Я познаю мир. Ботаника

Касаткина Юлия Николаевна

Водоросли

 

 

Низшие растения

У ботаников принято делить все растения на высшие и низшие. В обыденной жизни мы с вами встречаемся в основном с высшими растениями, т. е. с теми, у которых есть листья, стебли и корни. К высшим растениям относятся мхи, плауны, хвощи и папоротники, размножающиеся спорами, голосеменные, чьи семена лежат голо на чешуйках шишек, и цветковые (покрытосеменные) растения, имеющие цветы, плоды и семена. К низшим растениям относятся водоросли. Мы сталкиваемся с ними значительно реже, например, гуляя по пляжу или открывая банку с морской капустой, но это не значит, что водорослей на земле мало, просто они не бросаются в глаза.

Слово «водоросль» подразумевает, что эти организмы растут в воде. Действительно, большинство из них ведут водный образ жизни. Но неверно думать, что водоросли – это все растения, которые растут в воде. Во–первых, водоросли могут жить и на суше. Вам, наверное, приходилось видеть зеленый налет на водосточных трубах, срубах колодцев, при основании деревьев, на камнях вблизи ручьев – везде, где влажность воздуха достаточно высока. Этот зеленый налет и есть наземные водоросли.

Большое количество водорослей населяет почву. Иногда водоросли разрастаются так сильно, что можно наблюдать позеленение ее верхнего слоя. Есть особая группа наземных водорослей, растущих на поверхности снега и льда. Снежная хламидомонада окрашивает снег в кроваво–красные оттенки. «Красный.снег» может покрывать пространство в несколько квадратных километров! Другие снежные водоросли (всего их обнаружено более 100 видов) окрашивают снег в зеленый, желтый, голубой, бурый и даже черный цвета!

Во–вторых, в воде, кроме водорослей, можно встретить некоторые высшие растения: и цветковые, и папоротники, и мхи. Их предками были обычные наземные растения. Водоросли же возникли в морях и океанах задолго до того, как первые высшие растения появились на поверхности Земли. Как группа, водоросли сформировались в водной среде и с тех пор так и не порвали с ней связи, поэтому их еще называют первичноводными. В отличие от них высшие водные растения прошли долгий путь от водных предков к сухопутным, а потом вновь во второй раз перешли к жизни в воде. Название вторичноводные отражает их эволюционный путь: из воды на сушу и снова в воду.

Посидония – вторичноводное цветковое растение

Почему водоросли относят к низшим растениям? Такое название должно отражать простоту их строения. Действительно, некоторые водоросли устроены очень просто. Весь их организм состоит из группы одинаковых клеток, собранных в нитчатое или пластинчатое слоевище (тело водоросли), которое прикрепляется к грунту с помощью нитевидных ризоидов. Обратите внимание, что несмотря на некоторое сходство, ризоиды и корни – это совсем не одно и то же: корни многоклеточные органы, а ризоиды одноклеточные или состоят из нескольких клеток. Такое примитивное строение имеет морская водоросль ульва, известная под названием «морской салат». Ее зеленое слоевище толщиной в два слоя клеток может достигать длины более 1 метра.

Сравнение строения ризоидов и корней

Но среди красных и бурых водорослей встречаются растения, у которых слоевище сложно ветвится, образуя подобие побегов и листьев. Внешне эти водоросли почти ничем не отличаются от папоротников с их сложно рассеченными перистыми листьями. Но в том–то и дело, что сходство это чисто внешнее.

Даже у самых сложно организованных водорослей нет ни листьев, ни стеблей, ни корней, как у высших растений. У водорослей отсутствуют ткани, из которых состоят органы высших растений. Их слоевище образовано почти одинаковыми клетками, и каждая – мастер на все руки: фотосинтезирует, поглощает из воды минеральные соли, хранит запасы питательных веществ, почти каждая может образовать органы размножения.

Органы высшего растения «поделили» между собой разные функции: в листьях происходят процессы фотосинтеза и испарение воды, стебли транспортируют минеральные и органические вещества, а корни удерживают растение в почве, поглощают минеральные растворы, иногда запасают питательные вещества. Выполнение всех этих функций обеспечивается устройством тканей, из которых состоит тот или иной орган: механические ткани побегов придают растению прочность, по сосудам и ситовидным трубкам происходит транспорт воды с растворенными веществами, в запасающей ткани откладываются питательные вещества, фотосинтезирующая ткань содержит хлорофилл и осуществляет фотосинтез.

