Числа и фигуры в римском Пантеоне

«В числе всех существующих в Риме храмов нет более знаменитого, чем Пантеон, именуемый ныне Ротондой, и нет более сохранного, ибо мы видим его почти неприкосновенным во всем, что касается самой постройки, но лишенного статуй и прочих украшений. <…> Этот храм был назван Пантеоном, ибо, кроме Юпитера, он был посвящен всем богам; или же (по мнению других) потому, что он имеет форму Вселенной, то есть круглую, ибо высота его от пола до отверстия, откуда поступает свет, равна диаметру его ширины от стены до стены, и как теперь спускаются к полу, так в древности поднимались к нему по нескольким ступеням».

Этими словами начинает свое описание римского Пантеона архитектор Андреа Палладио (1508–1580) . Геометрия этого здания поистине уникальна. Первый Пантеон был построен в 25–27 годах до н. э. Марком Випсанием Агриппой, зятем Октавиана Августа, как часть монументального Марсова поля. Марк Випсаний Агриппа, который в то время был третьим консулом, оплатил постройку из своих г средств. Первый Пантеон имел прямоугольную форму с поперечно расположенной целлой. Позади этого здания, которое было повернуто на 180° относительно нынешнего, находилась круглая площадь, огороженная стеной. Первое здание и площадь имели ту же ось симметрии, что и современный Пантеон. Ширина целлы равнялась диаметру ротонды, длина исходного здания равнялась длине колоннады более позднего Пантеона.

Римский Пантеон в разрезе. Иллюстрация из «Четырех книг об архитектуре» Андреа Палладио .

Первый Пантеон был полностью разрушен пожаром 80 года и восстановлен во время правления императора Домициана, правившего с 81 по 96 год. Новый храм, в свою очередь, был разрушен во времена Траяна, правившего в 98—117 годах. До наших дней дошел третий Пантеон, построенный в период правления Адриана (117–138), возможно, на основе проекта, выполненного при Траяне вскоре после разрушения второго Пантеона. Работы затянулись, и торжественное открытие Пантеона состоялось во время пребывания Адриана в Риме в 125–128 годах.

Некоторые считают, что название Пантеон обусловлено изобилием статуй богов внутри здания. Другие, среди которых сам Палладио, полагают, что это название указывает на круглую форму здания, символизирующую небесный свод и семь богов, в честь которых были названы звезды и планеты: Луна, Марс, Меркурий, Юпитер, Венера, Сатурн и Солнце. Им, в свою очередь, соответствовали семь дней недели.

Внешняя часть храма состоит из пронаоса с восемью колоннами, поддерживающими фронтон, пропорции которого отличаются от традиционно применявшихся в греческой архитектуре. Так, в афинском Парфеноне отношение высоты треугольного фронтона к общей высоте здания равно одной четвертой, а в римском Пантеоне это отношение равно одной третьей. Иными словами, фронтон Пантеона выше, чем в греческих храмах.

Фасад римского Пантеона

(источник: FMC).

Пронаос, имеющий прямоугольную форму, соединен с круглой целлой. Три составные части храма снаружи выглядят так, как будто они наложены друг на друга несогласованно, негармонично. Трехэтажная цилиндрическая часть здания с пологим сводом, в которой современный наблюдатель найдет сходство с летающей тарелкой, по сравнению с пронаосом выглядит огромной, несмотря на то что их соединяет часть здания промежуточной высоты. Разделение на три этажа подчеркнуто тремя карнизами на фасаде здания. Положение второго карниза соответствует положению экватора внутреннего купола. Третий уровень, выделяющийся исключительно снаружи, был построен из-за необходимости возвысить стену периметра, сделав ее выше и прочнее, чтобы она могла устоять под огромным весом купола.

Во времена Адриана Пантеон снаружи выглядел совершенно иначе: цилиндрическая часть здания была не видна с огромной площади, по размерам намного превышавшей современную, расположенную перед фасадом здания. Здание было с трех сторон окружено портиком с колоннадой, схожей с колоннадой пронаоса, но меньшей высоты, которая образовывала единое целое с колоннадой на главном фасаде. Зритель, впечатленный монументальностью площади, переходил из открытого пространства прямоугольной формы, окруженного колоннами и ярко освещенного солнцем, во внутреннее, более темное пространство круглой формы, в котором лучи яркого света, поступая через отверстие в куполе, создавали ярко выраженный контраст между светом и тенью. Из открытого пространства зритель переходил в следующее, закрытое, которое, однако, поражало огромными размерами.

