Я познаю мир. Ботаника

Касаткина Юлия Николаевна

Мир на кончике иглы бактерии и вирусы

 

 

Такие разные, такие похожие

Растения, грибы, лишайники, бактерии, вирусы, простейшие – все они так сильно отличаются друг от друга, что на первый взгляд кажется – между ними нет ничего общего. Ну, по крайней мере, в одном эти организмы сходны – все они являются живыми существами. Кстати, быть живыми – это значит обладать очень многими способностями, поэтому общих признаков у, скажем, вируса гриппа и раскидистого дуба довольно много.

Предполагаемое родословное древо царств живой природы

Основные свойства живых организмов – это обмен веществ, способность к росту, размножению и, конечно, наследственность, способность производить потомков, похожих на своих родителей. Так вот, прежде чем перейти к знакомству с разными и непохожими друг на друга представителями живого мира, нам придется немного остановиться на их общих свойствах. Здесь вам, возможно, встретится много новых, незнакомых понятий – не пугайтесь, они с нетерпением ждут возможности подружиться с вами и быть вашими помощниками в исследовании ботаники. Не испугались? Тогда в путь!

Итак, самое главное свойство жизни – обмен веществ: любое живое существо, будь то бактерия или человек, представляет собой нечто вроде самоуправляющейся фабрики по переработке веществ: одни вещества поступают в организм, где с ними происходят всевозможные превращения, другие выделяются наружу. Целью такого непрерывного движения веществ в живом организме является получение энергии, которая идет на обеспечение процессов его роста, развития и размножения.

Химии известно огромное количество веществ, но далеко не все они входят в состав живого организма. Основу тела любого организма составляют органические вещества: белки, углеводы, жиры и витамины. Из неорганических веществ особую роль играют вода, кислород, углекислый газ, соединения азота (они входят в состав белков), серы, фосфора, кальции, калии, натрии и микроэлементы, необходимые в небольших количествах. ;

В организме между органическими и неорганическими веществами постоянно происходят разные превращения: органические соединения разрушаются до неорганических с выделением энергии, простые неорганические вещества входят в состав сложных органических молекул.

Обобщенная схема обмена веществ в клетке

1 – поступление в клетку питательных веществ; 2 – поступление воды и кислорода; 3 – лизосома (пищеварительная вакуоль); 4 – аминокислоты; 5 – рибосомы; 6 – синтез белка; 7 – жиры, углеводы и др.; 8 – митохондрия; 9 – запасание энергии; 10 – удаление побочных продуктов; 11 – ядро.

Переработка веществ и получение энергии в живом организме происходит в клетках. Живую клетку можно сравнить с фабричным цехом, на котором безостановочно производятся необходимые клетке вещества и разрушаются другие, ненужные.

Все живые существа на Земле, за исключением вирусов, состоят из клеток. Клетки любого организма, будь то гриб, бактерия или животное в общих чертах устроены очень похоже. Снаружи клетку одевает мембрана – тонкая оболочка, отделяющая содержимое клетки от внешней среды. Если бы не мембрана, содержимое клетки – цитоплазма – просто вытекло бы. Основную часть цитоплазмы составляет вода с растворенными органическими и неорганическими веществами.

Мембрана и цитоплазма есть в любой клетке, отличия между клетками разных организмов начинаются дальше. В цитоплазме клеток животных, растений, простейших и грибов находятся органеллы – «органы» клетки, каждый из которых выполняет свои функции: рибосомы производят белки, лизосомы разрушают вредные и ненужные вещества или поврежденные структуры самой клетки, митохондрии обеспечивают дыхание клетки, вырабатывают и накапливают энергию. Все органеллы за исключением рибосом покрыты собственными мембранами. Кроме этого, клетки животных, растений, простейших и грибов содержат особую органеллу – ядро, поэтому все эти организмы называют ядерными. Сверху ядро покрывает ядерная мембрана, а внутри него находятся молекулы дезоксирибонуклеиновой кислоты, или сокращенно ДНК, на которых зашифрована наследственная информация клетки, т. е. вся информация о том, как должна выглядеть клетка, какие она несет признаки и свойства, как должна расти и развиваться.

В отличие от ядерных организмов в клетках бактерий нет ни одной органеллы, покрытой собственной мембраной, а значит, нет и ядра (посмотрите на рисунке). Молекула ДНК бактерий не защищена ядерной оболочкой и свободно плавает в цитоплазме клетки, поэтому бактерий называют доядерными организмами.

Схема строения клетки бактерий (а) и ядерных организмов (б): 1 – клеточная мембрана; 2 – цитоплазма; 3 – рибосомы; 4 – митохондрии; 5 – лизосомы; 6 – хлоропласты; 7 – кольцевая молекула ДНК бактерий; 8 – ядро; 9 – клеточная стенка ( бактерии, грибы, растения)

Однако различия между ядерными и доядерными организмами не заканчиваются отсутствием у бактерий ядра. Если вы сравните клетки, изображенные на рисунке, вы увидите, насколько сложнее устроена клетка ядерных организмов по сравнению с бактериальной.

В клеточном цехе ядерных организмов превращения одних веществ в другие осуществляются с помощью отдельных органелл: дыхание происходит в митохондриях, фотосинтез – в хлоропластах, разрушение веществ – в лизосомах. У бактерий нет других органелл, кроме рибосом, а все процессы, которые у ядерных организмов выполняют отдельные органеллы, у бактерий происходят на складках наружной мембраны клетки.

Но больше всего ядёрные и доядерные организмы отличаются количеством наследственной информации, которая содержится в их клетках. Вы уже знаете, что наследственная информация клетки записана в молекуле ДНК. Эту молекулу можно сравнить с гигантской библиотекой, имеющей на полках тысячи томов. В каждом таком томе зашифрован какой–то один признак организма. Например, том № 1 содержит информацию о размерах и форме клеток, том №2 – о строении одного из белков мембраны клетки и так далее. Эти «тома» называются генами. Каждый ген – это кусочек молекулы

ДНК, на котором записана небольшая часть общей информации об устройстве организма.

Легко представить, что чем богаче «генетическая библиотека» молекулы ДНК, тем сложнее устроен организм, тем разнообразнее его свойства и больше набор веществ, которые’он может производить для своих целей. У бактерий вся информация о строении их единственной клетки и ее свойствах заключена в одной единственной кольцевой молекуле ДНК. У ядерных организмов таких молекул может быть несколько десятков (например, у подсолнечника – 34, у человека – 46, а у одного из видов папоротников – 1250!). Судите сами, насколько больше наследственной информации содержится в библиотеке ядерных организмов!

Функции основных органелл клетки

Итак, вы уже знаете, что бактерии относятся к доядерным организмам. Это означает, что в их клетках отсутствует ядро и покрытые мембраной органеллы, свойственные всем ядерным организмам. Вся наследственная информация бактерий помещается на одной молекуле ДНК. Бактерии уступают ядерным организмам не только размерами «генетической библиотеки», а следовательно, и сложностью строения, но и размерами самой клетки. В среднем объем клетки бактерии в 2000 раз меньше клетки растения, животного или гриба.

