2.1. Устройство для автоматизированного полива цветов
Тем из читателей, кто выращивает цветы на своих участках или в домашних условиях, не надо рассказывать о пользе этого увлечения. Большинство людей делает это по велению души. В последнее время даже стали проводить конкурсы и выявлять победителей в соревнованиях «Чей балкон краше?».
Некоторые цветоводы имеют много свободного времени и с удовольствием наблюдают за ростками часами, другие ограничены во времени и могут посвятить любимому занятию только несколько минут в день.
Самым главным при взращивании растений и поддержании уже взрослых декоративных цветов является создание соответствующего микроклимата – поддержание и постоянный контроль влажности почвы, окружающего воздуха и солнечных ванн. И если создать благоприятный климат окружающей температуры воздуха и дозировать солнечную энергию относительно просто – установив горшок с цветком в соответствующее место в интерьере квартиры, то поддержание влажности почвы требует ежедневного и тщательного внимания. А между тем, процесс полива можно автоматизировать, собрав и включив простое в повторении электронное устройство, схемы которого представлены на рис. 2.1 и 2.2.
Рис. 2.1. Электрическая схема дозатора и контроля влажности почвы устройства автоматического полива
Рис. 2.2. Электрическая схема таймера (задержки выключения) на 1 час
Устройство состоит из трех частей, электрически взаимосвязанных между собой. Части устройства и их функциональная взаимосвязь отражены на рис. 2.3.
Рис. 2.3. Блок схема устройства автоматического полива растений
Контроллер влажности почвы в постоянном режиме измеряет сопротивление почвы между контактами датчика влажности R и выдает на выходе управляющий сигнал – низкий уровень напряжения, если почва засушлива и требует увлажнения.
Таймер – устройство выдержки времени – выдает на выходе положительный управляющий импульс с периодичностью один раз в час.
Дозатор полива вместе со схемой совпадений сравнивает сигналы управления от предыдущих блоков и включает исполнительное устройство – электродвигатель, нагнетающий воду из резервуара в том случае, когда оба этих сигналы имеют низкий логический уровень.
Электродвигателем управляет исполнительное реле К1, рассчитанное на напряжение 12 В, и коммутирующее ток до 3 А.
2.1.1. Принцип работы устройства
На логических элементах микросхемы DD1.1, DD1.2 К561ЛА7 собран сигнализатор влажности. Перед этим узлом стоит важная задача – сигнализировать о сухой почве и не допустить ее переувлажнения, так как в последнем случае это может погубить цветы. Поэтому система полива должна включаться на короткие промежутки времени, с постоянным контролем состояния влажности почвы.
Контакты Х1 изготовлены из металлических спиц (применяемых также для вязания) длиной 30 см – каждая. Контактные проводники припаиваются к спицам с помощью припоя ПОС-61 (или аналогичного) и флюса. Проводники от датчиков-спиц выполнены гибким монтажным проводом МГТФ-0,8 и имеют длину не более 50 см каждый.
Большая длина проводников к датчику приведет к ложным срабатываниям логических элементов микросхемы DD1.1 и DD1.2. Переменный резистор R1 необходим для регулировки чувствительности узла, осуществляющего контроль влажности почвы. Перед первым включением движок R1 устанавливают в среднее (по схеме) положение. Датчики – спицы помещаются в почву цветочного горшка на глубину до 20 см.
Пока почва сухая, она имеет большое сопротивление электрическому току (несколько десятков МОм).
Сопротивление переменного резистора R1 меньше этого значения, поэтому на выводах 1 и 2 логического элемента DD1.1 присутствует сигнал высокого логического уровня. На выводе 3 DD1.1 будет низкий уровень (так как элемент включен как инвертор), а на выводе 4 элемента DD1.2 присутствует вновь высокий уровень. Благодаря этому напряжению заряжается оксидный конденсатор С3, который необходим для инерции срабатывания узла контроля влажности.
Когда С3 зарядится до напряжения 4…6 В (несколько секунд) на выходе элемента DD1.3 окажется низкий уровень напряжения – он поступит на узел сравнения напряжений, собранный на элементе DD2.1. Элемент DD2.1 (ИЛИ с инверсией) согласно таблице истинности выдаст на выходе (вывод 11) управляющий сигнал высокого логического уровня, если на входах (выводы 12 и 13 DD2.1) будет сочетания двух низких уровней (в любом другом случае сигнал на выводе 11 будет иметь низкий уровень, транзистор заперт, электродвигатель М1 не работает).
Таким образом, при появлении на выходе логического элемента DD2.1 высокого уровня, откроется транзистор VT1, который подаст питание на исполнительное реле К1. Реле К1 своими коммутирующими контактами К1.1 замкнет цепь питания электромотора М1 с номинальным напряжением 12 В. В качестве электромотора М1 используется промышленный электродвигатель омывателя стекла для автомобилей семейства ВАЗ-2101–2107. Резервуар для воды (жидкости) емкостью 1,3 л/ также используется промышленный – бачок омывателя лобового стекла автомобилей указанного типа. Диод VD1 препятствует броскам обратного тока через реле К1 и защищает переход транзистора VT1.
Соответственно, если почва в цветочном горшке влажная, то на выводе 12 элемента DD2.1 окажется высокий уровень напряжения. При этом на выводе 4 элемента DD2.2 также постоянно присутствует высокий уровень напряжения, кроме тех периодов, когда от таймера (рис. 2.2) поступает управляющий импульс низкого уровня с периодичностью один раз в час.
