О творчестве в науке и технике

Кедров Бонифатий Михайлович

Часть I

Открытия и революции в естествознании как преодоление ППБ

 

 

 

ГЛАВА I

Открытие пёриодического закона Д. Менделеевым

Что способствовало подготовке открытия? Мы начинаем с анализа великого менделеевского открытия, поскольку оно было детально и всесторонне изучено нами в течение многих лет по архивным материалам. Но сначала необходимо сказать несколько слов о его предыстории.

В ходе познания химических элементов можно четко выделить три последовательные ступени, о которых говорилось во введении. Начиная с глубокой древности и вплоть до середины XVIII века элементы открывались и изучались человеком порознь, как нечто единичное. С середины XVIII века начался постепенный переход к открытию и изучению их целыми группами, или семействами, хотя одиночные открытия элементов продолжались и позднее. Групповое их открытие и изучение основывалось на том, что у некоторых из них обнаруживались общие физические или химические свойства, равно как и совместное присутствие ряда элементов в природе.

Так, во второй половине XVIII века в связи с возникновением пневматической (газовой) химии были открыты легкие неметаллы, которые в обычных условиях находятся в газообразном состоянии. Это были водород, азот, кислород и хлор. В тот же период были открыты кобальт и никель в качестве природных спутников железа.

А уже с первых лет XIX века открытие элементов стало происходить целыми группами, члены которых обладали общими химическими свойствами. Так, посредством электролиза были открыты первые щелочные металлы — натрий и калий, а затем щелочноземельные — кальций, стронций и барий. Позднее, в 60-х годах, с помощью спектрального анализа были открыты тяжелые щелочные металлы — рубидий и цезий, а также более тяжелые металлы будущей третьей группы — индий и таллий. Эти открытия основывались на близости химических свойств членов открываемых групп, а потому эти их члены связывались между собою уже в самом процессе их открытия.

В начале того же XIX века было открыто семейство платиновых металлов (кроме рутения, открытого позднее) в качестве природных спутников платины. В течение всего XIX века открывались редкоземельные металлы как члены единого семейства.

Вполне естественно, что первые классификации элементов строились на основе общности их химических свойств. Так, еще в конце XVIII века А. Лавуазье разделил все элементы на металлы и неметаллы. Такого деления придерживался и И. Берцелиус в первой половине XIX века. Тогда же стали выделяться первые естественные группы и семейства элементов. И. Деберейнер, например, выделил так называемые «триады» (скажем, литий, натрий, калий — «триада» щелочных металлов и т. д.). К числу «триад» относились такие, как хлор, бром, йод или сера, селен, теллур. При этом вскрывались такие закономерности, что значения физических свойств среднего члена «триады» (его удельный и атомный веса) оказывались средними по отношению к крайним членам. Что же касается галоидов (галогенов), то агрегатное состояние среднего члена (жидкий бром) было промежуточным по отношению к крайним членам — газообразному хлору и кристаллическому йоду. Позднее число включаемых в одну группу элементов стало увеличиваться до четырех и даже пяти.

Вся эта классификация строилась на основе учета лишь сходства элементов внутри одной естественной группы. Такой подход давал возможность образовывать все новые подобные группы и раскрывать взаимоотношения элементов внутри них. Этим готовилась вероятность последующего создания общей системы, охватывающей все элементы путем объединения уже найденных их групп в одно целое.

Что препятствовало переходу от особенного ко всеобщему? Примерно к началу 60-х годов XIX века ступень особенности в познании элементов практически была уже исчерпана. Возникла необходимость перехода на ступень всеобщности в их познании. Такой переход мог быть осуществлен путем взаимного связывания различных групп элементов и создания их единой общей системы. Подобного рода попытки все чаще стали предприниматься в течение 60-х годов в различных странах Европы — Германии, Англии, Франции. Некоторые из этих попыток содержали в себе уже явные намеки на периодический закон. Таков был, например, «закон октав» Ньюлендса. Однако, когда Дж. Ньюлендс доложил о своем открытии на заседании Лондонского химического общества, ему был задан ехидный вопрос: а не пытался ли автор открыть какой-либо закон, располагая элементы в алфавитном порядке их названий?

Это показывает, насколько чужда была химикам того времени сама идея выйти за пределы групп элементов (особенного) и искать пути раскрытия общего закона, охватывающего их (всеобщего). В самом деле, чтобы составить общую систему элементов, надо было сближать и сопоставлять между собой не только сходные элементы, как это делалось до тех пор внутри групп, но все вообще элементы, в том числе и несходные между собою. Однако в сознании химиков прочно засела мысль, что сближать между собою можно только одни сходные элементы. Эта мысль настолько глубоко укоренилась, что химики не только не ставили перед собой задачи перейти от особенного ко всеобщему, но полностью игнорировали и даже не замечали первых отдельных попыток осуществить такой переход.

