В течение многих лет непревзойденное творение природы, ее высшее и самое совершенное достижение — головной мозг человека исследуется и изучается во всех странах мира. И все же до сих пор мы не можем сказать, что его строение, химический состав, неповторимо тонкие, подчас загадочные механизмы действия, влияние на физиологические и биохимические процессы жизнедеятельности организма хорошо известны и до конца поняты исследователями — морфологами, физиологами, биохимиками, психологами. Еще до сих пор говорят о мозге как о «черном ящике», используя крылатое выражение основателя кибернетики Норберта Винера, который назвал этим термином устройство, выполняющее определенную операцию над входным потенциалом, строение и функции которого, обеспечивающие выполнение операции, остаются неизвестными. В начале нашего столетия И. П. Павлов писал: «Можно с правом сказать, что неудержимый с времен Галилея ход естествознания впервые заметно приостанавливается перед высшим отделом мозга, или, вообще говоря, перед органом сложнейших отношений животных к внешнему миру. И, казалось, что это недаром, что здесь действительно критический момент естествознания, так как мозг, который в высшей его формации — человеческом мозгу — создавал и создает естествознание, сам становится объектом этого естествознания».

Многое изменилось с тех пор, когда были написаны эти слова. На помощь естествоиспытателю пришли поразительно тонкие, необыкновенно информативные методы анатомического, гистологического, физического и химического исследования. Лаборатории и клиники обогатились сложнейшей электронной аппаратурой, автоматическими анализаторами, мощными усилителями, вычислительными машинами, микроманипуляторами, способными проникнуть в отдельную клетку, уловить и записать электрический ток, рождающийся при возбуждении одного-единственного нейрона. Таинственный орган, перед которым беспомощно останавливался человеческий гений, начал выдавать свои тайны. Магическая сущность процессов, совершающихся в его недрах, стала достоянием науки, «черный ящик» приоткрыл свое содержимое.

О том, что центральная нервная система, в первую очередь головной мозг, управляет функциями организма, известно давно. Чем выше развита живая система, тем сложнее устроена, тем большее значение имеет для нее нервная система. Она регулирует и координирует все проявления его жизнедеятельности. Нервные импульсы, поступая в клетки, органы и ткани, вызывают не только явления возбуждения или торможения, но и направляют, перестраивают протекающие в них химические процессы, стимулируют либо подавляют образование и распад биологически активных соединений, осуществляющих возникновение, течение и затухание физиологических колебаний в составе и свойствах внутренней среды.

Но для того, чтобы нервная клетка головного и спинного мозга могла жить и посылать в органы и клетки — мишени «директивные» сигналы, она, как и любая клетка любого органа, нуждается в непрерывном поступлении кислорода и питательных веществ (белков, углеводов, жиров, солей, витаминов, сложных биологически активных соединений и т. д.). Ее деятельность зависит от состава и свойств микросреды, в которой она живет, откуда получает гуморальную информацию и которой отдает продукты своего обмена — метаболиты. В одних случаях ей нужны простые, в других — сложные химические продукты, вырабатываемые органами и тканями внемозгового происхождения либо нервными клетками, расположенными подчас в отдаленных участках спинномозгового ствола. Вещества эти обладают во многих случаях свойствами истинных гормонов, иногда «кандидатов в гормоны», как их называют в специальной литературе. Клетки мозга «общаются» между собой не только через нервные, но и гуморальные связи. Образующиеся в синапсах медиаторы передают сигналы с одной нервной клетки на другую, модуляторы регулируют деятельность нейронов и их ансамблей, поступая в микросреду различных отделов мозга. Местное влияние метаболитов, медиаторов и модуляторов может генерализоваться, если они попадают в цереброспинальную жидкость или в ток крови. Более подробно об этом в следующей главе.

Еще недавно исследователи, изучая в лабораторных опытах на животных действие крови, оттекающей от мозга, могли убедиться, что по своим свойствам эта кровь отличается от крови, притекающей к мозгу. Поступившая в центральную нервную систему артериальная кровь обогащается какими-то веществами, усиливающими деятельность сердца, повышающими кровяное давление, изменяющими состояние пищеварительного тракта, работу почек. Оказалось, что влияние оттекающей от мозга венозной крови на различные органы и физиологические системы зависит от функционального состояния центральной нервной системы.

В настоящее время физиологи и врачи-хирурги легко получают кровь, оттекающую от мозга. Ее можно брать и в опытах на животных, и при обследовании больных, страдающих теми или другими заболеваниями головного мозга. Сравнивая состав артериальной крови и крови, взятой из яремной вены, судят о биохимических процессах, совершающихся в мозге. Этим путем удается выявить как образование в нервной ткани специфических метаболитов, так и проследить процесс их инактивации не только в целом мозге, но и в его отдельных участках.