На элементах DD1.4 и DD2.2 собран электронный дозатор, формирующий временные интервалы, в течении которых в системе нагнетается вода для полива. Таймер на микросхеме DD3 К561ИЕ16 (рис. 2.2) необходим для циклической подачи управляющих импульсов с периодичностью примерно один раз в час. Управляющие импульсы положительной полярности снимаются с вывода 3 микросхемы К561ИЕ16 (точка А на схеме), инвертируются элементом DD2.3 и подаются на вход узла электронного дозатора через конденсатор С1, который не пропускает постоянную составляющую напряжения.
Время работы электродвигателя М1 (нагнетания воды из резервуара) определяется значениями элементов времязадающей цепи С2R6. При указанных на схеме значениях этих элементов электродвигатель будет работать в течении 20 с.
Рассмотрим подробнее работу таймера, схема которого показана на рис. 2.2.
Таймер собран на одной микросхеме К561ИЕ16. Задающим генератором импульсов служит мигающий светодиод HL1. На выводе 10 (тактовый вход микросхемы DD3) присутствуют импульсы с частотой примерно 2 Гц.
При вспышке светодиода, на выводе 10 DD3 оказывается высокий уровень напряжения, а при погасании светодиода этот уровень сменяется на низкий. Счетчик реагирует на отрицательный фронт импульса и начинает внутренний счет. Высокий уровень напряжения появляется последовательно на каждом выходе Q0–Q13 счетчика.
Максимальная выдержка времени, которую может обеспечить счетчик К561ИЕ16 в данной схеме, при условии применения в качестве генератора импульсов мигающего светодиода, составит около 1 ч. Сигнал на выключение устройства нагрузки произойдет на выводе 3 (выход Q13) после того, как счетчик досчитает до 8192.
Почему для этого устройства выбрана именно микросхема К561ИЕ16? Для этого подробнее рассмотрим ее функциональные характеристики.
Микросхема К561ИЕ16 содержит 14-ти разрядный асинхронный счетчик с входным каскадом, обостряющим тактовые импульсы. На входе микросхемы установлен формирователь импульсов и триггер. Выходной сигнал поступает на вывод Q0–Q13 от однотипных внутренних буферных усилителей. Счетчик сбрасывает выходные сигналы (переводя их в низкий логический уровень) при напряжении высокого уровня на входе сброса R (вывод 11). Содержимое счетчика увеличивается откликом на каждый отрицательный перепад на тактовом входе с (вывод 10). Максимальная тактовая частота может достигать 3 МГц, а длительность импульса сброса должна превышать 550 нс. Микросхема К561ИЕ16 широко распространена и имеет небольшую стоимость, что является дополнительным стимулом для разработки различных электронных устройств на ее основе.
В первый момент времени после подачи на микросхему питания начинает заряжаться оксидный конденсатор С5 через резистор R8, на входе сброса R микросхемы DD3 устанавливается высокий уровень, благодаря которому на всех выходах Q будет присутствовать низкий уровень.
По прошествии 60 мин/ (выдержка времени, обусловленная счетом до 8192 микросхемы DD3) на выводе 3 DD3 возникает напряжение высокого уровня. Оно инвертируется элементом DD2.3 и поступает через разделительный конденсатор С1 на узел дозатора полива. Принудительно сбросить счетчик в нуль можно кратковременным отключением питания или замыканием накоротко постоянного резистора R8 (подачей низкого уровня на вход сброса R микросхемы К561ИЕ16).
2.1.2. Особенности установки
Как уже было отмечено выше, воду из бачка омывателя нагнетает автомобильный электродвигатель. Патрубок-капельница также используется штатный – его можно приобрести в магазинах автомобильных товаров или в торговых точках товаров для аквариума. Длина патрубка 3–4 м. большую длину использовать не желательно, так как напор воды будет сокращаться. На концы патрубка-капельницы надевают распылители воздуха для аквариума, через которые свободно проникает и вода.
Эти распылители и, тройник-разветвитель и миниатюрный вентиль показаны на рис. 2.4. Приобрести их можно там же (к примеру, у аквариумистов).
Рис. 2.4. Вентиль, тройник и распылители
Распылители для воды закрепляют на штативе или на самом стволе цветка (если толщина позволяет) в середине ствола, так, чтобы распыляющаяся влага доставалась не только почве, но и стволу и листьям цветка. Когда требуется обслуживать несколько цветков, недалеко удаленных друг от друга, на патрубок устанавливают тройник, от которого разветвляются еще два патрубка.
2.1.3. О деталях
Кроме микросхемы К561ИЕ16 можно без изменений в схеме применить ее зарубежный аналог CD4020В. Вместо этих микросхем можно применить более дорогую по стоимости зарубежную микросхему CD4060 (у которой нет полного аналога в К561 серии). Микросхема CD4060 имеет встроенный генератор импульсов, поэтому элементы HL1 и R9 из электрической схемы можно исключить.
Транзистор КТ604А заменяют любым из серий КТ815, КТ817, КТ819.
Диод VD1 – любой из серий КД521, КД522, КД102, КД103, 1N4148. Постоянные резисторы типа МЛТ-0,25. Оксидные конденсаторы С2 – С5 типа К50-24, К50-29 или аналогичные. Конденсатор С1 типа КМ-6 или аналогичный. Оксидный конденсатор С4 сглаживает пульсации напряжения.
