В первые же годы космических исследований стало ясно, что одним из практических приложений этих исследований может стать космическая система связи. Всё, начиная от телефонных разговоров и до телевизионных программ, может быть ретранслировано в любую точку нашей планеты с помощью искусственных спутников, выведенных на околоземные орбиты. Поэтому учёные и инженеры, работающие в государственных и частных лабораториях, принялись за разработку устройств, необходимых для практической реализации этой идеи.
В середине 1960-х годов специалисты из лаборатории «Белл телефон компани» в Нью-Джерси (США) приступили к разработке весьма чувствительной антенны для приема сигналов от спутников связи «Эхо» и «Телстар». В 1965 г. Роберт У. Вильсон и Арно А. Пензиас провели ряд экспериментов с новой антенной, чтобы проанализировать все источники помех, которые неизбежны для всех радиоприемников и вообще электронных устройств (рис. 17.1). К их большому удивлению, они обнаружили наличие слабого шума, причины которого не поддавались объяснению. Ещё более удивительным был тот факт, что этот слабый фон приходил, по-видимому, из всех областей неба с одинаковой интенсивностью.
РИС. 17.1. Вильсон и Пензиас. Роберт У. Вильсон (слева) и Арно А. Пензиас (справа) стоят перед антенной, отражатель которой имеет форму огромного рупора, на территории лаборатории «Белл телефон компани» в Холмделе, Нью-Джерси. С помощью этой антенны Вильсон и Пензиас открыли 3-градусное фоновое излучение, которое представляет собой остывшее «эхо» Большого Взрыва. (С разрешения лаборатории «Белл телефон компани».)
Исследователи компании «Белл» не знали, что в Принстонском университете, всего в нескольких километрах от них, группа теоретиков, в которую входили Р. Г. Дикке, П. Дж. Э. Пиблз, П. Дж. Ролл и Д. Т. Уилкинсон, вела интересные расчёты. Исходя из высказанных ранее Толменом и Гамовым предположений, члены Принстонской группы рассматривали некоторые последствия гипотезы о Большом Взрыве. Если Вселенная начала существовать 18 миллиардов лет назад с первичного взрыва, то температура Вселенной на ранней стадии её существования должна быть чрезвычайно высокой. В частности, через 1 с после рождения Вселенной её температура должна была составлять около 10 миллиардов градусов. Принстонская группа применила здесь важный термодинамический закон: если что-нибудь (вроде газа) расширяется, то его температура обязательно падает. Значит, и температура Вселенной должна уменьшаться в ходе расширения Так, через два часа после своего рождения температура Вселенной, по-видимому, должна была понизиться до 100 миллионов градусов. Когда Вселенной было 100 лет, её температура спустилась уже немного ниже одного миллиона градусов. А сегодня, 18 миллиардов лет спустя после этапа первичного огненного шара, эта температура должна составлять около 3 градусов выше абсолютного нуля, т.е. 3 К.
Один из фундаментальных законов физики связывает температуру тел с характером испускаемого ими излучения. Так, тело, нагретое до 6000 К (такую температуру имеет поверхность Солнца), испускает главным образом видимый свет. Очень горячие объекты, температура которых достигает миллионов градусов, испускают рентгеновские лучи. Достаточно холодные объекты дают радиоволновое излучение. А если температура объекта равна 3 К, то он должен испускать радиоволны в основном с длиной волны от 1 мм до 100 см. Антенна компании «Белл» была настроена на 7,53 см, т. е. почти в точности на середину этого диапазона.
Узнав об этих расчётах, выполненных в Принстоне, Вильсон и Пензиас сразу же подумали, что таинственным источником обнаруженного ими шумового фона на самом деле может быть излучение остывшего первичного огненного шара. Были проведены наблюдения на разных длинах волн, и полученные результаты дали точки, уложившиеся на теоретическую кривую для температуры 2,7 градуса выше абсолютного нуля. Теперь все считают, что это фоновое излучение является остывшим «отголоском» Большого Взрыва.