Абсолютное большинство бактерий – одноклеточные организмы, однако многие способны образовывать колонии: цепочки, нити и грозди, окруженные общей слизистой оболочкой. Слизистая оболочка удерживает клетки колониальных бактерий вместе, помогает им закрепляться на субстрате, защищает от высыхания и проникновения бактериальных вирусов – бактериофагов (см. с. 56). Бактерии, лишенные слизистой оболочки, гораздо быстрее погибают от антибиотиков (подробнее об антибиотиках рассказывается на с. 139).

Разнообразие форм клеток бактерийЗаражение стафилококками (1) приводит к нагноениям и сепсису . Сферическую форму имеет возбудитель бактериальной пневмонии (2). Молочнокислый стрептококк , сквашивающий молоко , похож на цепочку шариков (3). Спирохета (4) является возбудителем сифилиса. Холерный вибрион (5) вызывает холеру. Палочковидную форму (6) имеет возбудитель столбняка , уксуснокислые бактерии и кишечная палочка.

Клетки бактерий, хотя они и очень мелкие, можно разглядеть даже в обычный световой микроскоп при сильном увеличении. Правда, часто приходится окрашивать бактерий специальными красителями, чтобы они стали заметны. Ну, а колонии микроорганизмов, выращенные на искусственной питательной среде можно увидеть и невооруженным глазом.

Настоящим исключением среди бактерий являются зеленые фотосинтезирующие цианобактерии. Цепочки клеток некоторых цианобактерий могут достигать длины 1 м! Ничего себе микроорганизмы! Внешне эти бактерии настолько напоминают водоросли, что до недавнего времени их и называли синезелёными водорослями («циану с» по–латыни и означает «сине–зеленый»). Ошибка обнаружилась только после того, как на клетки «водорослей» навели окуляр электронного микроскопа: отсутствие ядра, единственная кольцевая молекула ДНК, практически полное отсутствие органелл, за исключением рибосом, не оставляет сомнений – перед нами представители царства бактерий!

Нитчатая колония цианобактерий

 

Вездесущие микробы

Бактерии – самые первые живые существа, появившиеся на нашей планете. Их ископаемые остатки)были обнаружены в осадочных породах Западной Австралии и Южной Африки возрастом 3,5 млрд. лет. Напомним, что вид человек разумный, к которому мы относимся, появился на планете только около 40 тыс. лет назад. Бактерии были единственной формой жизни на Земле по крайней мере в течение 2 млрд. лет и до сих пор остаются самой многочисленной группой живых организмов на Земле: например, в 1 грамме плодородной почвы может содержаться 2,5 млрд. бактерий; 90% всей биомассы (т.е. массы всех живых существ) океана составляют бактерии.

Бактерии вездесущи. Они могут выжить там, где не может существовать ни один живой организм. Есть бактерии, способные жить только в отсутствии кислорода: в кишечнике жвачных животных, в болотах, в глубинах морей и океанов – таковы, например, метанообразующие бактерии.

Другие бактерии одинаково хорошо чувствуют себя и в присутствии кислорода, и без него. Известны бактерии, обитающие при высоком давлении около глубоководных вулканических кратеров при температуре свыше +360°С (столь высокая температура воды может поддерживаться только при высоком давлении, на дне океана или искусственно в лаборатории).

Пределы выносливости некоторых бактерий просто «космические»! Ученые полагали, что жизнь в щелочной атмосфере Юпитера невозможна, но некоторые бактерии из долины Ливермор в Калифорнии оказались способными жить и даже размножаться в таких условиях. Другие бактерии могут выдерживать условия, напоминающие атмосферу Венеры. Эти эксперименты, конечно, не доказывают существование бактериальной жизни на других планетах, но дают некоторые основания надеяться, что жизнь в виде бактерий возможна и за пределами Земли. '

Бактерии могут длительное время оставаться в состоянии анабиоза, на грани жизни и смерти, когда все процессы жизнедеятельности приостанавливаются. Бактерии возрастом не менее 10.000 (а возможно, и около миллиона) лет обнаружены в Антарктиде в образцах пород и льда, взятых с глубины более 430 м. При температуре ниже –7°С они находились в анабиозе, но при повышении температуры ожили. Ожили после нескольких тысячелетий спячки!

По нашим скромным человеческим меркам все бактерии проявляют фантастическую живучесть, но и среди них есть своеобразные чемпионы по выживанию. Самой большой устойчивостью к вредным воздействиям окружающей среды обладают бактерии, способные к образованию спор. Для них даже придумали особое название – бациллы.

Спора – это особая стадия развития бациллы, исключительно устойчивая к губительным для клетки воздействиям. Такая устойчивость достигается образованием плотной толстой оболочки (объем оболочки составляет 50% от общего объема споры), одевающей ядро вместе с тонким слоем цитоплазмы. Толстый «панцирь» надежно предохраняет бактерию от высокой или низкой температуры, действия химических веществ и жесткого космического излучения. В отличие от обычной клетки, на 90% состоящей из воды, спора практически полностью обезвожена, из–за этого в ней прекращаются все процессы обмена веществ, и клетка впадает в состояние анабиоза, что и делает ее такой неуязвимой.

В лабораторных условиях бациллы превращаются в споры, если их долго выращивать на одной и той же питательной среде, не меняя ее и не удаляя из нее вредные продукты обмена веществ – отходы жизнедеятельности. В природе бациллы образуют споры при любых неблагоприятных условиях.

Споры бактерий обладают поразительной жизнеспособностью: их годами можно держать в высушенном состоянии, кипятить (правда, лишь при обычном атмосферном давлении), помещать в вакуум, замораживать до температуры жидкого гелия (–270°С) – они остаются жизнеспособными и, попав в благоприятные для развития условия, вновь прорастают в обычные клетки.

Прорастающие споры бактерий

К бактериям, способным к образованию спор, относятся возбудители таких опасных заболеваний, как столбняк,^ботулизм, сибирская язва, газовая гангрена. Как же можно убить сверхустойчивые споры этих смертоносных микробов? Ведь они могут попасть на хирургические инструменты и в продукты питания. Самый простой способ избавиться от спор бактерий – покипятить все инструменты под давлением в две атмосферы. Это делается в особых приборах – автоклавах.

Можно идти и другим путем – «перехитрить» спору, дать ей превратиться в обычную, уязвимую клетку, а затем убить сравнительно небольшим нагреванием. Для этого раствор, в котором нужно убить споры бактерий, выдерживают около суток при температуре +37‘С: при этой температуре большинство бактерий чувствует себя лучше всего. Затем раствор подогревают до температуры +80°С, и бактерии погибают. Проблема только в том, что некоторые « хитрые » споры не спешат прорастать сразу и остаются живыми. Чтобы убить и их, описанную процедуру проделывают еще один–два раза. В конце концов живых спор уже не остается. Именно так предохраняют от порчи многие пищевые продукты, например молоко и пиво.

Способ обеззараживания продуктов путем «провокации» спор к прорастанию получил название пастеризации, по имени французского микробиолога Луи Пастера, разработавшего этот метод.

Пастеризация хороша тем, что позволяет сохранить все ценные вещества, содержащиеся в пище (прежде всего, витамины), не разрушая их кипячением.

 

Созидатели или разрушители?