Мигающий светодиод (кроме указанного на схеме) может быть типа L-816BRSC-B, L-56DGD, ARL-5013URC-B или аналогичным. Реле К1 – любое на напряжение срабатывания 10–12 В, с током потребления 10–50 мА, например, WJ118-1C или аналогичное.
Устройство очень экономично и непритязательно к параметрам источника питания. Ток потребления без учета тока потребления реле составляет всего 20 мА, причем большая часть расходуется мигающим светодиодом. Источник питания стабилизированный.
Устройство хорошо работает при напряжении питания 9–15 В и работоспособно и при снижении напряжения питания до 5 В, однако в этом случае частота задающего генератора на мигающем светодиоде HL1 заметно увеличивается, что приводит к уменьшению времени задержки.
2.1.4. Налаживание
Устройство в налаживании не нуждается.
Время работы электродвигателя М1 (время полива) корректируется емкостью конденсатора С2. При емкости С2 = 1 мкФ и напряжения питания 12 В время полива составит 4 с., при С2 = 20 мкФ время полива увеличится до 1 мин.
Чувствительность узла контроля влажности почвы регулируют изменением сопротивления переменного резистора R1. При уменьшении сопротивления R1 чувствительность уменьшается.
Задержка включения таймера также может быть изменена путем подключения входа инвертора DD2.3 к другому выходу Q микросхемы– счетчика К561ИЕ16.
Так, к примеру, при подключении к выходу Q9 DD3 (вывод 14) управляющий импульс высокого уровня поступит на инвертор примерно через 3 мин. после начала отсчета импульсов задающего генератора (микросхема сосчитает до 512).
2.1.5. Варианты практического применения
Устройство можно применять не только в соответствии с описанным выше способом – для автоматического полива растений. В жаркое время года, когда в квартире душно и уровень влажности катастрофически мал, такое устройство без изменения электрической схемы послужит для увлажнения воздуха.
Для этого распылители воды, установленные на концах патрубков-капельниц закрепляют сверху решетки комнатного вентилятора (желательно применять напольный вентилятор с высокой штангой). Один раз в час (или в другом алгоритме, «запрограммированном» радиолюбителем под конкретные задачи) нагнетатель воды и бачка распылит влагу мелкими каплями на вращающиеся лопасти вентилятора. При этом (учитывая, что вентилятор вращается в одной горизонтальной плоскости, но имеет угол свободного вращения до 90°) достигается увлажнение большой территории комнаты.
Благодаря применению аквариумных распылителей влага распыляется дозировано, мелкими каплями, поэтому утечки воды (и лужи под вентилятором) не происходит.
Устройство практически опробовано автором осенью 2014 г.
2.2. Радиоуправление электронными устройствами
Электронное устройство, состоящее из радиоприемника и передатчика сигналов радиочастоты совсем несложно переоборудовать в радиоуправляемый электронный узел, включающий и выключающий свет в квартире дистанционно.
Пространство действия устройство распространяется до 100 м в условиях прямой видимости, что достаточно для управления в пределах среднестатистической квартиры или дома.
Передатчик, внешне представляющий собой корпус в виде пульта дистанционного управления (см. рис. 2.5 справа), в доработке не нуждается.
Благодаря несложной доработке приемного устройства (рис. 2.5 слева) устройство приемника радиосигналов принимает новое назначение.
Рис. 2.5. Внешний вид передатчика и приемника
Теперь с его помощью можно дистанционно управлять электролампой накаливания или другой подобной нагрузкой.
На рис. 2.6 (соответственно слева и справа) представлен вид промышленно приемо – передающего устройства со снятой крышкой (вид на печатные платы приемника и передатчика радиосигналов).
Рис. 2.6. Вид на приемник и передатчик радиосигналов со снятыми корпусами
Электрическая схема устройства приставки к приемнику представлена на рис. 2.7.
Рис. 2.7. Электрическая схема приставки
Приставка подключается к печатной плате приемного устройства неэкранированными проводами типа МГТФ-0,4 (или аналогичными), при этом вход элемента микросхемы DD1.1 подключается к контакту (выводу) 6 микроcборки U2 (имеющей маркировку на печатной плате CL 102K 0985RX.
При поступлении импульса от передатчика (длительностью не менее 2 с) на выводе 6 микросборки U2 уровень сигнала изменяется с низкого на высокий.
Вывод 6 U2 по печатному монтажу соединен с выводом 9 U1 – входом формирователя сигнала.
Для того, чтобы устройство функционировало нормально достаточно разорвать печатный проводник от вывода 6 U2 до вывода 9 U1.
Основой схемы на рис. 3.7 является триггер на одном элементе микросхемы К561ТМ2.
Эта микросхема имеет 2 D-триггера, каждый из которых содержит по два входа асинхронного управления – S и R. Триггер переключается по положительному перепаду на тактовом входе С (вывод 3 DD1.1). При этом логический уровень, присутствующий на входе D, передается на прямой выход Q.
При высоком логическом уровне на входе сброса R триггер обнуляется.
Напряжение питания приставки в пределах 5–15 В.
2.2.1. Принцип работы приставки
При включении питания в первый момент времени на вход R DD1.1 благодаря разряженному конденсатору С2 поступает высокий логический уровень, который обнуляет триггер так, чтобы на прямом выходе Q установился низкий уровень напряжения. Транзистор VT1 закрыт, реле К1 обесточено, лампа накаливания EL1 не горит.