В итоге сложилось серьезное препятствие, вставшее на пути открытия периодического закона и создания общей естественной системы всех элементов на его основе. Существование подобного препятствия неоднократно подчеркивал сам Д. Менделеев. Так, в конце своей первой статьи о сделанном им великом открытии он писал: «Цель моей статьи была бы совершенно достигнута, если бы мне удалось обратить внимание исследователей на те отношения в величине атомного веса несходных элементов, на которые, сколько то мне известно, до сих пор не обращалось почти никакого внимания».

Спустя два с лишним года, подводя итог разработке своего открытия, Д. Менделеев вновь подчеркнул, что «между несходными элементами и не искали даже каких-либо точных и простых соотношений в атомных весах, а только этим путем и можно было узнать правильное соотношение между изменением атомных весов и других свойств элементов».

Спустя двадцать лет после открытия в своем Фарадеевском чтении Д. Менделеев вновь вспоминал о препятствии, стоявшем на пути к этому открытию. Он привел первые выкладки на этот счет, в которых «видны действительные задатки и вызов периодической законности». И если последняя «высказана с определенностью лишь к концу 60-х годов, то этому причину… должно искать в том, что сравнению подвергали только элементы, сходственные между собой. Однако мысль сличить все элементы по величине их атомного веса… была чужда общему сознанию…». А потому, отмечает далее Д. Менделеев, попытки, подобные «закону октав» Дж. Ньюлендса, «не могли обратить на себя чьего-либо внимания», хотя в этих попытках «видно… приближение к периодическому закону и даже его зародыш».

Эти свидетельства самого Д. Менделеева для нас исключительно важны. Их глубокий смысл заключается в признании того, что основным препятствием на пути открытия периодического закона, то есть на пути перехода ко всеобщему в познании элементов, лежала привычка химиков, ставшая традицией, мыслить элементы в жестких рамках особенного (их сходства внутри групп). Такая привычка в мышлении не давала им возможности выйти за рамки особенного и перейти на ступень всеобщего в познании элементов. В результате открытие общего закона задержалось почти на 10 лет, когда, по свидетельству Д. Менделеева, ступень особенного была уже в основном исчерпана.

ППБ и его функция. Подобное препятствие, которое носит одновременно и психологический и логический (познавательный) характер, мы и называем познавательно-психологическим барьером (ППБ). Такой барьер необходим для развития научной мысли и выступает в качестве ее формы, удерживая ее достаточно долгое время на достигнутой ступени (в данном случае на ступени особенности) с тем, чтобы она (научная мысль) могла полностью исчерпать эту ступень и тем самым подготовить переход на следующую, более высокую ступень всеобщности.

Сейчас мы не можем рассматривать механизм возникновения подобного барьера и ограничимся лишь указанием на то, что он возникает автоматически. Однако после выполнения им своей познавательной функции он продолжает действовать и не снимается столь же автоматически, а как бы закрепляется, окостеневает и из формы развития научной мысли превращается в ее оковы. В таком случае научное окрытие происходит не само собой, легко и просто, но как преодоление стоявшего на пути познания препятствия, ППБ.

Сказанное мы относим пока что к данному разбираемому нами историко-научному событию и не ставим еще задачи выяснить, насколько часто подобная ситуация наблюдается. При этом мы идем не путем индуктивных обобщений, основанных на рассмотрении множества различных открытий а путем теоретического анализа пока только одного открытия, а именно — периодического закона. В дальнейшем нас будет интересовать, каким конкретным способом Д. Менделеев преодолел барьер, стоявший на пути процесса открытия, то есть на пути перехода со ступени особенного на ступень всеобщего в познании химических элементов.

Преодоление ППБ Д. Менделеевым. Периодической закон был открыт Д. Менделеевым 17 февраля (1 марта) 1869 года. (Очень подробно об открытии периодического закона рассказано в книгах Б. М. Кедрова «День одного великого открытия» и «Микроанатомия великого открытия». — Ред.) На обороте только что полученного им письма он стал делать выкладки, положившие начало открытию. Первой такой выкладкой была формула хлорида калия КС1. Что она означала?

Д. Менделеев писал тогда свои «Основы химии». Он только что закончил первую часть и приступил ко второй. Первая часть завершилась главами о галоидах (галогенах), в число которых входил хлор (С1), а вторая начиналась главами о щелочных металлах, к которым относился и калий (К). Это были две крайние, диаметрально противоположные в химическом отношении группы элементов. Однако они сближены в самой природе путем образования, например, хлористых солей соответствующих металлов, скажем, поваренной соли.

