Так, когда ребенок учится говорить, он постепенно узнает всё новые и новые слова. Он получает представление о том, что такое, например, стол, замечая столы разных форм и размеров. Увидев какой-то конкретный стол, например традиционный с четырьмя ножками, вскоре ребенок понимает, что число ножек не имеет значения, ведь существуют столы с одной, тремя, четырьмя и более ножками и вовсе без них, например прикрепленные к стене. Он абстрагируется от формы поверхности стола, которая необязательно представляет собой прямоугольник, — это может быть круг, квадрат или треугольник. Он также понимает, что поверхность стола необязательно должна быть горизонтальной: например, школьная парта — это тоже стол, но его поверхность наклонена, чтобы было удобнее писать.
Говоря математическим языком, дать определение означает выделить из множества всех объектов некое подмножество по некоторому критерию. Используя этот критерий, при взгляде на любой предмет мы сможем определить, принадлежит он этому подмножеству или нет. Поэтому дать определения предметам непросто, и именно поэтому эта задача представляет такой интерес. Для этого достаточно рассмотреть простой вопрос: «Что такое стол?». Первая попытка, скорее всего, окажется неудачной, так у нас не получится дать определение сразу всем возможным столам. Если мы продолжим попытки, то увидим, что нам потребуется определить, какие свойства являются определяющими для стола, а какие нет; какими свойствами обладают все столы, а какими — только некоторые. В попытках дать ответ на этот вопрос мы начинаем рассуждать в терминах математической логики и формулируем абстракцию. И, как мы уже сказали, само понятие определения по своей сути является математическим.
Абстрагирование, в процессе которого мы переходим от конкретных предметов к общим понятиям, сравнительно ясно, однако понимание таких концепций, как «пространство», выглядит совершенно иначе. Здесь речь идет не о предметах, а о том, что их содержит. И действительно, возможно, основной характеристикой пространства является его способность содержать предметы. Следовательно, пространство связано с такими понятиями, как «дом», «храм», и представляет собой хранилище всего осязаемого, воспринимаемого с помощью органов чувств.
Тем не менее понятия, связанные с осязаемым и воспринимаемым напрямую, постигаются с помощью органов чувств, пассивно. Напротив, чтобы понять, что такое пространство, необходимо действовать активно, рационально, то есть математически. Поэтому неудивительно, что понятие пространства возникло одновременно с другими математическими понятиями, вероятно в VI веке до н. э., усилиями пифагорейцев.
Это понятие неразрывно связано с понятием «содержащее», а также, учитывая, что оно было сформулировано представителями математической школы, с понятиями «положение» и «расстояние». Изначально пространство считалось геометрическим пространством. Зенон Элейский спустя столетие вновь поднял вопрос о том, что такое пространство, в своих знаменитых парадоксах. Следующий шаг в этом направлении совершил Платон в диалоге «Тимей», написанном во второй половине IV века до н. э.: «Есть бытие, есть пространство и есть возникновение, и эти три [рода] возникли порознь еще до рождения неба».
Сначала он рассматривает бытие и возникновение:
«Так, ум рождается в нас от наставления, а истинное мнение — от убеждения; первый всегда способен отдать себе во всем правильный отчет, второе — безотчетно; первый не может быть сдвинут с места убеждением, второе подвластно переубеждению; наконец, истинное мнение, как приходится признать, дано любому человеку, ум же есть достояние богов и лишь малой горстки людей. Если все это так, приходится признать, во-первых, что есть тождественная идея, нерожденная и негибнущая, ничего не воспринимающая в себя откуда бы то ни было и сама ни во что не входящая, незримая и никак иначе не ощущаемая, но отданная на попечение мысли. Во-вторых, есть нечто подобное этой идее и носящее то же имя — ощутимое, рожденное, вечно движущееся, возникающее в некоем месте и вновь из него исчезающее, и оно воспринимается посредством мнения, соединенного с ощущением».