Примерно через ½ с (это обусловлено емкостью оксидного конденсатора С2 и сопротивлением резистора R1) первый зарядится почти до напряжения питания и уровень на входе R (вывод 4 DD1.1) переменится на низкий. Теперь триггер готов к приему сигналов по тактовому входу С, имеющему, как следует из схемы, низкий исходный уровень. Когда с пульта дистанционного управления поступает радиосигнал (и принимается приемным устройством), на входе С микросхемы DD1.1 появляется высокий уровень напряжения – триггер перебрасывается в другое устойчивое состояние. Теперь на его прямом выходе Q высокий уровень напряжения. Транзистор VT1 включает реле К1, а его контакты в свою очередь замыкают электрическую цепь питания лампы накаливания EL1.
В таком состоянии триггер находится до следующего положительного фронта импульса на входе С. При его поступлении (повторного нажатия клавиши на пульте), триггер переходит в исходное состояние, лампа накаливания EL1 обесточивается.
Цепь С2R1 обеспечивает сброс триггера микросхемы DD1 в исходный режим ожидания при включении питания. Оксидный конденсатор С1 выполняет функцию фильтрующего элемента по питанию. Диод VD1 препятствует броскам обратного напряжения при включении/выключении реле.
Суммарная мощность коммутируемой нагрузки зависит от параметров электромагнитного реле К1 и в данном случае ограничивается 150 Вт.
Из-за небольшого количества дискретных элементов приставки, все они монтируются на участке перфорированной платы размером 30×40 мм и вместе с соединительными проводами помещаются в штатный корпус.
Для уменьшения воздействия электрических помех желательно, чтобы провода, соединяющие устройство с источником питания и идущие от реле К1 к осветительной лампе стремились к минимальной длине.
2.2.2. О деталях
Постоянные резисторы МЛТ-0,25 (MF-25). Оксидные конденсаторы типа К50-26 на рабочее напряжение не менее 16 В. Остальные неполярные конденсаторы типа КМ-6Б.
Микросхему DD1 (К561ТМ2) можно заменить на К561ТМ1 без ущерба для эффективности работы узла, но в этом случае придется изменить схему, так как выводы у этих микросхем имеют разное назначение.
Транзистор VT1 – полевой, с большим входным сопротивлением. Это позволяет минимизировать ток утечки в состоянии ожидания радиосигнала и практически не оказывает влияния на выход триггера, не смотря на ограничивающий резистор R2 с малым сопротивлением.
Реле К1 можно заменить на РЭС43 (исполнение РС4.569.201) или другое, рассчитанное на напряжение срабатывания 4–4,5 В и ток 10–30 мА.
Устанавливать в устройство реле с током включения более 80 мА нежелательно, так как управляющий работой реле транзистор VT1 имеет ограничение по мощности.
Вместо КП540А можно применить полевой транзистор любой из серии КП540 или его зарубежные аналоги BUZ11, IRF510, IRF521.
Cветодиод HL1 – любой, с его помощью удобно контролировать срабатывание реле и замыкание исполнительных контактов. При необходимости элементы HL1, R3 из схемы можно исключить без последствий. Штатный включатель комнатного освещения на схеме показан под наименованием SA1.
Вместо лампы накаливания, обозначенной на электрической схеме EL1, можно применять любое устройство активной нагрузки с потребляемой от осветительной сети 220 В мощностью не более 150 Вт.
2.3. Автономный световой «маяк» для безопасности
Проблесковые маячки применяются в электронных охранных комплексах и на автотранспорте как устройства индикации, сигнализации и предупреждения. По тому же принципу действия – для привлечения внимания водителей к движущейся в вечернее время по пешеходному переходу детской коляске – я сделал маячок из подручных деталей. В разделе рассказывается о том, как в корпусе от детской игрушки с магнитным основанием сделать электронный маячок. Этот раздел может стать полезным для семей с маленькими детьми.
На дворе XXI век, в котором продолжается триумфальное шествие супер ярких (и мощных по световому потоку) светодиодов. Один из основополагающих моментов в пользу замены ламп накаливания и галогенных ламп светодиодами, в частности в проблесковых маячках, является ресурс и стоимость светодиода. Под ресурсом, как правило, понимают срок безотказной службы.
Широкое использование светодиодов с мощным световым потоком в несколько десятков Лм (Люменов) в электронных устройствах промышленного изготовления, где ими заменяют даже лампы накаливания, дает повод радиолюбителям применять такие светодиоды в своих конструкциях.
Самый экономичный вариант электрической схемы для питания светодиодов может быть реализован посредством импульсного преобразователя тока. В этом случае ток потребления от источника питания незначителен. На рис. 3.8 представлена электрическая схема устройства.
Рис. 2.8. Электрическая схема импульсного преобразователя для питания светодиодов маячка
Поскольку устройство питается от автономного источника питания, зависимость тока потребления от установленного внутри оборудования – прямая.
При работе «импульсного маячка» ток потребления находится в пределах 0,2 А. Экономия в деталях очевидна.
Устройство доказало свою практическую ценность: даже относительно слабые световые импульсы (от мощных светодиодов, относительно, к примеру лампы ИФК-120) в ночное и темное время суток достаточны для того, чтобы вспышки светодиодов заметили за несколько сотен метров. Именно в этом смысл предупреждения водителей о движущейся по пешеходному переходу детской коляски в сопровождении родителей, не правда, ли? Особенно, если такой переход не оборудован действующим светофором.
Особое значение в выборе корпуса для самодельного устройства имеет колба (прозрачная часть корпуса).