Делессерия – водоросль с разветвленным слоевищем

Простота строения водорослей легко объяснима их водным образом жизни. Всё тело низших растений окружено водой, из которой они получают и минеральные вещества, и кислород, и углекислый газ. Зачем же «изобретать» проводящую систему и отращивать корни, если каждая клетка и так получает всё необходимое из окружающего раствора? Вода поддерживает водоросль во взвешенном состоянии, так что механические ткани ей тоже ни к чему. Водная среда не способствует усложнению строения растительных организмов – всё дается им слишком легко, вот и получается, что все водоросли устроены очень однообразно и просто: слоевище да ризоиды.

Водоросли – самые первые растения на Земле, но и сейчас они продолжают властвовать в морских глубинах. Вторичноводные растения могут расти на глубине не более 2–3 метров, а водоросли способны к погружению на 150–200 м, именно они заселяют основную площадь глубин и мелководий морей и океанов, образуя настоящие подводные леса. Такие «леса» дают приют и пищу многим животным. Бурые водоросли ламинарию и макроцистис поедают морские ежи. В зарослях на мелководьях у побережий Африки, обеих Америк и Азии пасутся крупные морские травоядные животные ламантины и дюгони. Среди водорослей нет ядовитых или колючих растений, поэтому многие животные не прочь полакомиться легко доступной пищей. Защитить себя водоросли не могут, единственное, что им остается – расти и размножаться быстрее, чем их едят.

Водоросли продолжают обеспечивать животных пищей и после своей гибели. Креветки, крабы, разнообразные черви и моллюски могут использовать в пищу отмершие части растений. Вместе с фитопланктоном водоросли являются источником пищи, а значит, энергии для существования всех остальных морских и пресноводных обитателей.

 

Красный, бурый, зеленый...

Все водоросли делят на несколько крупных групп, или отделов, в соответствии с их окраской. Среди них особенно выделяются бурые, красные и зелёные водоросли. Раньше к водорослям причисляли еще и цианобактерий (см. с. 15), диатомей, эвглен и динофлагеллят (см. с. 77). С этими организмами мы уже познакомились в разделах, посвященных бактериям и простейшим. Все красные и бурые водоросли за несколькими исключениями живут в морях и океанах. В отличие от теплолюбивых красных водорослей, бурые водоросли отдают предпочтение холодным и умеренным водам как северного, так и южного полушария. Представители отдела зеленых водорослей, наоборот, населяют преимущественно пресные водоемы, хотя среди них есть и морские виды, например ульва.

Красные водоросли в основном встречаются на глубинах более 35 м, на глубинах от 6 до 30 м преобладают бурые водоросли, а на глубине до 6 м от поверхности воды в основном встречаются зеленые водоросли. Случайно ли такое распределение? Оказывается, нет.

Водоросли: 1 – красные; 2 – бурые; 3 – зелёные; 4 – жёлтозелёные; 5 – золотистые

Давайте вспомним, что мы знаем о цвете с точки зрения физики. Известно, что белый цвет состоит из излучений семи цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Также известно, что цвет предмета определяется тем, какие лучи он отражает от своей поверхности: красные, предметы отражают красные лучи, поглощая все остальные. Мы видим, естественно, только отраженный свет. Так и окраска водорослей зависит от того, какого цвета лучи ими улавливаются, а какого – отражаются.

Растениям придают цвет особые вещества – пигменты, с помощью которых они улавливают энергию солнечных лучей. Образно выражаясь, пигменты – это своего рода световые ловушки. На небольших глубинах, где царствуют зеленые водоросли, растения в основном поглощают красно–оранжевые лучи и отражают зеленые. В этом им помогает зеленый пигмент – хлорофилл.