Бактерии устроены гораздо проще, чем другие обитатели Земли, однако простота строения не мешает им играть самые разнообразные роли в экосистеме планеты.

Уже известные нам цианобактерии являются счастливыми обладателями зеленого пигмента хлорофилла и способны к фотосинтезу.: используя энергию солнечного света, они превращают углекислый газ и воду в органические молекулы сахаров, белков, витаминов и жиров, одновременно выделяя кислород.

По всей видимости, цианобактерии были первыми фотосинтезирующими организмами на Земле. С их появлением в атмосфере нашей планеты начал накапливаться кислород (до этого, в первичной атмосфере Земли, его не было). Когда кислорода накопилось достаточно, он начал частично превращаться в озон – газ, не пропускающий в атмосферу губительное для всего живого жесткое космическое излучение. Только после образования озонового слоя жизнь смогла проникнуть в верхний слой воды и выйти на сушу. А поскольку кислород и озон образовались в результате деятельности первых фотосинтезирующих бактерий, можно Смело сказать, что своим возникновением все остальные организмы обязаны именно им.

Многие виды бактерий питаются готовыми органическими веществами, подобно животным. Некоторые употребляют в пищу мертвые растительные и животные останки – их, вместе с грибами, по справедливости можно назвать санитарами планеты, очищающими ее поверхность от мертвой массы растений и животных.

Удивительна способность бактерий использовать в пищу, казалось бы, самые несъедобные вещества. Бактерии переваривают красители, пестициды, нефть, синтетические ткани, быстро осваивают совершенно новые материалы. Например, нейлон, впервые полученный в 1939 году, уже через несколько десятилетий стал источником пищи для бактерий из рода флавобактериум (Flavobacterium).

Если растения и цианобактерии являются строителями органического вещества, то другие бактерии, а также грибы – профессиональные разрушители. И эта профессия ничуть не менее важна. С помощью гнилостных бактерий и грибов органические вещества снова превращаются в неорганические и могут быть повторно использованы фотосинтезирующими организмами. Если бы на земном шаре жили только животные и растения, неизбежно наступил бы момент, когда весь углекислый газ воздуха, серные и азотные соединения почвы были бы усвоены растениями и перешли в органические соединения. Растения погибли бы из–за недостатка питательных веществ, а с ними погибли бы и животные. Этого не происходит благодаря бактериям и грибам, которые превращают органические соединения отмерших растений и животных в неорганические и вновь вовлекают их в природный круговорот веществ..

Роль бактерий в круговороте веществРастения и цианобактерии (1) синтезируют органические вещества , используя энергию солнечного света и простые неорганические соединения . Органические соединения потребляются животными (2). Органические соединения отмерших рас ■ тений и животных разрушаются бактериями и грибами (3) до простых неорганических соединений.

У бактерий и грибов, таких непохожих по другим признакам, помимо профессии мусорщиков есть еще одна общая черта: способ поглощения питательных веществ. В отличие от животных, которые активно заглатывают частицы пищи, грибы и бактерии всасывают растворенные питательные вещества всей поверхностью клеток. Для того чтобы сделать пищу доступной для всасывания, бактерии и грибы выделяют пищеварительные соки наружу и пищеварение у них происходит не внутри организма, как у животных, а снаружи (из животных такой тип питания используют пауки).

Среди бактерий встречаются и такие, что используют в пищу только органические вещества живых организмов – это многочисленные паразиты растений, животных и человека, вызывающие различные заболевания. В их числе и обычные простуды, и такие опасные заболевания, как коклюш, чума, дифтерит, туберкулез, сибирская язва, бруцеллез, и многие другие. Возбудители этих болезней разрушают клетки и ткани организма, отравляют его ядовитыми продуктами своей жизнедеятельности и часто вызывают гибель человека или животного.

Ядовитые продукты жизнедеятельности некоторых болезнетворных бактерий разрушающе действуют на организм животных в ничтожных концентрациях. Например, 30 г яда дифтерийных бацилл достаточно, чтобы убить 75.000 крупных собак. Поэтому, чтобы убить животное или человека достаточно самого ничтожного количества этих микробов. Главным образом, они концентрируются в глотке больного, а ядовитое вещество распространяется по всему организму, действуя на сердечную мышцу и почки, вызывая паралич дыхательного нерва и быструю смерть от удушья. Сейчас дифтерия встречается довольно редко, поскольку большинство детей проходят вакцинацию, но еще до середины XIX века от этой болезни погибало 50–60 детей из 100 заболевших.

 

Выдающиеся химические способности

Всем живым организмам для поддержания жизни, развития и размножения требуется энергия. Энергию можно получать из разных источников. Самым «дешевым» и универсальным источником энергии является солнце. Его энергию используют организмы, способные к фотосинтезу, это – цианобактерии, растения и некоторые простейшие.

Грибы и часть бактерий, которые питаются по типу животных, получают энергию, разрушая готовые органические вещества, поступающие в организм с пищей. Кислород, поступающий в клетки в процессе дыхания, окисляет белки, жиры и углеводы до более простых соединений. Окисление – это химическая реакция, похожая на обычное горение, только очень медленное. Такое биологическое «горение» происходит внутри живых клеток, не повреждая их. Как и при горении, при окислении выделяется энергия. Часть ее расходуется на обогрев организма, а часть идет на построение новых «грибных» или «животных» белков, жиров и углеводов.

Гетеротрофное питание

Хемотрофное питание

Автотрофное питание

Итак, энергию можно получать от солнца или при разрушении органических веществ. Оба эти способа бактерии освоили задолго до того, как на Земле появились первые растения, животные и грибы (фотосинтез был «изобретен» бактериями еще за 1,9 млрд. лет до появления первых предков растений). Благодаря выдающимся «химическим способностям» бактерии освоили еще один способ добывания энергии: они единственные существа на планете, которые научились использовать энергию химических связей неорганических соединений.

Вы уже знаете, что при химических превращениях молекулы одного вещества разрушаются и преобразуются в молекулы другого вещества. Этот процесс может сопровождаться выделением энергии. Например, горение водорода с образованием воды сопровождается выбросом энергии такой силы, что происходит взрыв.

Точно такую же реакцию для получения энергии проводят водородные бактерии. Конечно, никакого взрыва внутри клетки не происходит, энергия высвобождается медленно и поэтапно. Важное отличие биохимических реакций от химических состоит в том, что в живых клетках реакции протекают не сразу, а в несколько этапов.

Своеобразная группа метанообразующих бактерий получает энергию в процессе получения метана (это тот самый газ, который горит у нас на кухне) из углекислого газа и водорода. Учеными доказано, что запасам метана в недрах земли мы обязаны деятельности метанообразующих бактерий, длящейся уже многие сотни миллионов лет.

Не менее интересна деятельность железобактерий, которые получают энергию, превращая различные соединения железа в гидрат оксида железа, или попросту – в ржавчину. Пятна ржавчины могут встречаться на болотах, в стоячих озерах и медленных ручьях – это следы жизнедеятельности железобактерий. Интересно, что в отличие от серобактерий, которые накапливают серу внутри клеток, железобактерии выделяют оксиды железа на поверхность клеток: в итоге вокруг клеток формируются своеобразные железные доспехи.