Создавая «Основы химии», Д. Менделеев обратил на это внимание и стал искать объяснение этому в близости атомных весов. У обоих элементов — калия и хлора: К=39,1, С1=34,5. Значения обоих атомных весов примыкали непосредственно одно к другому, между ними не было других промежуточных значений, атомных весов других элементов. Два с лишним года спустя после открытия, подводя итоги разработки, Дмитрий Иванович отмечает, что ключом к периодическому закону явилась идея сближения между собой по близости количественной характеристики (атомного веса) элементов, качественно совершенно несходных между собой. Он писал: «Переход от С1 к К и т. п. также во многих отношениях будет соответствовать некоторому между ними сходству, хотя и нет в природе других столь близких по величине атома элементов, которые были бы между собой столь различны».

Как видим, здесь Д. Менделеев обнажил скрытый смысл своей первой записи «КС1», с которой начался процесс открытия. Оговоримся, что нам неизвестно, что натолкнуло его на мысль о сближении калия и хлора по величине их атомного веса. Возможно, он вспомнил в этот момент, что писал о хлористом калии в конце первой или в начале второй части «Основ химии». Но возможно, и какое-либо иное обстоятельство навело его на мысль о сближении калия и хлора по атомному весу. Мы могли зафиксировать лишь ту запись на бумаге, которая появилась из-под пера Д. Менделеева, но не то, что предшествовало ей в его голове. Как увидим ниже, история науки и техники знает немало случаев, когда известен не только первый шаг к открытию, но и мысль, мелькнувшая в голове его авт

Добавим, что теперь мы можем более конкретно разъяснить, в чем состоял переход Д. Менделеева от особенного ко всеобщему в познании элементов. Под их несходством он фактически понимал их химические различия, а сближение несходного по их атомному весу достигалось на основании присущего им общего физического свойства — их массы. Таким образом, переход от особенного ко всеобщему соответствовал переходу от рассмотрения их с химической стороны к рассмотрению с физической стороны.

Ниже мы еще не раз вернемся к подобному же варианту. Однако этот случай нельзя трактовать как переход от учета одних лишь качественных различий элементов к учету количественного их сходства. Количественная характеристика элементов учитывалась уже на ступени особенного, как мы видели на примере «триад» и теории атомности.

Итог преодоления ППБ. Итак, отмеченный Д. Менделеевым барьер был успешно преодолен, и познание элементов в результате этого вышло за пределы ступени особенности и поднялось на ступень всеобщности. Заметим, что до этого момента сам ученый не видел, в чем именно заключается препятствие, стоявшее на пути к открытию периодического закона. В его подготовительных работах, в частности в планах «Основ химии», составленных до 17 февраля (1 марта) 1869 года, нет даже намека на то, что надо сближать друг с другом несходные элементы. Только после того, как он догадался, ключ к решению всей задачи лежит в этом сближении, он понял, в чем заключалось и препятствие, лежавшее на пути к открытию, то есть, говоря нашим языком, что за барьер стоял на этом пути.

Переступив ППБ в первый раз, Д. Менделеев тут же начал в деталях осуществлять переход от особенного к только еще открываемому всеобщему (закону). При этом он показывал, как надлежит включать в строящуюся общую систему элементов одну их группу за другой, то есть сближать несходные между собой элементы по величине их атомных весов. Другими словами, все построение общей системы элементов совершалось в процессе последовательного включения особенного (групп) во всеобщее (в будущую периодическую систему).

Позднее в «Основах химии» он писал по поводу приведенной им таблички:

F=19; С1=35,5; Вг=80; J=127.

Na=23; К=39; Rb=85; Cs=133.

Mg=24; Са=40; Sr=87; Ва=137.

«В этих трех группах видна сущность дела. Галоиды обладают меньшими атомными весами, чем щелочные металлы, а эти последние — меньшими, чем щелочноземельные».

Так, осуществляя переход от ступени особенного на ступень всеобщего в познании элементов, Д. Менделеев довел до завершения свой замысел, включив в общую систему не только все уже известные тогда группы элементов, но и отдельные элементы, стоявшие до тех пор вне групп.

Замечу, что некоторые химики и историки химии пытались представить дело так, будто Дмитрий Иванович в своем открытии шел не от групп элементов (особенного), сопоставляя их одну с другой, а непосредственно от отдельных элементов (единичного), образуя из них последовательный ряд в порядке возрастания их атомных весов. Анализ многочисленных черновых записей Д. Менделеева полностью отвергает эту версию и неоспоримо доказывает, что открытие периодического закона было совершено в порядке четко выраженного перехода от особенного к всеобщему. Тем самым подтверждается, что барьер здесь возник именно как познавательнопсихологическое препятствие, мешавшее выходу научной мысли химиков за пределы ступени особенного.