РИС. 17.2. Фоновое излучение. Приходящие со всех сторон неба слабые радиоволны соответствуют средней температуре Вселенной 2,7 К выше абсолютного нуля.
Одним из самых замечательных особенностей реликтового фона является его чрезвычайная изотропия . В любой момент дня или ночи, в любое время года радиоастрономы всегда принимают фоновое излучение одной и той же интенсивности со всех участков неба. С точки зрения астрофизика, это удивительно, так как нет явных причин, почему температура во Вселенной в одном направлении должна быть точно такой же, как и в любом другом направлении.
С различным успехом предпринимались разные попытки объяснить изотропию реликтового фонового излучения. Например, в конце 1960-х годов Чарлз Мизнер из Мэрилендского университета предложил теорию «Вселенной - смесителя» (миксмастер-модель), исходя из необычного класса решений уравнений Эйнштейна. Миксмастер-модель претерпевает резкие сжатия попеременно во всех направлениях; считают, что она должна описывать состояние Вселенной вскоре после Большого Взрыва. Хотя работа Мизнера и позволяет понять важные аспекты возможного поведения Вселенной на её раннем этапе существования, она не способна полностью описать изотропию 3-градусного фона. Самым главным здесь является то, что существование изотропии реликтового фонового излучения должно быть обусловлено какими-то физическими процессами.
В то время как изотропия 3-градусного фона убедительно свидетельствует об эффективных процессах перемешивания и выравнивания, которые происходили, когда возраст нашей Вселенной был менее 1 с, вся Вселенная не стала полностью однородной. Если бы 18 миллиардов лет назад вся Вселенная приобрела полную однородность , она оставалась бы однородной и теперь. Но в ней существуют скопления вещества в виде звёзд и галактик, планет и нас с вами. Значит, процессы, приводившие к выравниванию поля излучения, не были особенно эффективны в смысле выравнивания распределения и движения вещества во Вселенной.
В начале 1970-х годов выдающийся английский астрофизик Стивен У. Хоукинг (рис. 17.3) приступил к глубокому анализу явлений, сопутствовавших катастрофическому рождению Вселенной. Прежде всего он отметил, что в обычном процессе эволюции звёзд практически невозможно рождение чёрных дыр с массами менее 3 солнечных. Звёзды, масса которых меньше, чем 3 массы Солнца, умирая, становятся белыми карликами или нейтронными звездами, о чем говорилось в гл. 7. Основной причиной, из-за которой существует эта нижняя граница для массы обычной чёрной дыры, является то обстоятельство, что рождение чёрной дыры обусловлено исключительно действием гравитационного притяжения. Лишь в том случае, когда масса умирающей звезды превышает 3 солнечные массы, гигантский вес триллионов триллионов тонн вещества, давящий со всех сторон в направлении к центру звезды, преодолевает сопротивление всех остальных физических сил и вызывает появление чёрной дыры. Ничто не может стать чёрной дырой, если его масса меньше, чем 3 солнечные массы, просто потому, что в природе существуют силы (например, давление вырожденных электронного и нейтронного газов), которые всегда останавливают процесс коллапса.
РИС. 17.3. СтивенУ. Хоукинг (слева) обсуждает проблему первичных чёрных дыр с автором этой книги в Калифорнийском технологическом институте. (С разрешения Ч. Кейеса.)
Описанное традиционное представление о массах чёрных дыр установилось начиная с середины 1960-х годов. Во Вселенной, как мы её теперь знаем, чёрной дырой не могут стать, скажем, кирпич или арбуз. В этих телах слишком мало вещества, чтобы создавалось всесокрушающее гравитационное поле. Допустим, однако, что удалось сжать до чрезвычайно малого объёма тело с малой массой. Если бы было возможно сжать кирпич или арбуз так, чтобы их размеры стали чрезвычайно малы (меньше чем размеры электрона), то и эти объекты исчезли бы за своим горизонтом событий и получилась бы очень маленькая чёрная дыра. Хотя такие процессы сейчас явно невозможны, Хоукинг догадался, что если на раннем этапе существования Вселенной процессы в ней были такими энергичными, что смогли привести к изотропии фонового излучения, то их энергии оказалось бы достаточно, чтобы «спрессовать» множество крошечных чёрных дыр! Таким путём Хоукинг постулировал существование первичных чёрных дыр , которые могут обладать массами намного меньшими, чем масса Солнца. Непосредственно после Большого Взрыва мощные катастрофические процессы могли привести к появлению первичных чёрных дыр с массами даже в 1/100000 г. Поэтому возможно, что повсюду во Вселенной разбросаны многочисленные очень маленькие чёрные дыры.