Железобактерии в чехле гидрата окиси железа

Серобактерии обеспечивают себя энергией, получая серу из сероводорода, при этом в местах постоянного выхода сероводорода (возле вулканов) образуются залежи самородной серы.

Другие серобактерии получают энергию, превращая серу в соли серной кислоты. Тем самым серобактерии оказывают огромную услугу растениям, которые могут усваивать необходимую для построения растительных белков серу только в виде растворимых в воде солей серной кислоты.

В непроглядной тьме подводных глубин, куда не попадает ни один лучик света, серобактерии обеспечивают энергией целое сообщество глубоководных организмов.

Это может показаться странным, но жизнь в необъятных океанских просторах нашей планеты сосредоточена в самых поверхностных слоях, а толща воды и дно представляют собой практически мертвую пустыню. Такое неравномерное распределение жизни в океане легко объяснимо. Растения, которые кормят все остальные организмы, могут расти только на свету, поэтому глубже 200 м вы не встретите ни одной водоросли – там для них слишком мало света. Те немногие организмы, которые все–таки выживают на глубинах, перебиваются остатками погибших растений и животных, постепенно оседающих на дно с поверхности водоемов. Сами понимаете, что на таком скудном рационе может выжить очень ограниченное число животных.

Но оказалось, что темные глубины океанов далеко не так бедны жизнью, как это представлялось раньше. В 70–х годах XX века на глубинах от 2600 до 6000 м в подводной «пустыне» были обнаружены настоящие «оазисы », где численность и биомасса живых организмов в 1000–10 000 раз превосходят обычные для таких глубин. Как образовались эти глубоководные «оазисы»?

Богатые очаги жизни на дне океанов находят вокруг действующих подводных вулканов, где температура воды может достигать +40°С (из–за страшного давления она не закипает) и где вместе с магмой из глубины Земли выбрасываются огромные количества сероводорода, метана и углекислого газа. Вот в таких, мягко говоря, неподходящих для ^кизни условиях обитают многочисленные жители глубоководных «оазисов».

Прежде всего бросаются в глаза заросли белых и коричневатых трубок длиной до 2,5 метра с торчащими из них ярко–красными султанами щупалец. Эти трубки строят гигантские черви вестиментиферы.

Вестиментиферы не имеют кишечника, и питанием их обеспечивают симбиотические серобактерии, живущие в особой пористой ткани, занимающей до 30% объема тела червя. Здесь серобактерии не испытывают недостатка в сероводороде и углекислом газе, которыми они питаются, и надежно защищены от резких перепадов температур. Перепады же температуры в таких местах просто фантастические: при удалении от жерла подводного вулкана на каждые 6–8 см температура падает на 60°С. На расстоянии метра от вулкана температура воды понижается от +400°С до всего лишь +2ºС!

Вестиментифера

Несмотря на свои гигантские размеры и защитные трубки, вестиментиферы становятся жертвами крупных крабов, которые обкусывают их щупальца. У подножия поселения вестиментифер скапливаются креветки и крабы–мусорщики, брюхоногие моллюски, мидии и различные рыбы, подъедающие остатки трапезы крабов. Поскольку трубки червей всегда покрыты «зарослями» бактерий, на них поселяются различные мелкие животные «соскабливатели», которые питаются этими бактериями и друг другом: различные ракообразные, моллюски, многощетинковые черви и другие животные.

И жизнь всех этих многочисленных и разнообразных животных зависит от невидимых серобактерий, ведь в темных глубинах океанов только эти микроорганизмы способны создавать органические вещества, которые затем словно по цепочке передаются вестиментиферам, хищным крабам, рыбам и многочисленным животным–мусорщикам.

Может быть, на других планетах и нет жизни, но подводные «оазисы» можно вполне назвать «другой планетой». Ведь мы привыкли, что источником пищи для животных являются растения, что свет – обязательное условие жизни создателей органических веществ.

А глубоководные серобактерии подводных вулканов способны в темноте создавать органические вещества только из сероводорода, углекислого газа и воды. Чтобы снабжать энергией целое сообщество живых организмов, этим бактериям не требуется ни солнечного света, ни готовой органики.

Возможности бактерий кажутся безграничными. Они способны вырабатывать сильнейшие яды и антибиотики; могут использовать энергию света, как растения, энергию готовых органических веществ, как животные и грибы; они единственные среди всех живых организмов умеют использовать энергию неорганических соединений. Трудно найти вещество, которое бактерии не смогли бы использовать в пищу.

Выдающиеся химические способности делают бактерий вездесущими и универсальными организмами. Попробуйте придумать условия, в которых бактерии не смогли бы выжить, и вы ответите на вопрос, почему они живут уже 3,5 млрд. лет и до сих пор являются самыми многочисленными обитателями Земли.

 

Лучшие друзья

Среди бактерий есть не только опасные паразиты и разрушители органики: некоторые бактерии способны к мирному и даже взаимовыгодному сожительству с другими организмам?

В желудке крупного рогатого скота и других жвачных животных обитают миллионы и миллиарды бактерий. Они питаются растительной массой, которой постоянно набит желудок жвачных животных, но при этом бактерии не только не объедают своих хозяев, а наоборот, помогают им переваривать пищу. Дело в том, что клеточная стенка растений состоит из целлюлозы – очень прочного вещества, переваривать которое организм коровы или буйвола не может. Бактерии–симбионты разрушают целлюлозную стенку до молекул сахаров, которые легко усваиваются организмом животного. Конечно, бактерии помогают перевариванию клетчатки не бескорыстно – часть питательных веществ они используют сами, но без их помощи животные просто погибли бы от голода.

Здоровье человека тоже зависит от бактерий. Кишечная палочка, населяющая наши с вами кишечники, вырабатывает витамины группы В и витамин К. Эти витамины не синтезируются организмом человека и могут быть получены только с продуктами питания или от бактерий. Если убить все бактерии, обитающие в желудочно–кишечном тракте, как это бывает, например, при длительном лечении антибиотиками, то ответом организма станет расстройство пищеварительной системы – дисбактериоз.

Выгоды, которые получают животные от сожительства с бактериями, очевидны. И для бактерий эти отношения тоже полезны. Во–первых, обитая в пищеварительном тракте животных, они постоянно находятся в стабильных благоприятных условиях. Во–вторых, животное–хозяин бесперебойно снабжает своих микроскопических помощников питательными веществами, да не просто травой и ветками, а разжеванной, размягченной, смоченной слюной пищей. В таких райских условиях симбиотические бактерии растут и плодятся как на дрожжах, поэтому даже то обстоятельство, что часть из них переваривается организмом хозяина вместе с пищей, не имеет значения по сравнению с выгодами, которые получают оставшиеся бактерии.

 

Друзья растений

Микробы поддерживают взаимовыгодные отношения не только с животными, но и с растениями.