Обратим теперь внимание, что в итоговой периодической системе элементов представлены в единстве обе исходные противоположности — сходство и несходство (химические) элементов. Это можно показать уже на приведенной выше неполной табличке из трех групп. В ней по горизонтали располагаются химически сходные элементы (то есть группы), а по вертикали — химически несходные, но с близкими атомными весами (образующие периоды).

Так представление о ППБ и о его преодолении позволяет понять механизм и ход сделанного Д. Менделеевым великого открытия.

Конкретнее это открытие можно представить как преодоление барьера, разрывавшего до тех пор элементы на такие противоположные классы, как металлы и неметаллы. Так, уже первая менделеевская запись «KCl» свидетельствовала о том, что здесь сближены между собою не вообще несходные элементы, а элементы двух противоположных классов — сильный металл с сильным неметаллом. В итоговой развернутой системе элементов сильные металлы заняли левый нижний угол таблицы, а сильные неметаллы — правый верхний угол. В промежутке же между ними расположились элементы переходного характера, так что открытие Д. Менделеева и в этом отношении преодолевало барьер, мешавший выработать единую систему элементов.

Преодоление еще одного барьера. До сих пор мы говорили о барьере, стоявшем на пути познания от особенного ко всеобщему. Условно такой путь можно сравнить с индуктивным. Однако после открытия закона и даже в самом процессе его открытия возможен был обратный путь — от общего к особенному и единичному, который мы столь же условно можем сравнить с дедуктивным. Так, до открытия периодического закона атомный вес какого-либо элемента устанавливался как нечто сугубо единичное, как отдельный факт, могущий быть проверенным лишь опытным способом. Периодический же закон давал возможность проверять, уточнять и даже исправлять полученные эмпирически значения атомного веса в соответствии с местом, которое должен занять данный элемент в общей системе всех элементов. Например, подавляющее большинство химиков вслед за И. Берцелиусом считало бериллий полным аналогом алюминия и приписывало ему атомный вес Be=14. Но место, соответствующее этому значению атомного веса в строящейся системе, было прочно занято азотом: N=14. Пустовало же другое место — между литием (Li=7) и бором (В=11) в группе магния. Тогда Д. Менделеев исправил формулу окисла бериллия с глиноземной на магнезиальную, в соответствии с чем получил вместо Ве==14 новый атомный вес — Be=9,4, то есть значение, лежащее между 7 и 11. Тем самым он показал, что всеобщее (закон) позволяет устанавливать единичное — свойство отдельного элемента, которое подчинено этому закону, причем устанавливать без нового обращения к опытному исследованию.

По этому поводу сам ученый писал через 20 лет после открытия своего закона: «Веса атомов элементов, до периодического закона, представляли числа чисто эмпирического свойства до того, что… могли подлежать критике лишь по методам их определения, а не по их величине, то есть в этой области приходилось идти ощупью, покоряться акту, а не обладать им…»

Можно сказать, что сугубый эмпиризм, или «покорение фактам», исключал возможность определять величину атомного веса, исходя из теоретических соображений, и требовал идти только опытным путем. Соответственно сказанному выше такое препятствие назовем тоже своеобразным барьером, который заставлял химиков быть рабами фактов, подчиняться им, но не владеть ими. Д. Менделеев в ходе построения своей системы преодолел этот барьер, показав, что всеобщее (закон) может служить критерием правильности установленного факта.

При этом и в данном случае мы видим, что на ступени эмпирического познания подобный барьер играет положительную роль (пока эта ступень не исчерпана), препятствуя неоправданному выходу научной мысли за пределы фактов, в область умозрительных натурфилософских построений. Когда же ступень односторонне проводимых эмпирических исследований исчерпана, названный барьер становится препятствием для дальнейшего прогресса научной мысли и должен быть преодолен. Это мы покажем ниже еще на одном примере, который продемонстрировало все то же открытие Д. Менделеева.

Еще о переходе от всеобщего к единичному и особенному. Речь идет о возможности наперед предсказывать не открытые еще элементы с их свойствами на основании пустых мест в только что построенной периодической системе. Уже в день открытия периодического закона Д. Менделеев предсказал три таких неизвестных еще металла; среди них — аналог алюминия с предположительным атомным весом?=68. Вскоре после этого он вычислил теоретически, опираясь на открытый им закон (всеобщее), многие другие свойства этого металла, назвав его условно экаалюминием, в том числе его удельный вес, равный 5,9 6, летучесть его соединений (откуда заключил, что он будет открыт с помощью спектроскопа). Именно так и открыл новый металл (галлий) П. Лекок де Буабодран в 1875 году.