Я выбрал не просто детскую игрушку, а корпус, в котором установлена колба, конструктивно усиливающая свет (наподобие рефлекторов автомобильных фар). Поэтому даже слабый источник света в данном случае дает хороший эффект.
На рис. 2.9. представлен вид колбы для моего устройства.
Рис. 2.9. Вид крышки корпуса устройства – колбы с рифленым стеком – от детской игрушки
Рассмотрим электрическую схему устройства.
Она представляет собой широтно-импульсный модулятор (ШИМ). Эту электрическую схему можно с полным правом назвать простой и доступной. Устройство разработано на основе популярного интегрального таймера КР1006ВИ1, содержащего два прецизионных компаратора, обеспечивающих погрешность сравнения напряжений не хуже ±1 %. Таймер неоднократно использовался радиолюбителями для построения таких популярных схем и устройств, как реле времени, мультивибраторы, преобразователи, сигнализаторы, устройства сравнения напряжения и другие.
В состав устройства входят кроме интегрального таймера DA1 (многофункциональная микросхема КР1006ВИ1), времязадающий оксидный конденсатор С1, делитель напряжения R1R2. С выхода микросхемы DA1 (ток до 250 мА) управляющие импульсы поступают на светодиоды HL1—HL3.
2.3.1. Принцип работы устройства
Принцип работы устройства таков.
Включение маячка осуществляется с помощью включателя SB1. Принцип работы мультивибратора подробно описан в литературе.
В первый момент времени на выводе 3 микросхемы DA1 высокий уровень напряжения и светодиоды горят. Оксидный конденсатор С1 начинает заряжаться через цепь R1R2.
Спустя примерно 1 с (это время зависит от сопротивления делителя напряжения R1R2 и емкости конденсатора С1), напряжение на обкладках этого конденсатора достигает величины, необходимой для срабатывания одного из компараторов в едином корпусе микросхемы DA1. При этом напряжение на выводе 3 микросхемы DA1 устанавливается равным нулю, и светодиоды гаснут. Так продолжается циклически, пока на устройство подано напряжение питания.
При отсутствии питания устройство ток не потребляет.
2.3.2. О деталях
Кроме указанных на схеме, в качестве HL1—HL3 рекомендую использовать мощные светодиоды HPWS-TH00 или аналогичные с током потребления до 80 мА. Можно применять только один светодиод из серий LXHL-DL-01, LXHL-FL1C, LXYL-PL-01, LXHL-ML1D, LXHL-PH01, LXHL-MH1D производства Lumileds Lighting (все – оранжевого и красно-оранжевого цвета свечения).
Напряжение питания устройства можно довести до 12 В; это позволяет осуществить электрический параметры микросхемы, но сопротивление ограничительных резисторов R3-R5 в этом случае следует пропорционально увеличить.
Кроме описанных выше особенностей в выборе корпуса и его прозрачной части, другие особенности конструкции таковы.
Плата с элементами устройства устанавливается в корпус проблескового маячка. Вид на установленную плату с 3-мя светодиодами представлен на рис. 2.10.
Рис. 2.10. Вид на плату светодиодного маячка
На рис. 2.11 и 2.12 представлены соответственно место установки платы в корпусе детской игрушки и внешний вид законченной конструкции.
Рис. 2.11. Вид на печатную плату, устанавливаемую в корпусе
Внешней вид готовой конструкции представлен на рис. 2.9 (выше).
С обратной стороны корпуса я установил плоский магнит для того, чтобы устройство удобно фиксировалось на металлический каркас детской коляски (см. рис. 2.12).
Рис. 2.12. Оборотная стороны корпуса устройства
Для того, чтобы выходной каскад обладал еще большей мощностью можно установить в точку «А» (рис. 2.8) усилитель тока на транзисторе VT1 так, как это показано на рис. 2.13.
Рис. 2.13. Схема подключения дополнительного усилительного каскада
2.3.3. Варианты перспективных доработок устройства
Варианты доработок таковы.
После такой доработки можно применять три параллельно включенных светодиода типов LXHL-PL09, LXHL–LL3C (1400 мА), UE-HR803RO (700 мА), LY-W57B (400 мА). Автономный источник питания разрядится довольно быстро.
Можно и максимально упростить схему, оставив в ней только элемент питания напряжением 4…12 В, включатель и специальный светодиод со встроенной схемой управления, который изменяет цвета (есть двухцветные, есть те, что переливаются всеми 65 000 оттенками).
Если между точкой «А» и положительным полюсом источника питания включить капсюль со встроенным звуковым генератором, во время вспышек светодиода будет активен звуковой сигнал. Эта опции может развлечь ребенка в качестве игрушки, когда он не спит.
При повторении описываемого устройства может потребоваться подбор частотозадающих элементов (R1, R2, С1) и мультивибратора.
2.4. Автономное устройство с малым напряжением питания и его полезное действие
Во время летнего отдыха все кажется безмятежным до той поры, пока вы не почувствуете влияние комаров с их предательскими укусами и неприятным жужжанием.
Среди большого количества устройств, заявленных производителем как отпугиватели комаров (и или прочих вредителей) есть интересные для анализа радиолюбителей образцы. И если ранее подобные устройства были «завязаны» на питание от осветительной сети 220 В, или имели автономное питание от нескольких батарей (эквивалентное напряжение 9 В и выше), то недавно появились портативные (переносные) устройства с питанием от одной «пальчиковой» батарейки и «спрятанные» при этом в небольшой корпус, по габаритам едва превышающий губную помаду или спичечный коробок.