Наиболее дефицитным элементом, необходимым для построения белков и нуклеиновых кислот растительных и животных клеток, является азот. Странно получается: с одной стороны, азот в атмосфере составляет порядка 78% (а жизненно необходимый кислород – всего 21%), с другой, его почти всегда не хватает. Дело в том, что газообразный азот, запасы которого в атмосфере действительно огромны, недоступен ни растениям, ни животным. Растенияспособны усваивать азот только в виде растворимых солей аммония, нитратов и нитритов из почвы. Животные получают азот, потребляя растительные белки. Останки животных и растений, разлагаемые бактериями и грибами, обогащают почву азотистыми соединениями, откуда вновь поступают в ткани растений.

Но количество доступных для растений азотистых соединений в почве часто недостаточно из–за того, что часть их разрушается и вновь попадает в атмосферу в виде газообразного азота. Процесс разрушения азотистых соединений почвы связан с особой группой бактерий, которых называют денитрифицирующими (приставка «де» означает отрицание, а нитрификация – процесс связывания атмосферного азота).

С проблемой снижения плодородия почв, вызванной в первую очередь нехваткой азотистых соединений, люди впервые столкнулись на заре развития земледелия. После непродолжительного использования почва на полях, где возделывались культурные растения, истощалась, и урожай падал. Приходилось бросать пашни и переходить на новые земли. Бывшие поля зарастали дикорастущими растениями, и спустя несколько десятилетий их плодородие восстанавливалось. Со временем люди стали замечать, что чем больше бобовых растений встречается на брошенных землях, тем быстрее они восстанавливают свое плодородие. Еще до наступления нашей эры о полезном влиянии бобовых на почвы писали древнегреческий философ Теофраст и римляне Катон, Варрон, Плиний и Вергилий. Французскцй агрохимик Жан Буссенго в 1838 году установил, что люцерна и клевер обогащают почву азотом, а зерновые и корнеплоды истощают.

Каким же образом бобовые растения способствуют накоплению в почве азота? Попробуйте выкопать с корнями обычное растение клевера. Внимательно рассмотрев корни, вы заметите маленькие шарообразные вздутия, отдаленно напоминающие клубни картофеля, растущие один из другого. Секрет связи плодородия почв и бобовых растений кроется в этих клубеньках. Ткани корня бобовых разрастаются не сами по себе – образование клубеньков происходит под действием особых бактерий, живущих и размножающихся внутри них. Эти бактерии получили общее название азотфиксирующих за способность превращать газообразный азот в доступные для растений соединения. В данном случае мы с вами имеем дело с классическим примером симбиоза: растение получает от клубеньковых бактерий азотистые соединения, а те обеспечиваются минеральными солями и сахарами. Усваивать газообразный азот могут не только клубеньковые бактерии, но и свободноживущие почвенные бактерии азотобактер и клостридиум Пастера (названный в честь выдающегося французского микробиолога). К сожалению, у свободноживущих азотфиксаторов усвоение азота происходит менее эффективно, чем у симбиотических клубеньковых бактерий. Это вполне объяснимо, учитывая, в каких «райских» условиях живут бактерии в клубеньках. Помимо бобовых, среди наших растений клубеньки на корнях образуют некоторые деревья: ольха и облепиха.

Круговорот, азота в природе

Растения (1) потребляют азот (N) в виде нитратов , нитритов и солей аммония и строят из них свои белки. Растительные белки усваиваются животными (2). После отмирания растительных и животных организмов гнилостные бактерии (3) переводят азот из состава белков в неорганические соединения . Клубеньковые бактерии (4) и свободноживущие азотфиксаторы усваивают недоступный растениям газообразный азот (Nг) и переводят его в доступные для растений формы. 5 – денитрифицирующие бактерии .

Клубеньки на корнях бобового растения

Растения, вступившие в симбиоз с азотфиксирующими бактериями, получили большие преимущества перед другими растениями. Теперь им не страшна нехватка азотистых соединений: благодаря своим невидимым помощникам бобовые растения могут вырасти на самых бедных почвах.

Лишайники, с которыми вы познакомитесь дальше, своей невероятной выносливостью тоже во многом обязаны бактериям. Расти на голых скалах, оползнях и камнях, где совершенно нет почвы, многие из них могут только благодаря цианобактериям, которые постоянно живут внутри тела лишайника. Эти бактерии тоже обладают способностью связывать атмосферный азот, что делает лишайники такими неприхотливыми в выборе места жительства.

 

Невидимые помощники человека

Среди бактерий есть немало помощников человека. С помощью молочнокислых бактерий получают сыр, сметану, кефир, ряженку, простоквашу, варенец, кумыс и многие другие кисломолочные продукты. Уксуснокислые бактерии превращают сахара и спирты в уксусную кислоту, раствор которой в быту называют уксусом.

Деятельность молочнокислых бактерий вы наверняка сами наблюдали не один раз. Стоит в теплый день оставить молоко на столе, как к вечеру оно уже приобретает кислый вкус. На следующие сутки или через день кислое молоко сворачивается, а под слоем густой простокваши скапливается жидкая сыворотка. Все эти превращения происходят из–за деятельности молочнокислых бактерий: в средних и северных широтах скисание молока вызывают молочнокислые стрептококки, а в более южных районах – болгарская палочка. И те, и другие микробы питаются молочным сахаром – лактозой, которая входит в состав молока. При этом образуется большое количество молочной кислоты и немного уксусной, янтарной, муравьиной кислот, спирта и других веществ^ придающих молочнокислым продуктам их особый вкус и аромат. Под влиянием кислот белок молока свертывается, и молоко превращается в простоквашу.

Каким образом молочнокислые бактерии попадают в молоко? Микробы содержатся в большом количестве даже в очень свежем молоке (в одном миллилитре от сотен тысяч до нескольких миллионов). Некоторое количество бактерий содержится и на вымени коровы и попадает в молоко во время дойки. Молоко, которое продается в магазинах, подвергается пастеризации, суть которой вы уже знаете, и не содержит бактерий. В этом случае они появляются в молоке, оседая на его поверхность из воздуха.

Нужно сказать, что в молоке содержатся отнюдь не только молочнокислые бактерии. Здесь же встречаются кишечная палочка, дрожжи, маслянокислые и разнообразные гнилостные микробы, вызывающие порчу молока. И все эти разнообразные микроорганизмы находят в молоке место жительства и питательную среду, бурно размножаются и взаимодействуют между собой.

Вот каким образом происходит взаимодействие между микробным населением, если молоко хранится при комнатной температуре. Вначале все группы бактерий развиваются независимо друг от друга, и гнилостные микробы иногда могут составлять до 90% от всей массы микроорганизмов. В результате жизнедеятельности молочнокислых бактерий в молоке постепенно накапливается молочная кислота. Ее концентрация постепенно растет и приводит к гибели сначала гнилостных, а затем и всех других групп микробов, в то время как количество молочнокислых бактерий продолжает расти. Вскоре молочного сахара, которым питаются бактерии, остается так мало, а молочной кислоты накапливается так много, что это задерживает рост самих молочнокислых бактерий, и их число постепенно уменьшается. Молочная кислота – продукт жизнедеятельности молочнокислых бактерий {как мочевина у млекопитающих) в этом случае выступает в роли природного консерванта, сдерживая развитие микроорганизмов.