Однако удельный вес галлия он нашел значительно меньшим по сравнению с предсказанным. Поэтому заключил, что галлий — это вовсе не экаалюминий, предвиденный автором закона, а какой-то совершенно другой металл. В результате менделеевское предсказание объявлялось не подтвержденным. Но это не обескуражило Д. Менделеева. Он сразу догадался, что галлий восстанавливался fi помощью металлического натрия, у которого удельный вес очень мал, меньше, чем у воды. Легко было допустить, что первые порции восстановленного галлия были недостаточно хорошо очищены от примесей натрия, который и снизил полученное в опыте значение удельного веса найденного металла. Когда же П. Лекок де Буабодран, следуя совету Дмитрия Ивановича, очистил свой галлий от примесей, то найденное новое значение его удельного веса в точности совпало с предсказанным и оказалось равным 5,95.

Получилось так, что Д. Менделеев своим теоретическим взором видел новый элемент лучше, нежели 11. Лекок де Буабодран, державший этот элемент в руках. Таким образом, и здесь барьер, выступающий как слепое, некритическое отношение к любым полученным на опыте данным, был преодолен, а периодический закон выступил как критерий проверки правильности данных опыта.

Иногда дело представляется так, что сначала Д. Менделеев шел в своем открытии путем индукции (от частного к общему), а потом — путем дедукции (от общего к частному). В действительности же уже в ходе самого открытия нового закона он все время проверял правильность еще только строящейся общей системы элементов посредством дедуктивных умозаключений, как это мы видели на примере бериллия и будущего экаалюминия. Это значит, что индукция и дедукция у Д. Менделеева как логические приемы не были разорваны между собою, а функционировали в полном согласии и единстве, органически дополняя друг друга.

Можно сказать, что до Д. Менделеева в сознании химиков утвердился своего рода барьер, который исключал возможность какого-либо предвидения новых элементов и целенаправленного их поиска. Такой барьер тоже был разрушен сделанным открытием. «До периодического закона, — писал ученый, — простые тела представляли лишь отрывочные, случайные явления природы, не было поводов ждать каких-либо новых, а вновь находимые в своих свойствах были полной неожиданной новинкой. Периодическая законность первая дала возможность видеть неоткрытые еще элементы в такой дали, до которой не вооруженное этой закономерностью химическое зрение до тех лор не достигало * и при этом новые элементы, еще не открытые, рисовались с целой массой свойств».

* * *

Итак, из анализа истории великого открытия мы уже можем сделать определенные выводы, ответить на вопросы, которые мы поставили в конце нашего методологического введения:

1. ППБ действительно существуют.

2. Они возникают и действуют, не допуская преждевременного выхода за рамки данной ступени развития, пока она себя не исчерпала (ступени особенности).

3. Поскольку, однако, эта функция ППБ выполнена, сами ППБ становятся тормозом для дальнейшего прогресса науки (для перехода ко всеобщему), а потому они преодолеваются, что и составляет самую суть научных открытий.

Но, разумеется, мы отлично понимаем, что нельзя ограничиться разбором одного только открытия, хотя бы и великого, для подтверждения выдвинутого положения о ППБ как общего. Для этого нужно, конечно, рассмотреть другие открытия, причем в достаточно большом числе. Этим мы и займемся в следующих главах, причем начнем издалека.

 

ГЛАВА 2

Преодоление ППБ в истории науки

Детство человеческой мысли. Попытаемся в этой главе рассмотреть, какого типа барьеры возникали на различных этапах развития человеческой мысли и какими революционными способами эти барьеры каждый раз преодолевались. Начнем с самых ранних ступеней развития человечества, когда только еще пробуждалось мышление у людей.

Сложившиеся в это время представления и соответственно с этим закрепившиеся тогда барьеры (ППБ) мы будем относить, условно говоря, к детству человеческой мысли. Их общей чертой было наивное признание, что наблюдаемая видимость вещей и явлений и есть их сущность, есть сама действительность. Подобное отождествление видимости (или кажимости) с реальностью и явилось историческим первым ППБ в становлении знаний человека о внешнем мире, о природе. Такой барьер возник в свое время в каждой отрасли донаучного естествознания, причем всякий раз он выступал сообразно предмету данной отрасли.

Между тем картина реальной действительности не просто отличается от ее видимости, а часто диаметрально противоположна ей. Поэтому преодоление первоначально сложившегося ППБ в каждом случае сводилось к тому, чтобы перевернуть то, что давала видимость, на обратное, иначе говоря, ППБ заставлял людей видеть окружающий их мир поставленным на голову, а преодоление ППБ сводилось к тому, чтобы поставить его на ноги. Соответственно этому первые революции в естествознании так или иначе сводились к «перевертыванию» первоначально созданной людьми картины, в правильность которой они твердо уверовали перед тем в течение столетий и даже тысячелетий.