Но помимо хлорофилла, имеющегося у всех фотосинтезирующих организмов, у растений есть и другие пигменты. На глубине до тридцати метров, где преобладают желтые лучи солнечного спектра, встречаются в основном бурые водоросли. У бурых водорослей хлорофилл маскируется желто–коричневыми пигментами из группы каротиноидов. С каротиноидами вы хорошо знакомы – это они окрашивают морковь и осенние листья в оранжевый цвет. На большие глубины проникают лучи зеленого и голубого цвета. Их улавливают пигменты красных водорослей: голубой – фитоцианин, и красный – фикоэритрин. Хлорофилл у них тоже есть, но опять же маскируется красными пигментами.

Вообще, низшие растения при всей простоте своего строения демонстрируют удивительное разнообразие пигментов. (Если вы помните, бактерии тоже устроены просто и однотипно, однако, в биохимическом отношении невероятно разнообразны и изобретательны.) Помимо обязательных для всех растений хлорофилла и каротиноидов, водоросли содержат ряд свойственных только им пигментов: фикоэритрины, фикоцианины, фукоксантин, ксантофиллы, а также разновидности хлорофилла, неизвестные высшим растениям. Каждый из этих пигментов улавливает определенную часть спектра солнечного света. Содержание большого набора пигментов позволяет водорослям максимально полно использовать энергию солнца, поэтому в мастерстве светоулавливания низшие растения не знают себе равных. Это позволяет им расти на глубинах, недоступных вторичноводным растениям, и в темных пещерах, куда почти не проникает свет.

Для жизни на поверхности земли нужны другие приспособления. Как правило, света здесь достаточно, но растения часто испытывают недостаток влаги. Нитчатая зеленая водоросль трентеполия часто поселяется на коре старых деревьев, окрашивая их стволы в кирпично–красный оттенок. Особенно красиво смотрятся налеты трентеполии на белом фоне коры берез.

Трентеполия. 1 – толстостенные оболочки; 2 – капли масла

Яркую окраску слоевищу водоросли придают капли оранжевого масла, содержащиеся в каждой клетке. Зимой водоросли промерзают насквозь, а в сухое лето временами совершенно высыхают, впадая в анабиоз, но все же сохраняют жизнеспособность, и, как только влажность увеличивается, снова пускаются в рост. Для продолжения роста трентеполия использует любую возможность: капли тумана и росы, брызги дождя. Клетки трентеполии защищены от высыхания толстыми слоистыми оболочками, а капли масла, запасающиеся в цитоплазме клетки, водоросль, вероятно, использует в качестве внутреннего источника воды, как верблюд использует жир в горбу, – дело в том, что при расщеплении жиров образуется большое количество воды.

В стремлении жить на суровой, негостеприимной суше трентеполия не одинока. К ее «коллегам» относится и зеленая водоросль плеврококк, образующая порошковатые ярко–зеленые налеты у основания деревьев и пней. На суше во влажных местах могут встретиться и разнообразные виды хлореллы и хлорококка, обычно живущих в водоемах.

1 – хлорелла; 2 – хлорококк; 3 – плеврококк

Плеврококк, хлореллу и хлорококк мы с вами только что отнесли к одноклеточным зеленым водорослям, а так похожие на них хламидомонаду, вольвокс, эвдорину и гониум, если вы помните, мы рассматривали в главе «Простейшие». Так кто же они, в конце концов?! Еще совсем недавно все перечисленные выше организмы без колебаний относили к зеленым водорослям. Однако многие из этих «водорослей» имеют совсем не растительные признаки: активно передвигаются, лишены клеточной стенки из целлюлозы, характерной для всех растений, некоторые не содержат хлорофилл. Сейчас доказана способность почти всех этих «водорослей» поглощать готовые органические соединения. Поэтому некоторые ученые стали причислять их к царству простейших. Правильнее, наверное, было бы сказать, что одноклеточные зеленые водоросли – это промежуточная группа организмов, одной ногой стоящая в царстве простейших, а другой – в царстве растений. Вот и приходится рассказывать о них и как о простейших, и как о растениях.

Не менее 2000 видов водорослей встречаются в почве. Особенно интенсивно почвенные водоросли развиваются в условиях тепла и повышенной влажности. При благоприятных условиях их масса может достигать 300 кг/га. Это вполне сравнимо с численностью почвенных грибов.

Основное количество водорослей сконцентрировано в самых верхних слоях почвы: до глубины 2 см. Глубже 10–20 см число водорослей ничтожно, там уже совсем нет света.