К середине 1970-х годов Хоукинг пришел к выводу, что эти первичные чёрные дыры должны по своим свойствам сильно отличаться от обычных, больших чёрных дыр. Чтобы понять, почему это так, рассмотрим обычную чёрную дыру, родившуюся при смерти массивной звезды. Гравитационное поле такой чёрной дыры даёт о себе знать на миллионы километров в окружности. Даже очень далеко от чёрной дыры по орбитам вокруг неё могли бы обращаться планеты подобно тому, как они обращаются вокруг Солнца. Но в случае первичной чёрной дыры уже на расстоянии нескольких метров от неё пространство-время является практически плоским. Когда вы стоите в нескольких метрах от скалы, весящей миллиарды тонн, вы не ощущаете её притяжения. Аналогично если бы вы стояли в нескольких метрах от первичной чёрной дыры, вобравшей в себя миллиарды тонн вещества, вы едва ли ощутили бы гравитационное притяжение к ней.
Все чёрные дыры, вне зависимости от их массы, обладают сингулярностью, окруженной горизонтом событий. Во всякой чёрной дыре имеется точка, в которой кривизна пространства-времени обращается в бесконечность. В случае массивной чёрной дыры (например, образовавшейся при смерти звезды) кривизна пространства-времени при подходе к сингулярности возрастает постепенно. Но в случае первичной чёрной дыры рост кривизны происходит намного быстрее. Как видно из рис. 17.4, на протяжении очень короткого пути кривизна пространства-времени возрастает так, что от почти плоской области мы попадаем в очень сильно искривлённую. Это означает, что приливные силы -те самые, которые стремятся разорвать все тела на части, - вблизи первичной чёрной дыры должны быть чрезвычайно велики. Хотя гравитационное поле здесь в среднем слабое, приливные натяжения около маленькой чёрной дыры намного сильнее, чем около обычной чёрной дыры.
РИС. 17.4. Большие и маленькие чёрные дыры. Изменение кривизны пространства-времени происходит гораздо стремительнее около первичных чёрных дыр, чем около обычных (массивных) чёрных дыр. Вблизи первичной чёрной дыры приливные силы должны быть особенно велики.
Как отмечалось в конце гл. 14, физикам-теоретикам нередко оказывалось полезным представлять себе пустое пространство как состоящее из виртуальных пар частиц и античастиц. Пользуясь представлением о виртуальных парах частиц, намного проще описывать процессы рождения и уничтожения пар, наблюдаемые физиками-ядерщиками в их лабораториях.
Рассмотрим теперь пустое пространство в непосредственных окрестностях маленькой первичной чёрной дыры. Как отмечалось выше, в этой области пространства существуют мощнейшие приливные силы. Имеются все основания считать, что это пустое пространство содержит виртуальные пары частиц и античастиц. Исходя из этого факта, Хоукинг пришел к выводу, что величина этих приливных сил достаточна для того, чтобы придать виртуальным парам энергию, достаточную для их превращения в реальные пары частица-античастица, которые появятся в пространстве. Иными словами, маленькие чёрные дыры должны испускать большое количество частиц и античастиц!
Здесь вы можете сказать, что подобный процесс рождения вещества и антивещества чёрной дыры сможет привести к испусканию в окружающий мир частиц лишь в том случае, если он происходит вне горизонта событий чёрной дыры. Но следующий важный теоретический результат Хоукинга (полученный им в 1974 г.)-это доказательство того, что это совсем не обязательно. Даже если частицы родились внутри дыры, существует отличная от нуля вероятность, что они выйдут сквозь горизонт событий во внешнюю Вселенную. Чтобы понять, почему частицы могут проходить сквозь горизонт событий, нужно разобраться в некоторых основных представлениях квантовой механики .