Интересно провести параллель между этим филогенезом человеческой мысли, ее детством, и самой ранней ступенью индивидуального развития (онтогенеза) ребенка. В силу особенностей физического строения зрительного аппарата новорожденный ребенок видит предметы в перевернутом виде, и только потом он научается «переворачивать» зрительные образы с тем, чтобы изображение предметов в нашем глазу соответствовало самим предметам.

Рассмотрим конкретные случаи образования ППБ и их революционного преодоления в истории отдельных наук.

Начнем с астрономии.

С незапамятных времен люди научились наблюдать движение небесных светил по небосводу. У них даже не могло возникнуть сомнения в том, что движутся именно Солнце и звезды, а что Земля, на которой мы живем, неподвижна. Здесь особенно прочно утвердился ППБ, преграждавший переход от видимости к действительности.

Вместе с тем этот ППБ позволял накапливать фактический материал, касающийся небесных явлений, составлять и вычерчивать извилистые и зигзагоподобные пути планет, включая их «попятное движение», которое они будто бы совершают, двигаясь не вокруг Солнца, а якобы вокруг Земли.

Такова была геоцентрическая система Птолемея, просуществовавшая до XVI века.

Н. Коперник, опираясь на фактический материал птолемеевской астрономии, перевернул картину мироздания на обратную: в центре нашего мирового острова он поместил не Землю, а Солнце, вокруг которого обращаются Земля и другие планеты. Нам это только кажется, что мы стоим на месте, а вокруг нас обращаются Солнце и звезды. В действительности же как раз наоборот: наша Земля вместе с нами обращается вокруг собственной оси (суточное движение) и вокруг Солнца (годовое).

Это открытие вызвало, как известно, целую революцию в науке, суть которой состояла в преодолении первого ППБ, мешавшего переходу от старого, геоцентрического учения к новому, гелиоцентрическому. Н. Коперник хорошо разъяснил источник познавательно-психологической ошибки прежнего учения: когда мы стоим на палубе отходящего от берега корабля (при тихой погоде), то нам кажется, что не мы отъезжаем от берега, а берег — от нас.

Так в середине XVI века был преодолен первый ППБ в науке. Однако его защитники бешено сопротивлялись, жестоко преследуя сторонников нового учения (вспомним судьбы Джордано Бруно и Г. Галилея).

В механике XVII–XVIII веков мы видим такую же картину, хотя в деталях она весьма отлична от предыдущей. Здесь тоже за видимостью механических явлений скрывались их законы, которые не были даны чувственно. Например, еще Аристотель полагал, будто различные тела падают на землю с различной скоростью: легкие — медленнее, тяжелые — быстрее. Но Г. Галилей доказал обратное — что все тела падают на землю с одинаковой скоростью, но что воздух задерживает падение легких тел.

Таким образом, и здесь был преодолен ППБ, разделявший видимое и действительное и тормозивший переход от первого ко второму.

Особенно впечатляющим был все тот же ППБ, сложившийся в химии и прочно вошедший в сознание человека со времен открытия способа получения огня. Казалось бы, не может быть никакого сомнения в том, что горение есть распад тел: ведь всякий непредубежденный человек, видя, как горят дрова в печи или хворост в костре, а тем более наблюдая пожар, видит непосредственно, как распадаются на части горящие предметы, как буквально рушатся деревянные постройки и т. д. При этом он не может не заметить, что из горящих предметов вырывается яркое пламя и темный дым, а потом остается пепел. Человеку наблюдения как бы подсказывают, что горение есть распад тела на три его более простые составные части: пламя (огонь), дым и пепел (золу). Так убедительно свидетельствует непосредственная видимость.

Начиная с далекой древности, когда огонь рассматривался в качестве одного из первоначал мироздания или даже единственного его первоначала, в сознание людей твердо вошел и удерживался до конца XVIII века ППБ: горение есть распад тел, гореть могут только сложные тела.

На протяжении целых столетий эта идея, отождествлявшая видимость с действительностью, видоизменялась в деталях, но сохранялась в своей основе неизменной.

Она выступала в качестве признания так называемой «философской серы» у алхимиков и ятрохимиков в средние века, в качестве признания «горючей земли» — в учении Бехера в XVII веке, в качестве мифического флогистона — материи огня — у Шталя в XVIII веке.