Мысль о том, что мозг является своеобразным эндокринным органом, высказала Л. С. Штерн еще много лет назад. «Таким образом, — писала она, — мозг, помимо своей специфической функции как центр и источник нервных импульсов, регулирующих активность отдельных органов и систем, принимает участие, наравне с другими органами, своими метаболитами в регуляции и координации функций организма. В этом отношении никакой принципиальной разницы между нервной системой и другими системами не существует. Как и всякий другой орган, мозг (головной и спинной) выделяет продукты своего метаболизма в окружающую его жидкость и оттуда в оттекающую от него кровь».

Мысль эта, высказанная в тридцатых годах, казалась в то время не только антинаучной, но и противоречащей всем узаконенным представлениям о роли нервной системы в жизнедеятельности организма. Но в настоящее время представление об эндокринной функции мозга уже не вызывает каких-либо сомнений. Можно перечислить по крайней мере несколько десятков биологически активных веществ, обладающих всеми свойствами гормонов, поступающих в ток крови именно из мозга и имеющих особо важное значение для гуморально-гормональной регуляции физиологических процессов. Может быть, поэтому правильнее рассматривать мозг не как эндокринную, а как гуморально-гормональную систему организма человека и животных.

Предполагалось, что в нервную ткань мозга как бы вкраплены железистые клетки, вырабатывающие гормоны мозга. Однако работами последних лет установлено, что биологической активностью обладают не только продукты, выделяемые нейросекреторными клетками, но и метаболиты нейронов, глиозных элементов, расположенные в самых различных областях мозга человека и животных.

Проблема эндокринных функций мозга получила широкое признание после блестящих работ Г. Харриса, X. Костерлица, Дж. Хьюза, Ф. Гиллемина, Э. Шелли и др. исследователей, открывших и расшифровавших химическое строение многих гормонов мозга полипептидной (т. е. состоящей из цепи аминокислотных остатков) природы, обладающих как местным, внутримозговым, так и общим действием на целостный организм.

Значение эндокринной секреции мозга в регуляции деятельности организма — факт общепризнанный, подтвержденный присуждением Нобелевской премии по медицине за работы в этой области. Высшей научной награды 1977 г. удостоились Р. Гиллемин и Э. Шелли за изучение пептидов гипоталамуса и раскрытие их химического строения, а также Розалин Ялоу — за расшифровку молекулярных форм белковых гормонов. В настоящее время, по данным И. П. Ашмарина, число известных пептидных гормонов мозга превышает 50, причем наибольшее количество их обнаружено в гипоталамусе.

Два давно известных и хорошо изученных гормона гипоталамуса — вазопрессин (он же антидиуретический гормон) и окситоцнн поступают в цереброспинальную жидкость и кровь, осуществляя контроль над деятельностью середечно-сосудистой системы, почек, матки, грудных желез. Диапазон действия этих гормонов довольно широк, имеются даже указания, что вазопрессин играет какую-то роль в физиологии памяти.

Г. Харрис и Э. Шелли, а вслед за ними многие исследователи шестидесятых годов выделили из гипоталамуса ряд биологически активных веществ, регулирующих образование гормонов гипофизом. С тех пор в результате многочисленных экспериментальных работ составлена подробная классификация гормонов гипоталамуса. В основном они распадаются на две большие группы: либеринов, освобождающих гормоны гипофиза, и статинов, препятствующих их освобождению. Через стадию образования в гипофизе тройных гормонов либерины участвуют в гуморально-гормональной регуляции деятельности почти всех желез внутренней секреции.

Химический состав либеринов и статинов хорошо изучен. Известна и химическая структура некоторых из них. Р. Гиллемину удалось синтезировать тиролиберин — пептид, способствующий освобождению и поступлению в кровь тиреотропного гормона, стимулирующего, в свою очередь, образование гормонов щитовидной железы. Сложность и необычайная трудоемкость исследований подобного рода чрезвычайно велика. Достаточно сказать, что из 300000 овечьих гипоталамусов за семь лет упорного труда получен 1 мг чистого тиролиберина с активностью 57000 ед., который и был использован для выяснения его химической структуры.

Необходимо отметить, что тиролиберин и соматостатин отнюдь не ограничивают свою деятельность границами гипофиза. Они оказывают выраженное влияние на состояние всего мозга, подавляя активность нейронов коры больших полушарий, мозжечка и самого гипоталамуса. При введении в боковые желудочки мозга, т. е. в цереброспинальную жидкость, некоторые либерины и статины вызывают изменение поведения экспериментальных животных. Возможно, что их удастся в обозримом будущем использовать при лечении заболеваний центральной нервной системы.