Почвенные водоросли способствуют накоплению органического вещества. Их остатки вовлекаются в процесс создания перегноя грибами и бактериями. Но особенно важна почвообразующая роль водорослей там, где не могут расти высшие растения. На пустынных такырах или промышленных отвалах нет ни опавшей листвы, ни сухостоя, ни валежника. Здесь водоросли являются единственными источниками органических веществ для многочисленного животного населения: простейших, почвенных клещей, нематод, многоножек, дождевых червей, личинок насекомых. Вся эта масса живых существ, отмирая, становится материалом для создания тонкого слоя почвы, на котором позже поселяются высшие растения.

Водоросли способствуют улучшению структуры почвы и даже уменьшают процесс выветривания. Слизистые чехлы клеток склеивают почвенные частицы, а нитчатые водоросли оплетают их густой сетью, удерживая на месте.

 

Двуликие водоросли

Как почти все растения, водоросли размножаются бесполым и половым путем. Бесполое размножение, т. е. размножение без образования половых клеток, может быть вегетативным или споровым.

Вегетативное размножение бегонии (слева) и водоросли (справа) «кусочками»

Вегетативное размножение водорослей очень похоже на то, что мы наблюдаем у высших растений. Слоевище водоросли под действием волн или в результате повреждения животными может разрываться на кусочки, и каждый такой кусочек обычно прорастает в новое слоевище, так же как разрезанный на кусочки лист комнатного растения бегонии дает начало многим самостоятельным растениям. На слоевищах бурых водорослей образуются специальные выводковые «почки», которые, опадая, дают начало новым слоевищам. Этот процесс очень напоминает образование выводковых почек у водного папоротника болбитиса (см. с. 262) или у комнатного растения бриофиллума, которое в народе называют «доктором». Есть водоросли, образующие одно– или многоклеточные «клубеньки», которые прорастают в новые слоевища после зимовки, другие отделяют стелющиеся «побеги», на которых вырастают новые слоевища. Такие «побеги» очень похожи на усы земляники или комнатного растения хлорофитума.

Споровое размножение водорослей происходит с помощью мельчайших клеточек – зооспор, что означает «животные споры». Приставка зоо– подчеркивает их сходство с животноподобными простейшими – как и они, зооспоры подвижны и плавают с помощью двух жгутиков. Есть правда, водоросли, споры которых лишены жгутиков, такие споры называются просто спорами, без всяких приставок. Споры или зооспоры образуются в клетках, которые называются соответственно спорангии или зооспорангии. Выйдя наружу, подвижные или неподвижные споры дают начало новому слоевищу водоросли.

Вегетативное размножение земляники (сверху) и водоросли (снизу) «усами»

Наверное, у вас сразу же возник вопрос, зачем возникло споровое размножение, если растение может размножаться вегетативно? Дело в том, что при вегетативном размножении растение постепенно стареет. Представим, что от слоевища водоросли отделилась выводковая «почка». Ее возраст будет равен возрасту материнского растения. Чуть позже она прорастет в слоевище. С каждым месяцем возраст нового слоевища будет увеличиваться, поэтому его выводковые почки станут немного старше, чем та, которая дала начало этому слоевищу и так далее. Слоевище, которое выросло из очень старой выводковой почки, уже не может образовывать вегетативные органы размножения и отмирает, не оставив после себя потомства. Избежать такого «потомственного старения» можно с помощью споровогс размножения. При образовании (зоо)спор происходит процесс омоложения клеток. Правда, о том, как это происходит, известно пока очень мало. Проблема старения и омоложения остается одной из самых захватывающих тайн современной биологии.

Саргассово море получило свое название от скоплений плавающих на его поверхности саргассовых водорослей. Эти бурые водоросли длиной до 1 метра плавают на поверхности воды благодаря воздушным пузырям, образуя сплошной слой растительной массы, которая делает невозможным судоходство в этом районе Атлантического океана.

Такая «гуща» водорослей образуется только за счет вегетативного размножения. Да другого у саргассов Саргассова моря и быть не может. Его глубина достигает 7110 м, поэтому водоросли могут расти, только плавая на поверхности. Но у низших растений есть одна особенность: плавающие, не прикрепленные ко дну слоевища никогда не размножаются ни споровым, ни половым путем. Так что саргассам, обитающим в Саргассовом море, приходится довольствоваться вегетативным размножением.