В начале нашего века, когда физики начали серьёзно задумываться над тем, что представляют собой атомы, электроны, протоны и другие субатомные частицы, они считали эти частицы, в сущности, маленькими кусочками обычного вещества. В первых грубых моделях атома было общепринятым, например, рассматривать электроны как крошечные бильярдные шары. Такое представление об субатомных частицах опиралось на законы в классической физике XIX в. (рис. 17.5, вверху ).
РИС. 17.5. Субатомная частица. С точки зрения классической физики XIX в. такие частицы, как электроны или протоны, рассматривались по аналогии с маленькими бильярдными шарами. Но разработанная в XX в. квантовая механика описывает субатомные частицы с помощью волновых пакетов.
В ходе развития атомной и ядерной физики стало ясно, что представление о частицах как о бильярдных шарах чересчур ограниченно и потому имеет слишком узкие пределы применимости. Так, Вернер Гейзенберг обнаружил, что при рассмотрении весьма малых расстояний (порядка внутриатомных) невозможно точно определить, где в действительности находится такая частица, как электрон, если точно известна её скорость. Такая невозможность точного установления положения любой субатомной частицы при знании её скорости и наоборот легла в основу принципа неопределённости Гейзенберга . Суть его в том, что физик может говорить о вероятности того, что частица находится в определённый момент времени в данной точке пространства. Поэтому физики пришли к выводу, что гораздо полезнее и правильнее представлять себе субатомные частицы как волновые пакеты , изображение одного из которых приведено на рис. 17.5, внизу . Именно такая волновая модель частицы лежит в основе той области физики, которая называется квантовой механикой.
На основе квантовомеханического подхода оказалось возможным понять много явлений, совершенно необъяснимых с точки зрения старой модели бильярдных шаров. Хорошим примером может служить действие транзисторов и диодов в электронных устройствах. В некоторых типах диодов электрическое поле создаёт потенциальный барьер , настолько сильный, что он должен был бы воспрепятствовать электронам переходить с одной стороны диода на другую. В этом смысле потенциальный барьер можно представлять себе как «стенку». В прежней модели электрона (бильярдный шар) он должен был бы попросту отскочить от такой стенки, как это показано на рис. 17.6, вверху . Однако если представлять себе электрон как волновой пакет, то существует определённая вероятность того, что он проникнет за потенциальный барьер. Такое явление называют туннельным эффектом , оно схематически изображено на рис. 17.6, внизу .
РИС. 17.6. Туннельный эффект. С классической точки зрения электрон никогда не может преодолеть высокий потенциальный барьер. Однако с точки зрения квантовой механики субатомные частицы способны просочиться с одной стороны барьера на другую.
Окружающее чёрную дыру гравитационное поле можно представить себе как потенциальный барьер, запрещающий в классической теории чему бы то ни было выходить из дыры. В том случае, когда чёрная дыра очень массивна, её сильное гравитационное поле простирается на такое большое расстояние, что потенциальный барьер оказывается очень толстым . Вероятность того, что частица сможет благодаря туннельному эффекту пройти сквозь толстый потенциальный барьер, практически равна нулю (см. рис. 17.7, вверху ). Но в маленькой первичной чёрной дыре гравитационное поле оказывается сильным лишь в очень небольшой области. Это означает, что окружающий маленькую чёрную дыру потенциальный барьер является очень тонким, в результате чего существует заметная вероятность того, что частицы смогут пройти сквозь него в окружающую Вселенную (рис. 17.7, внизу) . Итак, частицы и античастицы, рожденные внутри горизонта событий, могут пройти сквозь тонкий потенциальный барьер маленькой чёрной дыры и выйти из неё! Это замечательное открытие, что вещество способно выходить из чёрной дыры, означает, что чёрные дыры ведут себя как белые дыры. Развивая эту мысль, Хоукинг смог в 1975 г. доказать, что маленькие чёрные дыры совершенно неотличимы от маленьких белых дыр!