К примеру, портативный отпугиватель комаров, внешний вид которого представлен на рис. 2.14, собран по схеме высокочастотного генератора на комплементарной паре биполярных транзисторов и нагружен на пьезоэлектрический капсюль BZ1. От значений элементов С1, R1, R2 зависит частота генерации.
Рис. 2.14. Внешний вид устройства
Особенность приведенного автономного устройства в минимальном напряжении питания, которое можно получить всего от одного элемента типа АА/LR6 c напряжением 1,5 В.
Электрическая схема устройства представлена на рис. 2.15.
Рис. 2.15. Электрическая схема устройства
При приведенных в схеме (рис. 2.15) значениях элементов частота генерации составляет 5,45 кГц. Такая частота не влияет на работу радиоприемных, телевизионных и компьютерных устройств.
Монтаж элементов довольно компактный; он представлен на рис. 2.16.
Рис. 2.16. Монтаж устройства, вид на печатную плату со стороны дорожек
Пользуясь электрической схемой и ее описанием в части рекомендуемых замен радиодеталей, ребята могут самостоятельно собрать устройство излучения небольшой мощности и экспериментировать с ним, в том числе – изменять частоту излучения и наблюдать эффективность результатов. Небольшая мощность этого устройства служит гарантией безопасности таких экспериментов.
2.4.1. Элементы электрической схемы
Кремниевый биполярный эпитаксиально-планарный p-n-p транзистор в корпусе ТО-92 2N5401 предназначен для использования в высокочастотных устройствах радиоаппаратуры широкого применения с
малым уровнем шумов и повышенным напряжением питания. Это вытекает из его электрических характеристик. Отечественный аналог КТ6116А. В данной схеме транзистор 2N5401 уверенно работает при минимальном напряжении питания и в генераторном режиме. Его также можно заменить на 2N5401C, 2N5401G, 2N5401N, 2N5401S, G2N5401, H2N5401, L2N5401. При других заменах устройство не проверено.
При столь малом напряжении питания и токе в цепи значения предельно допустимых электрических режимов эксплуатации не сильно важны. Тем не менее, приведу наиболее существенные из них.
Рассеиваемая мощность коллектора (Pк max) для транзистора 2N5491 всего 350 мВт.
Биполярный высокочастотный n-p-n транзистора– 2N5551 в корпусе То-92 или SOT-23, на мой взгляд, следует заменять аналогом лишь в крайнем случае, с учетом его конкретной схемы применения и режима работы.
Можно попробовать заменить транзистор 2N5551 близкими по электрическим характеристикам транзисторами: 2N5175, 2N5550, BFQ22, ECG194, LBC546B, BC445, BC537-16, BC449-5, BC449-18, BC449A, BC537-10, BC447B, BC447A, BC447-5. Однако эти опытные замены на практике при столь малом напряжении питания не проверены.
Но даже при таком малом напряжении питания замена должна опираться на следующие электрические характеристики: статический коэффициент передачи тока (h21э) минимум от 50 и выше 50, граничная частота коэффициента передачи тока (fгр) 100 МГц.
Его максимальная рассеиваемая мощность всего 0,35 Вт.
Емкость конденсатора может находиться в пределах 180 пФ ±20 %. При выборе конденсаторов важно иметь в виду особенности их маркировки. На миниатюрном корпусе указывается – первые две цифры – номинал в пФ, а третья цифра – показатель степени с основанием 10.
Резисторы R1 и R2 минимальной мощности рассеяния. Допуск отклонения от указанных на электрической схеме значений – 25 %.
BZ1 – пьезоэлектрический капсюль без встроенного генератора с небольшим диаметром рабочей поверхности: всего 13,8 мм отлично подошел под компактный корпус.
Расшифровываются особенности их обозначений так, к примеру:
HPA 17 A
1 2
где 1 – серия: HPA – без встроенного генератора, HPM – с защитной пленкой без встроенного генератора, HPS – для поверхностного монтажа без встроенного генератора.
А 2 – диаметр излучающей (рабочей) поверхности в мм.
Для подбора других капсюлей уместно воспользоваться справочной табл. 2.1.
Справочные данные взяты с сайта
Таблица 2.1. Технические и электрические характеристики пьезоэлектрических капсюлей малой мощности
2.4.2. Перспектива применения
Учитывая небольшую мощность, рассмотренное высокочастотное устройство предназначено для отпугивания комаров в небольшом помещении, ограниченного площадью одной комнаты 12–15 м². Это выяснено опытным путем.
В инструкции по эксплуатации указано, что устройство является «эффективным и безопасным средством борьбы с комарами» и «совершенно безопасно для человека и домашних животных». А также приведена «площадь эффективного покрытия» в 30 м².
Из паспорта изделия также следует, что «лабораторные исследования доказали, что звуковые волны активно воздействуют на нервную систему комаров, вызывая у них чувство дискомфорта». Тем не менее, я не вполне соглашусь с таким утверждением по нескольким причинам, обсуждение которых, очевидно, выходит за рамки данной статьи.
Однако, не могу не описать свой опыт как с этим, так и с другими электронными устройствами опугивателей комаров, грызунов, тараканов, птиц, домашних животных – кошек и собак, и даже коров и коз – представителей семейства мелкого и крупного рогатого скота (с которыми я экспериментировал в своем хозяйстве в сельской местности 2007–2011 гг.); некоторые из электронных устройств имеют регулировку частоты генератора и заявленную производителем мощность более 1 Вт.