Римский Пантеон, вид изнутри. На фотографиях изображен купол с отверстием на вершине.

(источник: FMC)

Создание проекта приписывается Аполлодору Дамасскому (ок. 70—130), который выполнял для Траяна и другие проекты, в частности проект колонны и форума Траяна. Он также совместно с Адрианом работал над некоторыми зданиями виллы Адриана в Тиволи. Аполлодор нелестно отзывался о способностях Адриана, который, до того как стать императором, увлекался архитектурой. Так, он сравнил нарисованный Адрианом купол с тыквой, за что позднее впал в немилость. Ему пришлось покинуть Рим, и он умер в изгнании.

* * *

ЦИЦЕРОН И НЕБЕСНЫЙ СВОД

Цицерон (106-43 гг. до н. э.) в своей книге «О природе богов» (книга II, глава 18) подчеркивает, насколько важной в римской космологии была сфера как идеальная форма и, следовательно, единственно возможная форма Вселенной. Он пишет:

«Ты говоришь, что и конус, и цилиндр, и пирамида тебе кажутся более красивыми, чем шар. <…> Мне самому это не кажется, ибо какая фигура может быть красивее той, которая одна заключает в себе все остальные фигуры, которая не имеет никакой шероховатости, никакой неровности, ни одного угла, о который можно порезаться, никаких надломов, ни одного выступа, ни одной впадины? В сущности только две формы являются превосходнейшими: из объемных — шар (globus), ибо так следует переводить [греческое] офоарос; из плоских — круг, или окружность (по-гречески κ υκλος ); только этим двум формам присуща та особенность, что все их части совершенно сходны между собой и крайние точки отстоят от центра на одинаковом расстоянии — правильнее этого ничего не может быть. Но если вы этого не видите, то это оттого, что никогда не нюхали ученой пыли. <…> Если бы Эпикур выучил, сколько будет дважды два, он бы, наверное, не говорил этого. Но, как говорит Энний: Пока он решал, что всего лучше, нёбом, Он своих глаз не поднял на свод неба».

Обратите внимание на фразу, обращенную к эпикурейцам («Если вы этого не видите, то это оттого, что никогда не нюхали ученой пыли»). Здесь имеется в виду песок, которым геометры посыпали стол и на нем чертили геометрические фигуры и символы.

МАРГЕРИТ ЮРСЕНАР ОПИСЫВАЕТ ПАНТЕОН В «ВОСПОМИНАНИЯХ АДРИАНА»

«Римская весна никогда еще не была столь ласковой, столь буйной, столь голубой. В тот же день, с более суровой и словно бы приглушенной торжественностью состоялась церемония освящения в самом Пантеоне. Я собственной рукою исправил слишком робкие проекты архитектора Аполлодора.

Использовав греческие мотивы лишь в орнаментальных целях, для придания храму большей пышности, я в самой структуре его вернулся к давним, легендарным временам Рима, к круглым храмам древней Этрурии. Я пожелал, чтобы это святилище Всех Богов воспроизводило форму земного шара и звездной сферы — шара, в котором заключены истоки вечного огня, и вогнутой сферы, которая объемлет все сущее. То была также и форма первобытных хижин, откуда дым древнейших человеческих очагов выходил через проделанную в кровле дыру. Купол, сооруженный из прочной и легкой лавы, которая, казалось, еще продолжала кипеть в восходящем потоке пламени, сообщался с небом через большое отверстие, синее днем и черное ночью. Этот храм, со всех сторон открытый и вместе с тем сокровенный, был задуман как солнечные часы. Время будет вращаться по кругу над этими ларцами, которые так заботливо отполировали греческие мастера; диск дневного света будет висеть над ними, как золотой щит; дождь оставит на каменных плитах лужицы чистой воды; молитва уйдет, точно дым, в пустоту, которую мы заселили богами».

«Воспоминания Адриана». Маргерит Юрсенар .

Французская писательница Маргерит Юрсенар .

* * *

Доминантой внутренней части Пантеона является грандиозный полусферический купол. В его верхней части имеется отверстие диаметром 30 римских футов (8,92 м), которое является единственным источником света. Во время дождя через это отверстие в храм попадает вода, которая льется на квадратные и круглые мозаики пола. В лужах воды на полу отражается внутренняя часть купола, тем самым создается изображение полной сферы.