Молочнокислые бактерии также принимают участие в процессе силосования кормов и квашения продуктов. Вырабатываемая ими молочная кислота определяет особый вкус и сохранность квашеной капусты и огурцов. Та же молочная кислота предохраняет от порчи и силосованное сено, идущее на корм скоту в зимнее время. Известны случаи хранения силоса до семи лет без потери его питательной ценности.

Существуют бактерии, которые способны вырабатывать различные антибиотики – вещества, оказывающие губительное влияние на другие бактерии, в том числе на болезнетворные (подробнее об антибиотиках рассказывается на с. 139). Среди бактериальных антибиотиков широко используются тиротрицин, бацитрацин, субтилин и грамицидин.

Последнее время ученые активно исследуют способность бактерий разрушать трудно разлагаемые искусственные вещества: красители, пластмассы и другие синтетические полимеры, пестициды, нефтепродукты. Все эти вещества человечество производит в таком огромном количестве, что после использования возникает проблема их переработки и уничтожения. Естественным путем многие искусственно созданные человеком материалы практически не разрушаются или разрушаются очень медленно. Например, обычный полиэтилен полностью перерабатывается бактериями и микроскопическими грибами только через 90–100 лет. Сжигание синтетических материалов – тоже не выход, поскольку при этом в воздух выделяется большое количество вредных соединений.

Выход предлагают бактерии. К настоящему времени обнаружено несколько групп микробов, которые способны быстро и эффективно разрушать синтетические материалы. Среди них уже упоминавшиеся бактерии, разрушающие нейлон. Используя эти микроорганизмы, генетики и микробиологи пытаются искусственно вывести такие «породы» бактерий, которые бы избирательно разрушали те или иные вещества. Есть надежда, что именно с помощью бактерий в ближайшем будущем человечеству удастся решить проблему переработки промышленных отходов и мусора.

 

Поведение бактерий

Хотя большинство бактерий состоит из одной клетки, они способны к активному передвижению и даже к простейшим формам поведения, которые носят названия таксисов. Таксис – это движение клетки к какому–либо раздражителю или от него. Так, у фотосинтезирующих цианобактерий проявляется положительный фототаксис, т.е. они движутся в сторону источника света. При этом выделяется большое количество слизи, по которой клетки цианобактерий перемещаются путем скольжения.

Кишечная палочка проявляет положительный таксис на 20 веществ (большинство из них – сахара) и отрицательный на 8 отпугивающих веществ–репеллентов. Для передвижения кишечная палочка использует многочисленные жгутики. Спирохеты передвигаются, ввинчиваясь в среду, подталкиваемые вперед единственным жгутиком, работающим наподобие корабельного винта.

Некоторые бактерии, обитающие в воде, способны ориентироваться в магнитном поле земного шара и постоянно плывут в одном и том же направлении. В Северном полушарии бактерии движутся на север, следуя линиям магнитного поля, которые направлены в глубь водоема. Перенесенные в Южное полушарие, те же бактерии будут двигаться на юг, также стремясь в толщу воды. Предполагается, что направленное движение «магнитных»» бактерий вдоль линий магнитного поля – магнитотаксис – способствует перемещению клеток в более богатые питательными веществами придонные слои воды.

Если цианобактерии своим внешним видом и образом жизни напоминают растения, то диктиобактер ближе к животным. Диктиобактер – уникальное явление в царстве бактерий – это не просто скопление клеток, а единый многоклеточный бактериальный организм, клетки которого способны к согласованному выполнению определенных действий. Второе название этого существа – хищная бактериальная сетка – отражает способ его питания. Все клетки хищной бактериальной сетки расположены в один слой, действительно напоминая пустую сеточку, покрытую слизью, которую выделяют все клетки колонии. Медленно перемещаясь по илистому дну водоема, диктиобактер «разыскивает» добычу.

Диктиобактер

Вот он встретил на своем пути какую–то живность из числа микроорганизмов, и начал наползать на свою жертву. Через некоторое время жертва оказывается внутри сетки, выбраться из которой она не может, поскольку все ячейки затянуты густым слоем слизи. Клетки, образующие эту своеобразную ловушку, сближаются и начинают выделять пищеварительный сок. Переваривание жертвы происходит внутри сеточки диктиобактера подобно тому, как переваривается пища в желудке многоклеточного животного!

 

Вирусы

Вам, наверное, приходилось слышать о вирусах гриппа, бешенства, герпеса, СПИДа. Эти вирусы вызывают болезни человека и животных. Существуют вирусные заболевания растений, например табачная мозаика, при которой листья табака покрываются беловатыми пятнами. Даже бактерии могут поражаться вирусами–бактериофагами (от слова фагос – пожиратель).

Вирусы – удивительные творения природы. Это не только самые мелкие (их размеры сопоставимы с размерами крупных молекул!), но и самые просто устроенные существа на планете. Вы уже знаете, что мельчайшей неделимой структурной единицей живых организмов является клетка. Из клеток состоят все живые организмы, населяющие Землю. Все, кроме вирусов.

В центре вирусной частицы находится молекула нуклеиновой кислоты (НК), которую со всех сторон окружают частицы белка – вот и весь вирус! Своим внешним видом и свойствами вирус больше всего напоминает белковый кристалл. Только подумайте, живое существо может осаждаться в виде кристалла, как обыкновенная поваренная соль!

Строение вирусной частицы: 1 – молекула нуклеиновой кислоты; 2 – молекулы белков оболочки

Про вирусы можно без преувеличения сказать, что они занимают промежуточное положение между миром живой и неживой природы. Вне живого организма вирус ничем не выдает присутствия жизни: не двигается, не растет, не дышит, не способен размножаться – по всем признакам это объект неживой природы, не обладающий ни одним свойством живой материи! Признаки живого проявляются у вируса, когда он проникает в живую клетку и приступает к размножению.

Причем и в клетку–то попадает не вся вирусная частица, а только «голая» вирусная нуклеиновая кислота, содержащая генетическую программу образования копий вируса. По этой программе клетке отводится роль «сырьевого придатка» и «дешевой рабочей силы» для создания сотен новых вирусных частиц. Получив вражескую программу, клетка начинает послушно выполнять «приказания» вирусной нуклеиновой кислоты. С этого момента пораженная клетка перестает выполнять свойственные ей функции, ее работа целиком и полностью перестраивается в соответствии с нуждами вируса–захватчика. Вирусная нуклеиновая кислота размножается, используя и строительные ресурсы клетки–хозяина, и даже ее рабочие «инструменты», которых, естественно, у самого вируса нет: белки оболочек будущих вирусных частиц строятся на рибосомах порабощенной клетки.

После того как в зараженной клетке накопится достаточное количество деталей будущих вирусных частиц, наступает предпоследняя стадия размножения вирусов – «сборка деталей». Этот процесс обычно происходит вблизи клеточной оболочки. Растиражированные вирусные нуклеиновые кислоты одеваются в белковые оболочки и покидают клетку. Теперь вирус готов к дальнейшему путешествию: от клетки он получил все, что ему нужно.

Выход вирусных частиц из клетки обычно сопровождается ее гибелью. В одних случаях клетки словно взрываются, в других – в оболочке клетки образуется отверстие, через которое вытекает ее содержимое. В случае заболевания табачной мозаикой у растения разрушаются хлоропласты, в результате чего часть клеток теряет способность к фотосинтезу, и урожай табака падает.