Каждая из перечисленных групп насекомых и животных реагирует на «свою» частоту. Но вот что интересно. Особенности человеческого уха таковы, что оно (за редким индивидуальным исключением) не слышит, не воспринимает высокочастотный сигнал свыше 20 кГц. Если держать включенным такой прибор (в том числе отпугиватель комаров) недалеко (в пределах комнаты, офиса) от человека длительное время (на моей практике – достаточно получаса и более), то ощущается дискомфорт: хочется бросить занятия и уйти в другое помещение на улицу, сменить место дислокации.
Таким образом, устройства отпугивателей насекомых и особенно домашних животных оказывают воздействие на человека. Как минимум, вызывая дискомфортное состояние (эффект «звона в ушах»).
На основании собственных наблюдений и экспериментов могу сказать, что такие устройства кое-кто при желании с сомнительной мотивацией и целями щекотливого свойства может использовать в кабинетах, для бизнес и иных переговоров, в автомобилях в иначе – локально – в любых местах небольшой площади для намеренного вреда здоровью других людей, вызывая у них подсознательное стремление покинуть помещение.
Этих воздействий следует остерегаться.
Полагаю, что результаты исследований на эту тему либо не известны широкому кругу лиц – потенциальных пользователей устройств в быту, либо намеренно скрываются. Таким образом, настоящая статья имеет и еще одну цель: дать повод задуматься над «эффективностью» и безопасностью подобных «экспериментов» с комарами или с людьми.
С другой стороны «зона эффективности» или область действия устройства действительно локальна, мощность невелика, обнаружить такое излучение на расстоянии без специальных приборов затруднительно. Следовательно, трудно доказать намеренность действий с помощью такого источника дискомфортного излучения.
Устройство также бесполезно вне замкнутых пространств. Так при моих экспериментах летом текущего 2014 года на рыбалке, включенное и подвешенное на пояс брюк оно никоим образом не отгоняло комаров и мошкару.
На основании изложенного, эффект от данного устройства более вредный (в помещениях с присутствием людей), нежели полезный, а вне помещений эффекта не ощущается. Значит, его уместно эксплуатировать тогда, когда люди выведены из зоны его действия.
Выводы предлагаю сделать самим.
2.5. Восстановление энергоемкости аккумуляторной батареи с помощью таймера
Почти все электронные устройства для обеспечения возможности автономного энергообеспечения рассчитаны на автономную работу от батарей (элементов питания) или аккумуляторов (перезаряжаемых элементов питания, имеющих идентичные типоразмеры). Однако, любые, даже самые современные АКБ, на основе Li-ion технологии, со временем теряют первоначальную энергоемкость. Из-за этого время работы такой АКБ существенно сокращается. За примерами далеко ходить не надо – вспомните сотовые телефоны.
Мне же интересен другой пример – как восстановить емкость АКБ портативной радиостанции (см. рис. 2.17) без специальных приспособлений и дорогостоящих устройств.
Рис. 2.17. Фото портативной радиостанции в зарядном «стакане»
Один из способов продлить жизнь аккумуляторной батареи (далее – АКБ) небольшой емкости – обеспечить ей стабильный (во времени) режим заряда и разряда. Во время экспериментов с портативной радиостанцией мне архиважно, чтобы р/станция постоянно находилась в режиме «прием» (включена) и сканировала нужный участок диапазона. В режиме сканирования АКБ потребляет на порядок больший ток, чем в режиме «прием», поэтому р/станция даже с новой АКБ вскоре после покупки и означенного эксперимента начнет требовать зарядки чаще, чем этого хотелось бы ее владельцу.
А что делать тем, у кого в наличии имеются старые портативные р/станции с уже «отжившими свое» АКБ.
Простой метод позволяет «вылечить» АКБ, даже изрядно потерявшую емкость. Для этого потребуется программируемый таймер, обеспечивающий цикличное включение нагрузки. Наиболее оптимальным решением в части простоты, временных и материальных затрат является применение электромеханического таймера (рис. 2.18).
Рис. 2.18. Фото электромеханического таймера
Для этого таймер программируют так, чтобы он включался с 20.00 до 8.00 (на 12 часов – это время может быть скорректировано в каждом конкретном случае). В качестве нагрузки подключают адаптер зарядного устройства для портативной р/станции*.
Таким образом, р/станция постоянно включена: c 8 до 20 часов работает от энергии собственной АКБ, обеспечивая естественный и стабильный во времени разряд АКБ, остальную часть суток с помощью зарядного устройства, с одновременной подзарядкой АКБ.
Время, выбранное на режим заряда от сетевого адаптера, зависит от номинальной энергоемкости АКБ, его состояния (старости) и зарядного тока. В данном случае это время вычислено опытным путем – опробована работа в автономном режиме «на износ» с полностью заряженной АКБ. Дополнительную информацию и рекомендации можно получить из инструкции по эксплуатации конкретного электронного устройства.
В результате проведенного эксперимента мне удалось восстановить АКБ видавшей виды «портативки» IC-F3. Если ее АКБ ранее «держала время» не более 10 часов, то после 2-х месячного эксперимента, описанного в статье, время активной работы р/станции увеличилось до 15 часов. И это еще не предел…
Таким же методом можно с успехом «вылечить» АКБ небольшой энергоемкости других электронных устройств, совершенно разных, к примеру, машинки для бритья.