Внутренняя часть храма имеет простую и гармоничную форму. Она представляет собой сферу, касающуюся цилиндра. Радиус этой сферы равен высоте цилиндра.

Иными словами, если мы войдем в храм, то увидим цилиндр, высота которого равна половине диаметра его основания. Этот цилиндр делится круговыми карнизами на два уровня. Верхний карниз совпадает с линией импоста купола, центр симметрии цилиндра — с центром купола, который имел бы форму идеальной полусферы, если бы не срез в горизонтальной плоскости вблизи вершины свода, где расположено уже упомянутое нами отверстие.

Ширина внутренней части здания — 43,44 м (150 римских футов), радиус сферы — 21,72 м. На нижнем этаже той части храма, что имеет цилиндрическую форму, расположены семь капелл, три из которых имеют форму полукруга, четыре — трапециевидную. Все они имеют две колонны, за исключением главной капеллы, заменяющей апсиду и расположенной напротив входа. Апсида также имеет две колонны, которые, в отличие от остальных капелл, не делят проем на части, а расположены по бокам от него. Кроме того, в несущей стене у входа в храм расположена еще одна, восьмая ниша.

* * *

«КУПОЛ, СПОСОБНЫЙ ПОКРЫТЬ СВОЕЙ ТЕНЬЮ ВСЕ ТОСКАНСКИЕ НАРОДЫ»

Эта хвалебная фраза из трактата «О живописи» Альберти, обращенная к его другу Филиппо Брунеллески, является несколько преувеличенной. Тем не менее купол собора Санта-Мария-дель-Фьоре поистине огромен и достоин восхищения как с архитектурной, так и с эстетической точки зрения. При его постройке не использовались леса — купол изначально представлял собой самоподдерживающуюся конструкцию. Его можно сравнить только с куполом римского Пантеона, но творение Брунеллески намного более легкое и воздушное.

Для художников и гуманистов кватроченто этот купол был доказательством того, что художественные и научные достижения Античности, которыми они так восхищались, пятнадцать столетий спустя стало возможным достичь и превзойти.

Купол собора Санта-Мария-дель-Фьоре, созданный Филиппо Брунеллески .

(источник: FMC)

* * *

Покрытие пола расположено слегка под наклоном, и дождевая вода, проникающая внутрь храма сквозь отверстие в куполе, стекает по сточным каналам, которые находятся под полом. Рисунок пола представляет собой квадратную сетку, в которой перемежаются круги и квадраты меньшего размера. Чередование фигур начинается в центре, где изображен квадрат, в который вписан круг, и продолжается в двух направлениях на плоскости.

Чтобы снизить вес купола, при его постройке использовался известковый раствор и пористый камень туф. Внутренняя часть купола украшена пятью рядами кессонов по 28 в каждом, которые, помимо декоративной функции, служат для уменьшения веса здания. Центральный угол между экватором купола и его верхней параллелью, проходящей по верхнему ряду кессонов, равен 51°. Промежуточные параллели делят дугу, заключенную между экватором и верхней параллелью, на пять равных частей. Иными словами, высота всех кессонов одинакова, а ширина последовательно уменьшается по мере приближения к вершине купола.

Схема внутренней части римского Пантеона.

(источник: FMC)

План римского Пантеона, II век н. э.

(источник: FMC)

Верхние края кессонов направлены к центру сферы, нижние края кессонов на каждом уровне — в сторону воображаемого круга, проведенного на полу. Если мы разделим радиус окружности пола на семь равных частей и проведем шесть окружностей, присвоив им номера от 0 (для наименьшей окружности) до 5 (для наибольшей), нижние края каждого ряда кессонов будут направлены в сторону окружности с соответствующим номером.

Кессоны купола имеют особую форму и видны с поверхности пола без искажений.

(источник: FMC)

Римский Пантеон в разрезе. Указаны точки схода нижних краев кессонов.

При внимательном рассмотрении становится понятно, что при постройке Пантеона широко использовалось число 7 и кратные ему. В храме семь капелл, число кессонов в каждом ряду купола равно 28. Однако кессоны на куполе расположены в пять рядов. Не будем искать мистические объяснения этому, так как чаще всего они являются плодом спекуляций. Укажем лишь, что эти числа, возможно, имеют астрономическое значение. Так, кольца кессонов, соответствующие окружностям, изображенным на полу, могут символизировать орбиты пяти планет. Круг света, падающий через отверстие в куполе в центр круглого пола, символизирует Солнце, Луну — сама Луна, которую можно наблюдать через отверстие в куполе несколько дней в году. 28 кессонов символизируют дни лунного месяца, состоящего из четырех фаз по семь дней в каждой. Однако это всего лишь гипотеза.