Так, «бытие» представляет собой идеи в трактовке Платона, которые являются тождественными, незримыми и никак не ощущаемыми, кроме как силой разума. «Возникновение» есть реальность, ощущаемая чувствами, изменяющаяся, имеющая начало и конец, недолговечная, подобная бытию, но отличающаяся от него. Между ними, по Платону, находится пространство:
«В-третьих, есть еще один род, а именно пространство: оно вечно, не приемлет разрушения, дарует обитель всему роду, но само воспринимается вне ощущения, посредством некоего незаконного умозаключения, и поверить в него почти невозможно. Мы видим его как бы в грезах и утверждаем, будто всякому бытию непременно должно быть где-то, в каком-то месте и занимать какое-то пространство, а то, что не находится ни на земле, ни на небесах, будто бы и не существует».
В этом определении Платона содержатся все важнейшие особенности нашего определения пространства.
Следовательно, пространство есть нечто, расположенное между бытием и возникновением. К бытию можно прийти лишь с помощью истинного мнения и строгих рассуждений, а к понятию пространства мы приходим лишь посредством «незаконных умозаключений». Пространство, хотя и обладает некоторыми свойствами бытия (оно является неизменным и неразрушимым), содержит в себе все осязаемое, воспринимаемое чувствами, и в этом оно отличается от бытия. Именно пространство порождает все, что существует, так как существует лишь то, что занимает определенное место и положение. Возможно, именно здесь, на полпути между «бытием» и «возникновением», располагается то, что познается с помощью «незаконных умозаключений», которыми Платон считает математические рассуждения, то, «во что поверить почти невозможно».
Первое определение, которое мы даем пространству, — это «нечто, что содержит нас», то есть дом, или «нечто, что содержит богов», то есть храм, поэтому неудивительно, что когда представление о пространстве стало частью культуры и перекочевало в обыденный язык, то архитектура, в особенности греческая, стала первым эстетическим воплощением пространства, первой точкой соприкосновения математической идеи с миром искусства.
Если пространство неизменно, то архитектура есть способ организовать его, провести линии, формирующие его структуру, возвести стены, ограничивающие его и определяющие подпространства, содержащиеся в пространстве, но созданные по его образу и подобию. Таким образом, математики в некотором роде изначально выступали как посредники в процессе виртуализации окружающего нас пространства, используя геометрию, которая в симбиозе с искусством является основой архитектуры.
С живописью все обстоит иначе. Создание картины — это медленный и трудоемкий процесс. Виртуализация реальности, чего-либо осязаемого на поверхности картины представляет трудность совершенно иного рода: мы осязаем пространство в трех измерениях, а поверхность картины является плоской. Необходимо использовать некое преобразование, чтобы пространство, воспринимаемое глазом, совпало с виртуальным пространством, которое видит зритель при взгляде на картину.
Желание правдоподобно изобразить реальность привело к необходимости найти способы ее представления. И хотя первые попытки, предпринятые в этом направлении, можно увидеть на некоторых фресках Помпеи, в полной мере приемы достоверного изображения реальности были открыты лишь в эпоху Возрождения. Как мы уже увидели, связь между живописью и понятием пространства возникла с изобретением перспективы в период кватроченто.
Одновременно с этим в живописи появилось новое понятие пространства: оно перестало содержать исключительно реальные предметы, которые могут быть изображены, и стало включать воображаемые объекты, которые, будучи изображенными на картине, становились «виртуально реальными».
Пространство по Декарту и Ньютону
В XVII веке представления математиков о пространстве начали видоизменяться. Были предприняты попытки дать ему более точное определение на основе идей Платона. Декарт определял пространство так:
«… в воображаемой математической материи, в пространстве, неограниченно простирающемся в длину, ширину и высоту или глубину, делимом на разные части, которые могут иметь различные формы и величины и перемещаться во всех направлениях».(Декарт, 1637)
Ньютон, в свою очередь, выдвинул идею «абсолютного пространства»:
«Абсолютное пространство по своей природе, без связи с чем-либо внешним, всегда остается неизменным и неподвижным».(Ньютон, 1687)
Как мы уже говорили, оба эти определения отражают одну и ту же парадигму пространства как содержащего все сущее, однако являются более абстрактными и четкими. Однако пространство по-прежнему было связано с природой и содержало исключительно реальные предметы, то есть те, что можно постичь органами чувств. Тем не менее это уже абстрактное пространство, которое существует независимо от объектов, в нем содержащихся, и может быть проанализировано геометрически.