Воздушные пузыри саргассума

Но, как мы уже выяснили, бесконечное вегетативное размножение неизбежно ведет к старению и отмиранию слоевищ. А саргассы процветают и отмирать не собираются. Возможно, эти водоросли продолжают существовать в Саргассовом море только за счет постоянного притока новых «свежих» слоевищ с мелководий, где растут их прикрепленные формы. Куски слоевищ легко отрываются и дрейфуют вместе с течениями, скапливаясь в огромных количествах в спокойных водах океана. Одним из таких мест как раз является Саргассово море – гигантская воронка, в которой водные массы движутся по кругу. Куски слоевищ, попадая в этот котел, уже не могут покинуть его пределов. Они живут там до тех пор, пока не погибают от старости, а на их место течения приносят новые слоевища саргассов.

Однако споровое размножение имеет и другое преимущество: астрономическое количество зооспор. На одном слоевище бурой водоросли ламинарии их образуется до 12 миллионов. Когда вся эта масса выходит из зооспорангиев, над зарослями «морской капусты» мутнеет вода. За счет такого количества спор споровое размножение позволяет в короткие сроки резко увеличить численность вида. Таким образом, с помощью бесполого размножения организм удовлетворяет стремление как можно быстрее оставить как можно больше потомков. Кроме того, подвижные зооспоры, расплываясь подальше от материнского растения, способствуют расселению вида, ну а неподвижные споры могут разноситься течениями или распространяться с помощью животных.

Наконец, у водорослей есть и половое размножение, суть которого заключается в слиянии двух разнополых клеток (они называются гаметами) с образованием зиготы. Как (зоо)споры образуются в особых клетках – спорангиях, так и гаметы образуются в гаметангиях. Из зиготы после периода покоя или иногда сразу вырастает новое слоевище водоросли. Зигота покрыта плотной оболочкой и способна переносить самые неблагоприятные условия среды: низкие температуры, сезонные изменения химического состава и солености воды. В жизненном цикле водорослей зигота – это самое выносливое и жизнестойкое образование, позволяющее переживать по–настоящему трудные времена.

Бесполое и половое размножение водорослей. 1 – (зоо)споры; 2 – (зоо)спорангии; 3 – слоевище; 4 – гаметы; 5 – гаметангии; 6 – зигота

Теперь, когда мы познакомились со всеми способами размножения водорослей (и, как вы увидите дальше, не только их), пора двигаться дальше, но для этого нам необходимо познакомиться с несколькими терминами. «Спорофитом» называют растение, на котором образуются споры. Соответственно, «гаметофит» – растение, образующее гаметы. Если вы уже решили дочитать эту книгу до конца, постарайтесь их запомнить, они нам не раз пригодятся.

Мы привыкли, что все особи одного–вида в общих чертах похожи друг на друга: лисы могут быть рыжими или чернобурыми, но всегда имеют узкую мордочку, четыре ноги и пушистый хвост; птенцы многих птиц вылупляются голыми «уродцами», но у них уже есть голова, крылья, лапы и т. д. А вот у водорослей дело обстоит совсем иначе: глядя на разные стадии их жизненного цикла, вы даже и не заподозрите, что два столь непохожих друг на друга организма относятся к одному виду.

Водоросли существуют как будто в двух разных вариантах: в виде спорофита и гаметофита, и оба варианта могут очень сильно отличаться друг от друга. Например, у бурой водоросли ламинарии японской гаметофит имеет микроскопические размеры и состоит всего из нескольких клеток, а спорофит достигает в длину 12 метров. Неудивительно, что в те времена, когда биология водорослей еще не была изучена, ботаники описывали спорофиты и гаметофиты одного и того же растения как разные и совсем неродственные виды.

Красная водоросль порфира в стадии спорофита имеет вид ветвящихся нитей из одного ряда клеток. Нити порфиры поселяются на известковых скалах или раковинах моллюсков, образуя на них ярко–красные пятна. Выделяя органические кислоты порфира–спорофит постепенно растворяет известь и врастает в субстрат. Миниатюрное растение может проникать в известковую породу на глубину 10 мм и более, а раковины моллюсков при этом оказываются просверленными насквозь. Споры, образующиеся на порфире–спорофите, дают начало гаметофиту.