РИС. 17.7. Выход из чёрной дыры благодаря туннельному эффекту. Гравитационное поле массивной чёрной дыры простирается на столь далекие расстояния, что создаваемый им потенциальный барьер оказывается очень толстым. Поэтому частицам почти невозможно пройти сквозь него в окружающую Вселенную. Если же чёрная дыра мала, то её потенциальный барьер достаточно тонок, и вещество может вырваться из дыры.
Тот факт, что чёрные дыры испускают вещество и излучение, означает, что чёрной дыре на основе законов термодинамики можно приписать температуру. Температура чёрной дыры - это непосредственная мера того, с какой скоростью дыра испускает частицы и излучение. Так как потенциальный барьер массивных чёрных дыр толст, то вероятность прохода любого объекта сквозь него близка к нулю. Значит, температура массивной чёрной дыры должна быть близка к абсолютному нулю. Например, температура чёрной дыры, возникающей при смерти массивной звезды, будет менее 1/10000000 градуса выше абсолютного нуля. Поэтому квантовомеханические эффекты, предсказанные Хоукингом, совершенно несущественны для массивных чёрных дыр. На рис. 17.8 приведен график, связывающий температуру и массу больших чёрных дыр. Те чёрные дыры, масса которых превышает массу Земли, обладают температурой менее 1/10 градуса выше абсолютного нуля.
РИС. 17.8. Большие чёрные дыры являются холодными. Так как частицам почти невозможно пройти сквозь толстый потенциальный барьер, окружающий большие чёрные дыры, температура последних является очень низкой.
Большие чёрные дыры являются холодными, так как их окружает толстый потенциальный барьер, практически не дающий ничему из них уходить сквозь горизонт событий. Маленькие чёрные дыры (разумеется, если они вообще существуют) должны обладать тонкими потенциальными барьерами. Согласно квантовой механике, частицы и излучение могут выходить из этих дыр, а значит, они должны обладать заметной температурой. На рис. 17.9 показан график, связывающий температуру и массу маленьких чёрных дыр. Как видно, чёрная дыра с массой порядка массы среднего астероида должна обладать температурой около 100000 К.
РИС. 17.9. Маленькие чёрные дыры являются горячими. Чёрные дыры малой массы окружены тонким потенциальным барьером. Чем меньше масса, тем тоньше потенциальный барьер. Частицы и излучение могут проходить сквозь него благодаря туннельному эффекту, и поэтому температура маленьких чёрных дыр может быть достаточно велика.
Очень маленькие чёрные дыры должны обладать исключительно тонкими потенциальными барьерами, через которые сможет легко выходить в окружающую Вселенную и излучение, и частицы. Поэтому температура очень малых чёрных дыр должна быть поистине огромна. Чёрная дыра с массой 1 000 000 т испускает столько вещества и энергии, что её температура равняется квадрильону (1015) градусов. При массе в 1 т температура чёрной дыры равна 1021 (миллиард триллионов) градусам. На рис. 17.10 представлен ход температур чёрных дыр в очень широком диапазоне масс.
РИС. 17.10. Температура чёрных дыр. Чем меньше масса чёрной дыры, тем выше её температура. Температура очень маленьких чёрных дыр может быть крайне высокой.
При испускании очень малой чёрной дырой вещества и излучения её масса должна уменьшаться. Если чёрная дыра испускает 1 кг вещества, её масса должна уменьшиться в точности на 1 кг. Этот простой факт влечёт за собой очень важные следствия. Испуская вещество и излучение, чёрная дыра теряет свою массу. При уменьшении массы чёрной дыры потенциальный барьер вокруг неё становится тоньше, её температура растет, и соответственно дыра начинает испускать всё больше частиц и энергии. И чем больше она излучает, тем меньше становится, а чем меньше становится, тем больше излучает. Таким образом чёрная дыра буквально съедает сама себя - она испаряется, причем процесс испарения самоускоряется по мере уменьшения массы дыры. Это ускорение настолько усиливается, что очень маленькие чёрные дыры в последние секунды своего существования просто взрываются. Полное количество энергии, выделяемое за последнюю секунду испарения чёрной дырой, эквивалентно взрыву водородной бомбы мощностью миллиард мегатонн!