Пабло де Вальядолид
Картина Веласкеса, которую мы рассмотрим с точки зрения математики, и определение пространства, данное Декартом, были созданы одновременно и по сути схожи. Фон картины Веласкеса очаровывает, поскольку не является реальным, то есть изображает не что-то конкретное, а абстрактное пространство само по себе. Хосе Ортега-и-Гассет, размышляя о фоне этой картины, писал:
«Эти краски не изображают какой-либо объект, реальный или воображаемый, четкий или расплывчатый. На фоне не изображены ни предмет, ни одна из стихий. Это не земля, не вода и не воздух. Автор, нанеся эти краски на холст, хотел исключить из нашего поля зрения любые формы и фигуры, отвлечь наше внимание от всего, кроме фигуры шута. С этой целью он закрасил холст однородно и единообразно, так что ничто не отвлекает и не привлекает внимания, и, кроме того, он использует светло-бурый цвет, созданный в мастерской исключительно с целью воплотить художественный прием: выделить фигуру Пабло, ее объем и материальность <…>».
Три картины, авторы которых вдохновлялись работой Веласкеса «Пабло де Вальядолид». Слева направо: «Рувье в роли Гамлета» Эдуарда Мане (1865–1866), Национальная галерея искусств, Вашингтон: «Франсиско Кабаррюс» Франсиско Гойя (1788), Банк Испании, Мадрид;«Флейтист» Эдуарда Мане (1866), музей Орсе, Париж.
Он добавляет:
«Остановимся ненадолго на том, почему можно считать, что эта картина Веласкеса выполнена в духе реализма. Даже признав на мгновение, что эта характеристика применима к персонажу, она неприменима к картине, поскольку картина — это не только фигура, но и фон, а этот фон не только не реалистичен, но даже не ирреалистичен, а умышленно и очевидно де-реалистичен, так как в нем уничтожено все, что может напоминать реальный предмет».
Пока что мы полностью согласны с комментарием Хосе Ортеги-и-Гассета, изложенным несколько поучительным тоном. Тем не менее придерживаясь математической точки зрения, мы позволим себе не согласиться с его выводом:
«Веласкес хотел создать ничто вокруг Пабло, окружив его чем-то произвольным, воображаемым, что представляет собой плод художественного эксперимента».
Ничто, которое окружает Пабло де Вальядолида, — не что-то «произвольное и воображаемое», а пространство само по себе, изображенное в соответствии с математическими представлениями того времени. Веласкес изобразил его не так, как ему заблагорассудится, а в строгом соответствии с нормами. Это пространство Декарта и Ньютона, гениально изображенное минимумом художественных средств, почти не имеющее цвета и тени, непрерывное, бесконечное, неподвижное, не связанное с чем-либо внешним, на котором выделяется фигура Пабло де Вальядолида.
Если мы рассмотрим эту картину с точки зрения математики, то увидим, что на втором плане изображено то, что раньше можно было лишь представить, но невозможно нарисовать: само пространство. Поэтому «мы видим его как бы в грезах и утверждаем», что Пабло де Вальядолид «обязательно имеет свое место и занимает свое положение в пространстве» и по этой причине «этот человек, одетый в черное, полон жизни».
По другую сторону картины Веласкеса
Приведенный нами обзор представлений о пространстве, начиная с Пифагора и заканчивая Ньютоном, разумеется, неполон. Начиная с XVII века и до наших дней математика и искусство непрерывно развиваются, причем это происходит приблизительно одновременно.
Если на картине «Пабло де Вальядолид» Веласкеса изображено декартово пространство в трактовке Ньютона, то авангардисты первой трети XX века и математики этого периода начали рассматривать новые представления о пространстве как о множестве точек и их взаимосвязей, где под точкой понимается любой объект, а под взаимосвязью — любая связь между этими точками.