Гаметофит же у порфиры представляет собой листовидное слоевище пурпурного цвета, достигающее у разных видов от 50 см до 2 м в длину. Разбросанные по слоевищу гаметангии производят мужские и женские половые клетки. После слияния этих клеток образуется зигота, которая прорастает на известковом субстрате в нитчатый спорофит.

Изучив жизненный цикл порфиры, трудно сдержать недоумение: «а зачем так сложно?» В самом деле, почему бы из зиготы не вырастать сразу гаметофиту, как это наблюдается, к примеру, у большинства животных (их, правда, не называют гаметофитами). Попробуем ответить на этот действительно непростой вопрос.

Жизненный цикл порфирыСпорофит (1) образует споры (2), прорастающие в гаметофит (3). Половые клетки (4), сливаясь , дают начало зиготе (5)

Известно, что гаметофиты и спорофиты водорослей отличаются не только размерами и строением, но и разными требованиями к условиям окружающей среды. Например, порфира–спорофит предпочитает слабое освещение и проникает на большую глубину, чем светолюбивый листовидный гаметофит, растущий в приливно–отливной зоне у самого берега. Имея в своем распоряжении и спорофит, и гаметофит, растение получает возможность расти и на глубине, и на мелководье, расширяя область распространения вида.

Гаметофиты и спорофиты водорослей специализируются на разных способах размножения. Спорофит с помощью бесполого размножения быстро наращивает численность (деление с образованием спор происходит гораздо быстрее, чем образование гамет), а гаметофит ответствен за половое размножение и за образование зигот, способных в состоянии покоя переносить длительные неблагоприятные условия. Логично было бы предположить, что водоросль начинает усиленно производить гаметы, как только условия жизни ухудшаются. Так и происходит: при высокой температуре теплолюбивая порфира размножается спорами, а с уменьшением температуры до +15–17°С начинается образование гамет. Чередуя бесполое и половое размножение, водоросль гибко реагирует на изменение условий существования: хорошие условия способствуют быстрому наращиванию численности, а их ухудшение вызывает переход к устойчивой стадии зиготы.

Как видите, сложный жизненный цикл водорослей увеличивает приспособленность к условиям обитания, а их двуликость оборачивается преимуществом. Каждая стадия жизни служит для выполнения определенных задач: зигота – специалист по переживанию неблагоприятных условий, спорофит увеличивает численность вида, (зоо)споры выполняют функцию расселения, гаметофит производит половые клетки, которые, сливаясь, дают начало зиготе.

Мы не будем останавливаться на изучении жизненных циклов других водорослей, но вы, пожалуйста, не думайте, что все водоросли проводят жизнь так же, как порфира. У низших растений существует не один, а целых четыре типа жизненного цикла, да еще в каждом есть многочисленные разновидности, но как бы ни отличались друг от друга эти варианты, все они служат увеличению приспособленности водорослей к разным условиям обитания.

 

С ними выгодно иметь дело

Водоросли обладают огромной продуктивностью. В Баренцевом море годовая продукция сырой массы донных водорослей в среднем составляет 200 т/га, а в Черном море – от 80 до 170 т/га. Если вы сравните эти цифры со средними значениями урожаев культурных растений (менее тонны с гектара), то поймете, что с водорослями иметь дело очень выгодно.

Основное значение в хозяйстве человека играют морские водоросли из отделов красных и бурых.

Из красных водорослей получают многие ценные продукты, например агар–агар, альгиновую кислоту, каррагенан. Все эти вещества входят в состав клеточной стенки водорослей. Их применяют в качестве отвердителей и желеобразующих веществ в косметике для изготовления кремов, в химической промышленности при получении лаков, красок и лекарств, для получения глазурованной керамической посуды, в кондитерской промышленности, например для приготовления мороженого. Кондитеры и пекари добавляют в тесто небольшое количество агар–агара, чтобы пирожные, бисквиты и хлеб дольше не черствели. Без агар–агара не обходятся даже при производстве кино– и фотопленки. Это ценное вещество применяют при изготовлении капсул для витаминов и лекарств, отпечатков зубов, а в тропических районах используют как временную защитную оболочку для мяса и рыбы.