Цикл развития вирусной частицы: 1 – прикрепление вируса , к мембране клетки–хозяина; 2 – нуклеиновая кислота вируса; 3 – белковая оболочка вируса; 4 – белки вируса; 5 – готовая вирусная частица; 6 – ДНК хозяина .

Активная жизнь вирусов продолжается от нескольких минут до многих часов. Быстрее всего расправляются с клетками вирусы, поражающие бактерии – бактериофаги (иногда их для краткости называют просто фагами).

От момента встречи фага с бактерией до ее гибели проходит всего 15–20 минут. При этом из одной клетки выходит до нескольких тысяч новых частиц фага, и каждая из этих частиц в свою очередь может заразить здоровую клетку и через короткое время разрушить ее, произведя на свет новое поколение невидимых убийц. Процесс размножения фагов продолжается до тех пор, пока не будут уничтожены все чувствительные (т.е. не имеющие иммунитета) к фагу бактерии.

Возбудитель гриппа за один цикл размножения производит около 100 новых вирусных частиц. По мере созревания они поднимаются к поверхности клетки и медленно проникают через ее оболочку, одеваясь в нее. Клетка работает на износ и, после того как ее способность производить вирусные частицы истощается, разрушается и гибнет.

В истории человечества вирусы сыграли не меньшую роль, чем болезнетворные бактерии. Грозные эпидемии вирусных заболеваний уносили жизни миллионов людей. Так, по приблизительным расчетам, в XVIII веке от оспы (а это заболевание вызывается именно вирусом) умерло 60 миллионов человек.

Одним из самых страшных бедствий в истории была эпидемия гриппа 1918–1919 гг., когда от «испанки», как называли тогда грипп, в одной только Великобритании погибло 150 000 человек. В Индии от болезни погибло более 5 миллионов человек, а общее число людей, убитых болезнью, превзошло количество погибших в Первой мировой войне.

Вирусу–возбудителю желтой лихорадки обязана своей независимостью Республика Гаити. Французская армия, посланная Наполеоном, с легкостью разбила повстанцев, но не смогла закрепить победу из–за эпидемии желтой лихорадки: из 25.000 французов выжило и вернулось на родину только 3000 человек.

 

Исследование невидимок

Увидеть вирусы удалось только в 40–х годах XX века, но об их существовании человек узнал гораздо раньше, задолго до изобретения электронного микроскопа. Еще в 1892 году молодым русским ботаником Дмитрием Иосифовичем Ивановским был открыт возбудитель табачной мозаики.

В конце XIX века табачные плантации Украины и Бессарабии поразило странное заболевание: на листьях растений стали появляться желтоватые пятна, урожайность табачных плантаций резко упала. Причину заболевания многие исследователи искали в неправильной агротехнике выращивания табака. Табаководы обвиняли в снижении урожая и солнечные лучи, и холодные ночи и туманы, а немецкий ученый Адольф Майер полагал, что причиной болезни является бактерия, но увидеть эту загадочную бактерию ему никак не удавалось.

Табак виргинский

Для того чтобы определить, заразна ли эта болезнь, Ивановский попробовал искусственно заразить здоровые растения табака. Для этого он набирал вытяжку из заболевших растений в тонкие трубочки и втыкал их в жилку здорового листа. На двадцатый день эксперимента заболели все зараженные растения. Итак, болезнь заразна... Но где же заразное начало? Сколько ни просиживал Ивановский за микроскопом, возбудителя заболевания обнаружить не удавалось.

Может быть, микробов очень мало? Но все попытки вырастить загадочные микроорганизмы на искусственных питательных средах заканчивались ничем.

Тогда ученый решил использовать фарфоровый фильтр, который имеет такие маленькие поры, что через них не проходят даже бактерии. Но сок больных растений, пропущенный через тончайший фильтр, продолжал оставаться заразным, а на фарфоровых порах микробов обнаружить не удавалось.

В чем же дело? Возможны были два решения. Первое – заразное начало – яд, выделяемый микроорганизмом, которого еще не удалось увидеть. Но это предположение показалось Ивановскому неправдоподобным. Ведь при переносе сока от одного растения к другому яд должен разбавляться, становиться всё менее концентрированным и, следовательно, менее опасным, но этого не происходило. Значит, должен существовать какой–то возбудитель, гораздо меньших размеров, чем все известные бактерии. В пораженных клетках Ивановский постоянно находил странные кристаллические включения. Ученый смело связал существование этих кристаллов с заболеванием табачной мозаикой. Так был открыт мельчайший возбудитель болезни растений, а вирусы получили свое первое название – кристаллы Ивановского.

Эти мельчайшие болезнетворные микроорганизмы, проходящие через тончайшие фарфоровые фильтры, впоследствии были названы нидерландским ботаником Мартином Бейеринком «фильтрующимися вирусами»; со временем название сократилось до одного слова. Слово «вирус» в латинском языке обозначает «яд», таким образом, название, предложенное М. Бейеринком, означает «яд, проходящий через фильтр».

Через пять лет после открытия вируса табачной мозаики два немецких исследователя Лефлер и Фрош обнаружили вирус ящура, вызывающий тяжелое заболевание лошадей. А спустя еще 20 лет, в 1917 году, канадский ученый Феликс Д’Эрелль и независимо от него .английский исследователь Туорт открыли новую группу вирусов, поражавших бактерии. Они были названы бактериофагами (или просто фагами) – пожирателями бактерий.

Постепенно были обнаружены и описаны сотни вирусов, вызывающих самые разнообразные заболевания человека и животных, растений и бактерий. К настоящему времени их известно уже более двух тысяч, и с каждым годом становятся известны все новые и новые разновидности вирусов.

 

«Полезные» вирусы

Не нужно думать, что вирусы доставляют человеку одни неприятности. С помощью вирусов были получены многие сорта цветов, чья пестрая окраска – результат вирусной инфекции, передающейся от поколения к поколению. Пестролепестность тюльпанов вызывает вирус, переносимый тлями. Пестрые тюльпаны можно видеть на картинах Рембрандта и в старых ботанических альбомах. По сути, эти живописные свидетельства являются первыми указаниями на существование вирусных болезней растений, хотя, конечно, в середине XVII века никто и не подозревал о существовании вирусов. В то время пестролистные тюльпаны ценились очень высоко – невеста почитала себя счастливой, если в ее приданом был больной цветок «пестрого» тюльпана.

Джут

Недавно было установлено, что растение джут (источник грубых волокон для канатов и мешков) растет лучше и дает больший урожай, когда поражен вирусным заболеванием – некротической мозаикой риса.

В некоторых странах вирусы, паразитирующие на насекомых, с успехом используются в биологической борьбе против сельскохозяйственных вредителей. Для этого приготавливают водную суспензию вируса с добавлением клейкого вещества, чтобы вирусные частицы лучше прилипали к растениям, и разбрызгивают ее на поврежденные насаждения. Вредители, поедая зараженные вирусом растения, быстро погибают.