* Не путать с устройством для «быстрой зарядки». Время заряда с таким устройством может быть ограничено 1–3 час., а перезаряд в некоторых портативных устройствах (не оборудованных автоматическим устройством отключения) приведет к быстрой потере емкости АКБ.
2.6. Полезная зарядка сотового телефона – удобный дополнительный кейс
Представленная на рис. рис. 2.19-2.21 зарядка для сотового телефона Solar Charger позволяет заряжать сотовые телефоны, фотоаппараты, приставки PSP – то есть устройства, имеющие внутренний аккумулятор и предназначенные для многоразовой зарядки.
Рис. 2.19. Внешний вид зарядки от солнечной энергии
Рис. 2.20. Солнечная батарея в разных ракурсах. Внешний вид
Рис. 2.21. Солнечная батарея в разных ракурсах. Внешний вид
Встроенный аккумулятор устройства Solar Charger E533248G имеет энергоемкость 800 мА/ч и номинальным напряжением 3,7 В.
Солнечные батареи состоит из двух элементов ROHS N67,5×37-576, подключенных параллельно с общим номинальным напряжением 5,5 с допуском ±0,2 В и током 100 мА.
Вид с обратно стороны элемента солнечной батареи представлен на рис. 2.22.
Рис. 2.22. Вид на раскрытый корпус Solar Charger и обратную сторону элемента солнечной батареи
Эти два идентичные элементы солнечной батареи устройства представляют собой монокристаллические панели, которые конвертируют 17 % солнечной энергии.
Выходной ток для зарядки сотового телефона соответствует данным встроенного аккумулятора – 800 мА. Этого тока вполне достаточно для зарядки большинства современных сотовых телефонов, в том числе IPod/IPhone, Digital camer, MP3, MP4 плейеров.
Время зарядки устройства от солнечной энергии днем в безоблачную погоду (с большой солнечной активностью) составляет 10–12 часов. Время зарядки от компьютера – через разъем USB2.0 постоянным напряжением 5 В ±10 % составляет менее 4 часов. Время необходимое на передачу энергии для заряда аккумулятора сотового телефона (иного устройства) в зависимости от конкретной модели и типа устройства, составит 8-12 часов.
Зарядка внешней нагрузки (к примеру, сотового телефона) осуществляется при помощи электронной схемы. Элементы электронной схемы монтированы на печатной плате, участок которой представлен на рис. 2.23.
Рис. 2.23. Элементы электронной схемы зарядного устройства на печатной плате Solar Charger
Самой «выдающейся» деталью здесь показан дроссель L1.
Устройство Solar Charger снабжено разъемом USB2.0 (выходной разъем для зарядки сотовых телефонов и иных периферийных электронных устройств) и миниUSB (для зарядки от ПК или адаптера с выходным напряжением 5 В), переходниками и соединительным кабелем.
Устройство позволяет заряжать не только сотовые телефоны практически всех современных производителей и марок, но и IPod/IPhone, Digital camer, MP3, MP4 плейеров, игровые приставки PSP и многое другое, любые электронные устройства для которых подходит выходное постоянное напряжение 5…5,5 В и ток заряда 100 мА.
В процессе эксплуатации обнаружены следующие особенности представленного устройства.
Перед началом его активного применения Solar Charger необходимо зарядить о имеющегося в комплекте кабеля-переходника USB (ПК) – миниUSB (Solar Charger). При этом – во время зарядки встроенного аккумулятора на корпусе устройства загорится красный светодиод (см. рис. 2.24).
Рис. 2.24. Solar Charger в режиме зарядки от ПК
Если во время зарядки подключить сотовый телефон, то заряжаться будет и он тоже. Что я нередко использовал для экономии времени, поскольку Solar Charger предназначен главным образом для зарядки других электронных устройств, а не самого себя.
После того, как встроенный аккумулятор наберет полную энергоемкость, красный светодиод на корпусе Solar Charger погаснет, и зарядка встроенного аккумулятора прекратиться. Сотовый телефон также отключится от внешней зарядки автоматически при наборе емкости аккумулятора, благодаря встроенному адаптеру питания.
После того, как встроенный аккумулятор Solar Charger полностью заряжен, устройство можно подзаряжать от солнечной энергии.
Для этого обе части корпуса раскрываю (как показано на рис. 2.20) и представляют солнечному свету.
В пасмурный или дождливый день зарядка идет слабее и времени на нее потребуется больше, чем в ясную солнечную погоду.
Процесс подзарядки от солнечной энергии индицирует светодиод зеленого свечения в торце (сбоку) корпуса Solar Charger. Соответственно, если он не горит – зарядки встроенного аккумулятора не происходит.
Такая ситуация может возникнуть в двух случаях: если встроенный аккумулятор E533248G полностью заряжен, и если рядом с раскрытыми солнечными элементами ROHS на две половинки Solar Charger недостаточно освещение (сила света).
Для принудительной активации Solar Charger от солнечной энергии в условиях недостаточности освещения рекомендую кратковременно осветить рабочие поверхности элементов солнечных батарей ярким лучом электрического фонаря (вблизи от устройства); этот свет дает дополнительный импульс для запуска Solar Charger.
Если внутренний аккумулятор Solar Charger сильно разряжен (к примеру, если устройством давно не пользовались – более полугода). Тогда, для приведения Solar Charger в готовность, предварительно зарядите его от ПК или сетевого адаптера с выходным напряжением 5–8 В и током 100–200 мА снабженного разъемом мини USB.