Кроме этого, агар–агар является очень удобной твердой средой для выращивания бактерий и микроскопических грибов. Для этого готовят разбавленный раствор агара, добавляют в него необходимые питательные вещества, стерилизуют и дают застыть в желеобразную массу.

Способ выращивания микроорганизмов на твердых средах впервые предложил немецкий микробиолог Роберт Кох. Взглянув однажды на половинку вареной картошки, оставленной на столе, ученый заметил, что вся поверхность среза испещрена маленькими цветными капельками: желтыми, фиолетовыми, красными. Тоненькой платиновой проволочкой он взял одну из этих капелек и размазал ее между двумя стеклышками. Взглянув в микроскоп, он увидел множество абсолютно одинаковых бацилл. Затем он посмотрел на микробов из желтой и фиолетовой капли. В одной пробе все микробы были круглые, в другой напоминали крошечные палочки, но все микробы в каждой капле были совершенно одинаковы.

Колонии бактерий на агаре

Это означало настоящий переворот в микробиологии... Впервые исследователи получили в руки простой и надежный метод выращивания микробов разных видов отдельно друг от друга! Как просто! Раньше бактерий выращивали в жидкой среде – в бульоне, но там они смешивались между собой. Если же разные микроорганизмы попадают на твердую поверхность картошки, то каждый из них остается на том месте, где упал, а затем начинает расти, образуя чистую культуру одного определенного вида. Вместо картошки Кох стал использовать желатиновое желе с добавлением бульона, а для особо капризных микробов, таких как кишечная палочка, – свернувшуюся кровяную сыворотку.

Многие поколения микробиологов использовали для выращивания микроорганизмов твердые питательные среды по рецептам Коха. Сейчас в микробиологии в основном используются среды на основе агар–агара как более дешевые и простые в приготовлении.

Водоросли используют и в качестве удобрений. Они богаты калием, йодом и другими микроэлементами, но в них мало азота и фосфора, поэтому их удобряющее действие без добавления азотных и фосфорных соединений не очень велико.

На Дальнем Востоке, в Китае, Корее и Японии традиционными являются блюда из водорослей. Красную водоросль порфиру считают деликатесом, а большую бурую водоросль ламинарию, больше известную под названием «морская капуста», едят в сыром виде, используют для приготовления салатов, овощной икры, пюре и... конфет.

Морские водоросли как продукт питания не имеют большой питательной ценности, поскольку у человека и большинства других животных нет ферментов, необходимых для расщепления веществ их клеточной стенки. Однако водоросли служат источником важных для человека солей, витаминов и микроэлементов и поэтому очень полезны в качестве добавки к меню. В приморских районах водоросли широко используются на корм скоту.

Альгин и альгинаты, извлекаемые из бурых водорослей, обладают превосходными клеящими свойствами. Их добавляют в пищевые продукты, в таблетки, используют при выделке кож, при производстве бумаги, тканей, пластмасс. Из них делают растворимые нити, используемые в хирургии.

Хотя часть съедобных водорослей жители Дальнего Востока собирают в открытом море, более доходным делом является выращивание водорослей на подводных фермах. В культивировании красной водоросли порфиры только в Японии занято более 30.000 человек, а получаемая продукция оценивается примерно в 20 млн. долларов в год. На морских огородах можно не только «сеять» уже имеющиеся, но и выводить новые, улучшенные сорта культурных водорослей.

Перед посевом ламинарии сначала собирают посевной материал – зооспоры, созревающие в зооспорангиях на крупных слоевищах. Для более дружного выхода зооспор слоевища морской капусты слегка подсушивают. Зооспоры лучше всего прорастают при температуре около +10°С. В теплых морях, например у побережья Китая и Японии, в трюмах старых кораблей делают искусственные бассейны с пониженной температурой воды. В такие морские «парники наоборот» помещают камни, веревки, бамбуковые палки, а также куски подсушенной морской капусты. Выйдя из зооспорангиев, зооспоры быстро прикрепляются к камням и палкам, на которых и происходит все дальнейшее развитие слоевищ ламинарии.