Все размеры Пантеона были точно выверены и рассчитаны не только для того, чтобы обеспечить равновесие самого большого купола античного мира, но также и для того, чтобы пробудить чувство гармонии и цельности в каждом, кто заходит внутрь.

* * *

СФЕРА И ЦИЛИНДР. ЦИЦЕРОН И АРХИМЕД

Как мы уже говорили, Марк Туллий Цицерон интересовался геометрией, а также, насколько можно судить, жизнеописаниями геометров. По его словам, в 75 году до н. э. он посетил Сицилию и обнаружил там могилу Архимеда, которую узнал по изображению вписанной в цилиндр сферы на надгробной плите. По легенде, Архимед считал своим величайшим достижением доказательство того, что объем сферы и площадь ее поверхности соответственно равны двум третьим объема и площади поверхности цилиндра, описанного вокруг нее.

Если обозначить радиус сферы за г, то радиус основания описанного цилиндра также будет равен r , высота — 2r . Обозначив за V s объем сферы, за V c   — объем цилиндра, получим:

Аналогично, обозначив за  S s площадь поверхности сферы, за S c — общую площадь поверхности цилиндра (площадь боковой поверхности и площадь оснований), получим:

Подставив в эти формулы размеры Пантеона, где радиус сферы равен 21,72 м, получим:

Без учета выступов общая площадь внутренней поверхности Пантеона, включая площадь поверхности пола, в пять раз больше площади пола, примерно равной 1,482 м 2 .

* * *

Санта-Мария-Новелла. Гуманистическая архитектура и группы Леонардо

Работы над фасадом церкви Санта-Мария-Новелла во Флоренции были начаты в 1350 году, однако на первом этапе была завершена лишь нижняя его половина. В 1439 году, во время Флорентийского собора, который проходил в этой церкви, было принято решение завершить строительство. Несколько лет спустя эта задача была поручена Леону Баттисте Альберти. Альберти, автор «Десяти книг о зодчестве» и первого трактата о перспективе, спроектировал верхнюю половину фасада, сделав ее модульной, пропорциональной, равновесной, ритмичной, гармоничной и красивой. Пропорция, ритм, равновесие, красота — эти свойства архитектурных работ Альберти обозначал одним латинским словом concinnitas.

Фасад церкви Санта-Мария-Новелла во Флоренции.

(рисунок: АМА; фотография: FMC)

Парус корабля, раздуваемый ветром, — герб семейства Ручеллаи, изображенный на фасаде церкви Санта-Мария-Новелла во Флоренции.

(источник: FMC)

Первый камень современного здания церкви Санта-Мария-Новелла был заложен в день Святого Луки в 1246 году. Ранее на этом месте располагалась небольшая старинная церковь, построенная монахами-францисканцами по прибытии во Флоренцию. Строительные работы продолжались до середины следующего столетия. Церковь была освящена лишь в 1420 году папой Мартином V, резиденция которого располагалась во Флоренции.

На первом этапе работ над фасадом были построены шесть внутренних арок, две боковые двери в готическом стиле и круглые слепые арки, выполненные из белого и зеленого мрамора, имитирующие арки баптистерия Сан-Джованни. Работы были приостановлены, когда не были завершены ни центральный карниз, ни центральный портал.

* * *

«ДОКАЗАТЕЛЬСТВА ИЗ КНИГИ»

Пол Эрдёш (1913–1996) считал, что существует Книга, в которой Бог записал все самые красивые доказательства математических теорем. Он говорил, что у математиков нет причин верить в Бога, но они должны верить в существование Книги. Доказательства из Книги, как и шедевры архитектуры, обладают тем, что Альберти называл concinnitas, — пропорциональностью, равновесием, красотой.

Понять значение concinnitas нетрудно, если взглянуть на фасад церкви Санта-Мария-Новелла математическим взглядом, и еще проще, если вы вспомните некоторые доказательства, которые, как вам кажется, могут содер- жаться в Книге.

Пол Эрдёш (1992).