В последние годы изучение эндокринной системы мозга обогатилось серией блистательных открытий. Биохимики университета в Эбердине Дж. Хьюз и Г. Костерлиц выделили из мозга свиньи особые противоболевые химические соединения, получившие в 1975 г. по предложению Э. Симона общее название эндорфинов. Существование в организме противоболевых систем, препятствующих возникновению боли, стало известным еще в шестидесятых годах (подробнее см. гл. 11), но новостью оказалась гуморально-гормональная регуляция этих систем. Было установлено, что некоторые нейроны мозга и секреторные клетки гипофиза реагируют на действие морфина, благодаря наличию в них специальных рецептивных белков — опиоидных рецепторов. Именно этим обусловлено мощное противоболевое действие морфина. Отсюда был сделан вывод. Если существуют рецепторы, воспринимающие поступление во внутреннюю среду фармакологического противоболевого препарата, следовательно, в организме должны вырабатываться эндогенные химические соединения морфиноподобного действия. Такие соединения (в научной терминологии — лиганды), связывающиеся с опиоидными рецепторами, и были вскоре обнаружены. Отсюда и их название — эндорфины (эндогенные морфины), составившие целый класс опиоидных гормонов.

Открытие эндорфинов положило начало изучению многочисленных нейрогормонов различного состава и физиологического назначения. К эндорфинам относятся противоболевые олигопептиды (пептиды с короткой цепочкой аминокислот), известные под названием энкефалинов. Установлено, что все противоболевые пептиды имеют своего «прародителя» — бета-липотропин, полипептид, молекула которого состоит из 91 аминокислотного остатка. Он вырабатывается в гипоталамусе и гипофизе и последовательность расположения в нем аминокислот хорошо изучена. Каждая аминокислота имеет свое местоположение и свой номер. Осколок бета-липотропина (цепочка аминокислот, расположенных под номерами 61—65) образует пента-(пятичленный) пептид энкефалин. Известны мет-энкефалин, содержащий метионин, и лей-энкефалин, в состав которого входит лейцин.

Цепочка из 31 аминокислоты (61—91), отколовшаяся от бета-липотропина, образует наиболее активный по своему физиологическому действию бета-эндорфин. Выделены также альфа- и гамма-эндорфины с меньшим числом аминокислот и более слабым влиянием на болевую чувствительность. Эндорфины широко представлены в различных отделах головного мозга. Топография их детально изучена. Особенно много их в полосатом теле и гипоталамусе, меньше в коре и почти нет в мозжечке. Эндорфины с длинной цепью аминокислот содержатся преимущественно в гипофизе, с короткой цепью в мозге, что и естественно, поскольку противоболевые системы расположены в нервной ткани. Однако энкефалины обнаружены также в ткани некоторых внутренних органов, например, они выделены в значительном количестве из подвздошной кишки морской свинки.

Первоначальное представление, что эндорфины являются только лигандами опиоидных рецепторов, оказалось неточным. По-видимому, они играют важную роль в деятельности мозга, принимают участие в обмене метаболитов, медиаторов, таких, как норадреналин, ацетилхолин, гистамин, серотонин. Имеются указания, что эндорфины регулируют поведение человека и животных. При введении в желудочки мозга энкефалины вызывают у экспериментальных животных необычайную агрессивность, изменяют их поведение, меняют взаимоотношения между отдельными особями внутри вида. Тот факт, что эндорфины и энкефалины обнаруживаются не только в ткани мозга, но в крови и цереброспинальной жидкости, свидетельствует о более широком, чем предполагалось раньше, действии этих гормонов на различные функции организма. Влияние нейропептидов на сердечно-сосудистую систему было показано советским ученым А. А. Галояном еще в 1961 г. Он выделил из гипоталамуса два коронарорасширяющих вещества. В литературе последних лет высказывается предположение, что нейропептиды являются широко распространенными специфическими соединениями, используемыми организмом для межклеточной сигнализации. Описаны пептиды сна, усиливающие одни его фазы и ослабляющие другие, пептиды памяти, узнавания, привыкания и т. д. Широко распространено мнение, что существуют специальные пептидергические синапсы, медиатором которых служит тот или другой нейропептид, например вещество Р. Исследования в этой области далеко не закончены, но уже сегодня можно утверждать, что учение о физиологически активных пептидах представляет одну из интереснейших глав естествознания, а может быть, и медицины.

Совсем недавно удалось получить ряд синтетических препаратов-энкефалинов, влияние которых на физиологические и биохимические процессы отличается более высокой эффективностью, чем действие пептидов, вырабатываемых организмом.

Открытие нейропептидов — один из этапов на пути расшифровки эндокринной функции мозга. Эта сторона деятельности центральной нервной системы вышла из стадии предположений. Она превратилась в стремительно развивающийся раздел науки, имеющий не только теоретическое, но и огромное практическое значение.