Прикрепленную к камням рассаду дальше выращивают на плантациях в открытом море; для ухода за такими посадками требуются услуги водолазов. Гораздо удобнее культивировать морскую капусту в мелководных бухтах и заливах со спокойной водой. Здесь для прикрепления рассады используют уже не камни, а лестницы из бамбуковых палок, которые плавают у самой поверхности моря. Так за капустой гораздо проще ухаживать, да и собирать ее легче.

Ферма по разведению ламинарии

Как и культурные растения на полях, водоросли на подводных фермах удобряют. Морская вода богата соединениями кальция и калия, а также микроэлементами, но в ней мало соединений азота и фосфора. Было замечено, что вблизи городов, где в бухты и заливы попадают сточные воды, водоросли растут лучше. В обычных условиях с каждого гектара «морского огорода» собирают до 10 т капусты (в пересчете на сухой вес), а при внесении азотно–фосфорных удобрений урожай увеличивается до 30 т. Выгода подкормки очевидна, но как вносить удобрения в море так, чтобы питательные вещества усваивались растениями, а не уносились волнами и течениями? Для этого в длинные цилиндрические мелкопористые сосуды из фаянса наливают растворы минеральных солей. Сосуды плотно закупориваются и на поплавках подвешиваются на глубине 1 м. Раствор солей медленно просачивается наружу и, попадая в воду, постепенно усваивается слоевищами ламинарии.

В холодных северных водах морская капуста живет два–три года, а в более теплых условиях все ее развитие происходит за несколько месяцев, после чего слоевище водоросли отмирает.

Среди одноклеточных водорослей наиболее перспективной для искусственного культивирования оказалась зеленая водоросль хлорелла. В белке хлореллы имеются все незаменимые аминокислоты, по качеству его можно сравнить с белком пивных дрожжей, соевой и арахисовой муки. Его признают равноценным белку сухого молока. Помимо белка, клеточная масса хлореллы богата витаминами, микроэлементами, углеводами и жирами.

При выращивании хлореллы не остается никаких отходов: корней, соломы, листьев, все ее тело – питательный продукт. Для выращивания хлореллы не требуется больших площадей – ее можно разводить в сосудах, где на 1 л воды получается до 55 г продукции водоросли в сухом виде. По содержанию белка урожай водоросли хлореллы с 1 га равен урожаю пшеницы с 25 га и урожаю картофеля с 10 га. Огромная продуктивность хлореллы объясняется тем, что она использует 25–30% от общего количества падающей на нее солнечной энергии, в то время как высшие цветковые растения – только 7–13%. (Вот еще одно доказательство того, что «примитивный» вовсе не значит «неприспособленный» или тем более «плохой».)

Сейчас исследуется возможность использования хлореллы как источника питания для людей. В Японии научились перерабатывать эту водоросль в безвкусный порошок, богатый витаминами и белком. Его можно смешивать с мукой при изготовления хлебобулочных изделий.

Выращивание и искусственное разведение водорослей позволяет при небольших трудозатратах получать огромные урожаи. И кто знает, может быть, через 200 лет вторым хлебом будет называться не картошка, а хлорелла.

■ Коралловые рифы могут образовывать не только кораллы, но и низшие растения. В оболочках красной водоросли литотамнии, или каменной водоросли, откладывается такое количество карбоната кальция (извести), что они приобретают прочность камня. Название другой рифообразующей водоросли – кораллина говорит само за себя.

■ В морях Южного полушария встречается самая крупная в мире водоросль – грушеносный макроцистис. Его слоевище может достигать в длину более 90 м.

■ На слоевищах некоторых бурых водорослей (саргассума, фукуса, макроцистиса) хорошо заметны округлые вздутия, похожие на ягоды. Эти вздутия представляют собой воздушные пузыри, которые действуют наподобие поплавков, поднимая растение вверх, поближе к свету.

■ Было замечено, что неумеренный промысел лангустов приводит к сокращению площади зарослей морской капусты. Оказывается, лангусты поедают морских ежей, основным кормом для которых является ламинария. Чем меньше численность морских ежей, тем дальше на глубину проникают подводные заросли морской капусты.