* * *

Джованни Ручеллаи, известный купец, обратился к своему архитектору и другу Леону Баттисте Альберти, чтобы тот завершил проект церкви. Альберти решил покрыть фасад белым и зеленым мрамором, изменив внутреннее убранство церкви, вместе с тем обеспечив гармоничность и пропорциональность здания. Внутренняя часть, выполненная в средневековом стиле, осталась почти нетронутой. К ней был добавлен центральный портал в духе римского Пантеона, а также пилястры, выполненные в стиле эпохи Возрождения. Он также спроектировал верхнюю часть здания, отделенную широким фризом, о котором мы поговорим чуть позже. Из-за особого расположения отверстия на фасаде рядом с ним Альберти поместил новый квадратный элемент, смещенный по вертикали и разделенный на три части четырьмя пилястрами. Центральные пилястры были в два раза шире боковых. Разделив архитектурное пространство на равные прямоугольники, архитектор тем самым определил основную единицу длины, которую затем использовал во всем проекте. Альберти увязал уже построенную нижнюю часть здания с новыми архитектурными элементами, установив соотношения между размерами, которые выражались кратными и дробными числами.

Пропорции церкви Санта-Мария-Новелла. Основным элементом композиции является квадрат.

 (источник: FMC)

* * *

ПОНЯТИЕ ГРУППЫ

Группа в математике — это множество G , на котором определена операция  ° . Говорят, что множество G с заданной на нем операцией ° ( G , ° ) является группой, если они обладают следующими свойствами.

1. Операция является внутренней, то есть результатом этой операции с любыми двумя элементами множества будет элемент этого же множества.

2. Операция является ассоциативной. Иными словами, для любой тройки элементов группы результат операции над ними одинаков вне зависимости от того, в каком порядке она будет выполняться.

3. Наличие нейтрального элемента.

Существует единственный элемент

4. Наличие обратного элемента.

Для любого элемента х  группы существует элемент x' такой, что

Изометрия — это геометрическое преобразование, оставляющее неизменным расстояния между элементами множества. Иными словами, изометрия — это «жесткое» перемещение, которое не деформирует множество. Примерами изометрии на плоскости являются поворот вокруг точки, параллельный перенос и осевая симметрия (отражение). Изометрией также считается скользящая симметрия — контаминация параллельного переноса и осевой симметрии, ось которой параллельна направлению переноса.

ГРУППЫ ЛЕОНАРДО

Группы Леонардо — это группы движений с конечным числом элементов и точкой, положение которой остается неизменным вне зависимости от применяемого движения. Группы Леонардо содержат только повороты и различные виды отражений (зеркальной симметрии).

Существует два вида групп Леонардо. Первый — циклические группы, состоящие из одного поворота на некоторое число градусов, причем 360° делится на это число без остатка. Примером такой группы является С 3 , содержащая поворот g на 120°. Элементами этой группы являются:

С 3    = { Id , g , g 2 },

где  Id — нейтральный элемент.

Группа С 3 с обозначенной фиксированной точкой, которая является центром вращения.

Ко второму типу относятся так называемые диэдрические группы, образованные поворотом и симметрией, ось которой проходит через центр вращения. Такие группы обозначаются D n .

Слева — фигура, инвариантная для D 3 . Справа  обозначены оси симметрии и повороты.

Например, D 3 состоит из поворота g на 120° и симметрии s . Элементами этой группы являются:

D 3 = { Id , g , g2 , s , s ° g , s ° g 2 }.

Результат применения к исходной фигуре  F движений Id , g и g 2 .

Результат применения к исходной фигуре F движений s , g ° s и g 2 ° s .

Группа  D 1 образована единственной симметрией.

* * *

Фриз церкви Санта-Мария-Новелла с 15 розами. Каждая имеет различную форму и вписана в квадрат.

(источник: АМА)

Совокупность архитектурных элементов вписана в квадрат, который, в свою очередь, делится на четыре квадрата осью симметрии и верхней границей фриза. Аттик, возведенный над фризом, вписан в квадрат, в четыре раза меньший большого квадрата. Чтобы дополнить композицию и компенсировать разницу высот центрального и боковых нефов, архитектор использовал две треугольные волюты со скругленными краями, в которые вписаны две окружности. Аттик завершается фронтоном, в который вписана окружность с изображением солнца — герб этого района Флоренции. Диаметр центрального отверстия, если считать вместе с окаймлением, в два раза больше диаметра трех окружностей — верхней, расположенной на фронтоне, и двух боковых. В композиции, как можно увидеть невооруженным глазом, доминируют квадраты. Также можно заметить, что несколько раз используется золотое сечение, правда, с меньшей точностью, а также другие соотношения. Например, ширина и высота центрального портала относятся как 2:3.