Мы уже знаем, как быстро и безжалостно бактериофаги расправляются со своими жертвами. Смертоносные палочки чумы, холеры и дифтерии буквально тают на глазах после встречи с ними. Чтобы расправиться с бактерией, бактериофагу требуется всего 15–20 минут. А теперь представьте себе ликование Ф. Д’Эрелля – ученого, открывшего чудесное свойство бактериофагов, – найдено средство для борьбы с бактериями, болезни будут побеждены!

Бактериофаги: 1 – общий вид вирусной частицы; 2 – «впрыскивание» ДНК в клетку бактерии

После успешных опытов на животных он решил испытать целебные свойства бактериофагов на людях. В Индии в то время началась эпидемия холеры, и Д’Эрелль отправился туда в надежде применить свое открытие. Изучая источники, он заметил, что в селах, где колодезная вода содержала бактериофаги, люди не болели холерой. Тогда по его распоряжению в колодцы стали вливать по небольшой колбочке взвеси бактериофагов. Болезнь отступила.

После этого фагов стали применять для лечения многих других инфекционных заболеваний, но, к сожалению, результаты не всегда оправдывали ожидания. В организме человека фаги нападали на бактерии далеко не так активно, как в пробирке. Кроме того, бактерии очень быстро становились нечувствительными к действию фагов. Вскоре фагов перестали использовать для лечения, но зато они проявили свои другие не менее полезные свойства.

Сегодня бактериофаги в основном используются в диагностике заболеваний. В основу этого метода легло свойство фагов каждого вида избирательно разрушать только «свои» бактерии. Выделенные из организма больного бактерии выращивают на питательной среде, после чего колонии заражают различными фагами (холерными, дизентерийными, тифозными и т. д.). Через сутки колонии просматривают на свет и определяют, какой фаг вызвал разрушение бактерий. Если такое действие оказал дизентерийный фаг, значит из организма больного выделили бактерии дизентерии, если брюшнотифозный – бактерии брюшного тифа и т. д. Метод диагностики заболеваний с помощью бактериофагов отличается высокой точностью.

 

Тайны происхождения

Примитивность строения вирусов дает нам повод предположить, что именно они были первыми живыми существами на нашей планете. Даже само обстоятельство, что вирусы представляют собой нечто промежуточное между живой и неживой материей, казалось бы, напоминает о том периоде истории Земли, когда первые живые молекулы возникали из недр неживой природы... Кажется естественным предположить, что неклеточная форма жизни, которую нам демонстрируют вирусы, возникла раньше самых первых клеток.

Однако такое предположение выглядит правдоподобным только на первый взгляд. Дело в том, что вне живых клеток ни один вирус размножаться не может. Значит, вирусы не могли появиться раньше, чем первые клеточные организмы. Получается, что относительно более сложно устроенные бактерии возникли раньше, чем простые вирусы. То, что вирусы состоят всего из нескольких молекул, еще не говорит об их примитивности. Просто – не значит примитивно.

Вообще говоря, слово примитивный происходит от латинского «primus» – первый и означает древний, свойственный предкам. Мы привыкли считать, что эволюция всегда идет по пути усложнения, и, соответственно, чем проще устроен организм, тем он древнее, примитивнее. Но ведь эволюция может идти и путем упрощения, чаще всего такое явление наблюдается как раз у паразитов.

Да и вирусы совсем не так просты, как это кажется. Вспомним, что основной составной частью любого вируса является молекула нуклеиновой кислоты (НК), которая хранит информацию о строении и свойствах вирусной частицы. Внутри клетки вирус (напомним, что в клетку проникает только «голая» молекула нуклеиновой кислоты) годами может жить в ее ядре, встроившись в молекулу ДНК хозяина. Вирус СПИДа может находиться в таком состоянии до 20 лет. Другие вирусы, длительное время живущие внутри клетки, способны то встраиваться в хозяйскую ДНК, то снова выходить из нее. Удивительно то, что вирус точно «знает», в какой именно отрезок хозяйской ДНК ему нужно встроиться. Возникает ощущение, что вирус хорошо «знаком» с внутренним устройством ДНК своего хозяина... Более того, некоторые вирусы, например возбудитель оспы, удивительно похожи на определенные участки молекулы ДНК своих хозяев.

Вирус СПИДа (ВИЧ)

На основании этих фактов ученые предположили, что небольшие участки ДНК хозяина иногда могли отделяться от остальной молекулы и переходить к самостоятельному существованию. «Сбежавшие» участки нуклеиновой кислоты могли просто жить внутри клетки, а могли и «научиться» производить копии себя и, защитившись белковой оболочкой, в один прекрасный момент бежать из клетки.

Эта гипотеза кажется фантастической, но сейчас существуют достаточные основания предполагать, что именно так и появились в свое время вирусы. Бактериофаги, по–видимому, произошли от участков ДНК бактерий, вирус СПИДа – от «обрывков» ДНК человека или его общих с приматами предков, а вирус бешенства, опасный и для кроликов, и для собак, и для людей, по всей видимости, возник еще у какого–то общего предка всех млекопитающих.

Когда именно на Земле появились вирусы, сказать невозможно. Скорее всего, они возникали несколько раз и продолжают появляться и сейчас. Сбежавшие кусочки ДНК растений» бактерий и животных превратились в отдельные паразитические организмы, которые ради поддержания собственной жизни нещадно эксплуатируют клетки, когда–то давшие им жизнь.

 

Знаете ли вы, что...

■ Приспособленность бактерий к экстремальным условиям поистине безгранична. Есть микробы, выживающие в сильных ядах, например в солях синильной кислоты. Встречаются и такие, которые могут жить в недрах атомного реактора. Эти экстремали переносят радиацию, в 2000 раз превышающую смертельную для человека.

■ В течение большей части XX века биологи считали, что глубже 1,5 метра от поверхности земли или дна океана жизни нет. Однако последние открытия существенно расширили пределы существования микроорганизмов: температура +113°С, глубина 3,5 км в глубь земной коры на суше и 750 м в глубь от дна океана.

■ Бактерии превосходно чувствуют себя даже в керосине, питаясь веществами, входящими в его состав. Для предохранения керосина ученые синтезировали специальные органические вещества, подавляющие рост бактерий и помогающих сохранить керосин стерильным.

■ Криворожское месторождение железняка и железорудные отложения в районе Великих озер в США известны.на весь мир. А ведь эти" отложения – результат деятельности древних железобактерий. Оболочки погибших железобактерий, состоящие из нерастворимого гидрата окиси железа, скапливались в течение многих тысяч лет, постепенно превращаясь в железняк. Основные массы железных руд образовались на Земле около 2 миллиардов лет назад, когда бактерии были единственной формой жизни на планете, а железобактерии процветали.

■ Ни одно животное не может переваривать пчелиный воск, кроме африканской птички – медоуказчика. Секрет медоуказчика заключается в том, что в кишечнике этой птицы обитают специальные бактерии, способные питаться воском, – они–то и помогают ей переваривать пищу.

■ Найдены бактерии, способные поглощать радиоактивные ионы плутония и урана. Эти чудесные микробы собираются использовать для переработки отработанного ядерного топлива в ядерных реакторах. Их можно также использовать для разделения смеси урана (U) и плутония (Ри), поскольку в кислой среде они поглощают только плутоний. 1 грамм бактерий способен поглотить до 0,3 г плутония.