В рамках таких представлений накапливался опытный материал, необходимый для того, чтобы флогистонное учение могло быть «перевернуто», поставлено с головы на ноги, что и осуществил в конце XVIII века А. Лавуазье, создавший кислородную теорию.

Это была первая химическая революция, доказавшая, что горение не есть распад горючих тел, а есть соединение их вещества с кислородом.

Таким образом, и здесь существовавший так долго ППБ препятствовал переходу химиков от видимости к открытию действительного химизма таких процессов, как горение, окисление и дыхание. Суть же первой химической революции была та же, что и предыдущей революции в астрономии, которую совершил Н. Коперник: картина видимости была перевернута.

Обратимся теперь к физике. Здесь мы наблюдаем совершенно такую же картину: теплота трактовалась почти до середины XIX века в качестве особой невесомой жидкости (флюида), которая содержится во всех телах и может быть выдавлена из них. Так, выдавливанием теплорода объяснялось разогревание рук при их потирании одна о другую или железа при ударе по нему молотом. Об этом как будто свидетельствовала непосредственная видимость, мешавшая долгое время правильно понять, что происходит здесь в действительности.

Такой же ППБ, выдававший видимость за действительность, существовал и в биологии, где в начале XIX века еще не были найдены причинные объяснения биологических явлений. Они подменялись наивно-телеологическими. Здесь ППБ являлся препятствием на пути от телеологических объяснений, основанных на признании всеобщей целесообразности в живой природе, к каузальным. И этот барьер впервые был преодолен лишь Ч. Дарвином в 1859 году. Революция в биологии, как и во всем естествознании, завершала собой последние проявления детства естественнонаучной мысли.

В философии первой половины XIX века мы наблюдаем совершенно аналогичную картину. Здесь видимость свидетельствует как бы в пользу идеализма, иначе говоря, в пользу первичности сознания, ибо все наши поступки совершаются так, что сначала мы в нашей голове, то есть идеально, принимаем решение, а затем действуем сообразно принятому решению. Действительные же причины исторических событий, в качестве каковых выступают материальные факторы, остаются для поверхностных людей как бы замаскированными.

Абсолютизируя и гипертрофируя активность человеческого духа, Г. Гегель, как известно, пришел к признанию мистической «абсолютной идеи» в качестве первоначала всего мироздания. В итоге здесь ППБ выступил как переворачивание действительности вверх ногами. Потребовался гений К. Маркса и Ф. Энгельса, чтобы преодолеть этот барьер и поставить диалектику Гегеля с головы на ноги.

Об этом «переворачивании» гегелевской диалектики писал К. Маркс в томе I «Капитала», а Ф. Энгельс в «Диалектике природы» прямо связал в одну цепь первые революции, совершенные в химии, физике и философии. Он писал: «Гегелевская диалектика так относится к рациональной диалектике, как теория теплорода — к механической теории теплоты, как теория флогистона — к теории Лавуазье».

И он пояснял, что речь идет о том, что в физике при создании механической теории теплоты оставалось только перевернуть открытые ее предшественницей законы; в химии же теория флогистона своей вековой экспериментальной работой впервые доставила тот материал, с помощью которого Лавуазье смог открыть в полученном Пристли кислороде антипод фантастического флогистона и тем самым ниспровергнуть всю флогистонную теорию. Но это отнюдь не означало устранения опытных результатов флогистики. Наоборот, они продолжали существовать; только их формулировка была перевернута.

Итак, преодолением первых ППБ в истории человеческой мысли завершился ее «детский» период.

Незрелость естественнонаучной мысли. Подобно тому, как в жизни человека за его ранним детством следуют годы незрелого подросткового периода, так это мы видим и в развитии науки. Вместе с первыми революциями в ней, перевернувшими первоначальную картину видимости, завершаются донаучные ступени знания и происходит становление подлинной науки.

Однако признание видимости за действительность ликвидируется не сразу. Остаток таких воззрений в виде нового типа ППБ еще долго продолжает господствовать в умах ученых. Такой остаток выступает, прежде всего, в виде веры в кажущуюся неизменность вещей и их сущности, а также в то, что вещи, явления природы могут быть несвязанными между собою, совершенно независимыми одни от других.

В самом деле, с первого взгляда трудно, а иногда и невозможно обнаружить признаки изменчивости предметов природы, уловить скрытую внутреннюю связь между ними.

Новые барьеры в этих условиях призваны оградить область исследования самих по себе предметов природы, как они существуют, без изменений и взаимосвязей, с тем чтобы в дальнейшем наука могла выйти за эти рамки и рассматривать те же предметы в их изменении и развитии, в их взаимосвязях и взаимопревращениях.

Таким образом, и здесь ППБ выполняют сначала прогрессивную, оградительную функцию, а затем, закрепляясь, превращаются в тормоз научного движения.