Некоторые примеры использования золотого сечения.

(источник: FMC) 

Использование подобных соотношений (не только золотого сечения) делает проект модульным, что упрощает его реализацию, а также имеет чисто эстетическую функцию, делая гармоничным сочетание различных частей единого целого.

Квадрат, в который вписана волюта, равен 1/16 большого квадрата. Соотношение сторон дверей церкви равно 2:3.

 (источник: FMC)

Результат впечатляет: двухцветное здание становится сбалансированным, ритмичным и гармоничным. Заострим внимание на центральном фризе. В нем выделяются 15 квадратов зеленого мрамора, в каждый из которых вписана роза. Если смотреть на здание невооруженным глазом, розы практически незаметны. Сделав снимок телеобъективом, мы сможем восстановить их и подробнее рассмотреть их форму. Они изготовлены из мрамора трех цветов: зеленого, белого и розового.

Рассмотрим, какие группы соответствуют каждой розе фриза. Для этого пронумеруем розы слева направо.

Первой и второй розе соответствует группа D 5 , образованная поворотом на 72° и симметрией относительно вертикальной оси.

Первая и вторая роза центрального фриза церкви Санта-Мария-Новелла.

Внешней части третьей розы соответствует группа D 16 , центральной части — D 8 , но так как внутренняя часть розы содержит четырехугольник, в сумме этой розе соответствует D 4 . Привлекает внимание тот факт, что ось симметрии повернута относительно вертикали на 11,5° (следовательно, остальные будут повернуты на 56,5°, 101,5° и 146,5°).

Третья роза.

Четвертой розе соответствует D 8 , но так как внутри кольца расположена шестиконечная звезда, то искомой группой будет D 2 .

Четвертая роза.

Пятой розе, равно как шестой и седьмой, вновь соответствует D 4 .

Пятая роза.

Шестая роза.

Седьмая роза.

Восьмой розе, занимающей центральное положение, очевидно соответствует D 6 , на что указывает центральная шестиконечная звезда.

Восьмая роза.

Девятой розе вновь соответствует D 4 .

Девятая роза.

Десятая роза — одна из самых интересных. Симметрия центральных элементов, ставящая этой розе в соответствие D 8 , нарушается обрамляющими ее тюльпанами. Поэтому эта роза не имеет осей симметрии и ей соответствует C 8 .

Десятая роза.

Одиннадцатой розе очевидно соответствует D 6 , следующей — D 8 .

Одиннадцатая роза.

Двенадцатая роза.

Тринадцатой розе, если не учитывать ее центральное кольцо, соответствует D 8 . Однако если мы рассмотрим ее подробнее, то увидим, что внутри этого кольца изображена пятиконечная звезда. Так как числа 5 и 8 являются взаимно простыми, эта роза обладает исключительно центральной симметрией. Следовательно, ей соответствует D 1 .

Тринадцатая роза.

Четырнадцатой розе вновь соответствует D4   — эта группа встречается среди всех пятнадцати роз чаще остальных.

Четырнадцатая роза.

Наконец, в пятнадцатой розе используются различные пятиугольники, однако в ее центре расположен треугольник, поэтому ей вновь будет соответствовать D 1 так как для этой розы характерна единственная симметрия.

Пятнадцатая роза.

В итоге, за исключением десятой розы, которой соответствует циклическая группа С 8 , всем остальным соответствуют диэдрические группы: двум розам — D 1 одной — D 2 , шести — D 4 , двум — D 5 , еще двум — D 6 , одной — D 8 .

Флоренция — город, полный искусства и математики. Неудивительно, что она является одним из самым популярных мест отдыха туристов. Если вы планируете побывать в этом городе на реке Арно, мы советуем не ограничиваться посещением знаменитого моста Понте Веккьо и Пьяццале Микеланджело, с которой виден весь город, и совершить «математическую» прогулку. Зайдите на немноголюдную площадь перед церковью Санта-Мария-Новелла и не спеша полюбуйтесь ее изумительным фасадом.