Если нашей Вселенной уже 18 миллиардов лет и если первичные чёрные дыры образовались во время Большого Взрыва, то на сегодня все очень маленькие чёрные дыры уже давно испарились. Очень маленькие чёрные дыры должны быть такими горячими и испускать так много вещества, что им просто невозможно было бы просуществовать сколько-нибудь долгое время. Поэтому можно говорить о времени жизни чёрной дыры. Чёрная дыра, возникшая из 100 т вещества, должна быть настолько горячей, что смогла бы просуществовать всего 1/10000 с до того, как полностью испариться. Чёрной дыре с массой 1 миллион тонн для полного испарения требуется около 3 лет. Чёрная дыра с массой 1 миллиард тонн продержится около 3 миллиардов лет. На рис. 17.11 приведены времена жизни для чёрных дыр различных масс.
РИС. 17.11. Время жизни чёрных дыр. По мере того как чёрная дыра испускает частицы и излучение, её масса уменьшается. По мере уменьшения массы чёрная дыра испускает всё больше частиц и излучения, так как её температура растет. Этот самоускоряющийся процесс приводит к тому, что в конце концов все чёрные дыры испаряются. За последние несколько микросекунд такого испарения чёрная дыра выделяет количество энергии, эквивалентное взрыву миллиарда мегатонных водородных бомб! Так как возраст Вселенной составляет около 18 миллиардов лет, все чёрные дыры с массами менее нескольких миллиардов тонн должны к нашим дням уже испариться.
Так как время жизни первичной чёрной дыры определяется её начальной массой, ясно, что самые маленькие чёрные дыры, возникшие при большом взрыве, уже должны были испариться. До наших дней могли сохраниться лишь те из первичных чёрных дыр, массы которых превышали несколько миллиардов тонн (10 15 г). Значит, если учёным и удастся когда-нибудь обнаружить в космосе первичные чёрные дыры, то они будут не менее массивны, чем средний астероид, хотя, вероятно, их размеры не будут превышать размеров атома. Обнаружить эти весьма малые объекты было бы возможно по испускаемой ими огромной энергии, вероятно, в виде очень жестких гамма-лучей.
Проблема возможного обнаружения первичных чёрных дыр в космосе самым непосредственным образом связана с тем, сколько же таких дыр должно было образоваться во время Большого Взрыва? В конце 1975 г. Бернард Карр, несколько лет работавший с Хоукингом, выдвинул серьёзные доводы в пользу того, что первичных чёрных дыр должно быть довольно много. Карр имел в виду, что в центре галактик возможно присутствие массивных первичных чёрных дыр (с массами более миллиона масс Солнца). Если это так, то, быть может, рядом с нашей Солнечной системой или даже в её составе найдутся две-три маленькие первичные чёрные дыры. Возможно (хотя и маловероятно), что маленькая чёрная дыра обращается по орбите около Солнца, не замечаемая нами.
Если бы в нашей Солнечной системе или вблизи неё была обнаружена первичная чёрная дыра, отсюда следовали бы выводы большой важности. Я думаю, что сейчас мы располагаем уже техникой, позволяющей отправиться на ловлю такой чёрной дыры с тем, чтобы доставить её на Землю. Если поместить эту дыру на орбиту около Земли, то энергию, которую она испаряет, можно передавать на Землю пучком микроволн, получая таким образом огромное количество энергии без загрязнения среды. Это повлекло бы за собой большие экономические и социальные последствия. Мы не только перестали бы зависеть от ископаемых в виде горючего, но и термоядерное оружие оказалось бы бесполезной игрушкой, если бы на околоземной орбите оказалась чёрная дыра. Поэтому не исключено, что заумные математические расчёты горстки астрофизиков-теоретиков окажут серьёзное воздействие на весь ход истории человечества.