Поскольку наука на этой стадии своего развития еще не в состоянии охватить в целом предмет исследования во всей его сложности, изменчивости и внутренней противоречивости, она не может считаться пока еще зрелой наукой, и справедливо будет сказать, что здесь мы имеем дело с незрелостью естественнонаучной мысли. Для нее это переходный период: она вышла из своего детства, но еще не вступила в полосу зрелости.

Ф. Энгельс писал о рациональном смысле этого периода, что в это время ученые имели дело с предметами как с чем-то законченным и неизменным, и это имело великое историческое оправдание. «Надо было исследовать предметы, прежде чем можно было приступить к исследованию процессов. Надо сначала знать, что такое данный предмет, чтобы можно было заняться теми изменениями, которые с ним происходят. Так именно и обстояло дело в естественных науках… Когда же это изучение отдельных вещей подвинулось настолько далеко, что можно было сделать новый решительный шаг вперед, то есть приступить к систематическому исследованию тех изменений, которые происходят с этими вещами в самой природе, тогда и в философской области пробил смертный час старой метафизики».

«Смертный час старой метафизики» — это и есть преодоление внесенного ею в науку специфического ППБ. В каждом случае это принимало форму научной революции.

Рассмотрим, как они проходили в различных областях естествознания.

Начнем опять с астрономии. Когда гелиоцентрическое учение утвердилось в науке, естественно встал вопрос, откуда и как произошла Вселенная. Ньютонианское естествознание, придерживаясь барьера, признающего абсолютную неизменность природы, пришло к выводу о так называемом первоначальном божественном толчке. Такой толчок был якобы дан при сотворении мира планетам, которые под его воздействием приобрели присущее им движение вокруг Солнца, и с тех пор так вращаются и будут вращаться до скончания века.

Во второй половине XIX века этот ППБ был преодолен благодаря созданию космогонической гипотезы И. Канта и П. Лапласа. Вся Солнечная система, включая нашу Землю, была показана как ставшая во времени, развившаяся из первоначальной туманности путем ее вращательного движения. В центре системы и на периферии произошли сгущения вещества туманности, из которых образовались Солнце и планеты, продолжающие вращаться в прежнем направлении.

Идея первоначального божественного толчка была преодолена. Астрономия вступила в пору своей зрелости: в ней был осуществлен переход от окаменелых, застывших представлений к признанию текучести, изменчивости небесных тел и систем.

Образно можно сказать, что если преодоление предыдущего типа ППБ состояло в перевертывании картины видимости, то преодоление ППБ второго типа состояло как бы в расплавлении застывшей, окаменевшей картины.

В химии первая ее революция привела к абсолютизированию непревращаемости и неизменности химических элементов, а также самой кислородной теории, родившейся из этой революции.

Рассмотрим появление нового барьера вместе с кислородной теорией А. Лавуазье. Самое название «кислород» говорило о том, что этот элемент, присутствие которого в соединении обусловливает кислотные свойства вещества, обязательно входит в состав кислот. Такая кислородная теория кислот сразу же прочно утвердилась в химии и образовала своеобразный барьер, который отключал мысль о существовании бескислородных кислот. Однако были известны кислоты подобно соляной, образованные растворением хлористого водорода в воде. Это были типичные кислоты, однако сам хлористый водород не содержал в себе кислорода. Попытки представить элемент хлор как соединение, якобы включающее в себя кислород, не увенчались успехом, и химикам пришлось отказаться от своих первоначальных воззрений, что каждая кислота обязательно содержит кислород.

Тем самым был преодолен первоначально созданный барьер, связанный с признанием кислородной теории кислот, и было установлено, что признаком всякой кислоты является присутствие в ней подвижного атома водорода, который позднее проявил себя как ион водорода (Н+). Так возник, а потом был ликвидирован ППБ на пути к познанию природы и состава кислот.

Отметим теперь взгляды простой атомистики как познавательно-психологический барьер. Идея о том, будто в конечном счете все тела образуются из атомов и пустоты, возникла еще в античной натурфилософии. Эта идея укрепилась в начале XIX века. Придерживаясь ее, химики утверждали, будто все тела природы распадаются непосредственно на атомы, а потому физическими частицами газов являются те же самые атомы, которые участвуют в химических реакциях.

Превращенные в барьер, такие взгляды помешали химикам правильно понять связь между законом кратных отношений, который был открыт Дж. Дальтоном в начале XIX века, и законом объемов реагирующих газов, который вскоре после этого открыл Ж. Гей-Люссак. Более того, химики прошли мимо молекулярной гипотезы А. Авогадро и А. Ампера, которая позволяла преодолеть этот ППБ.

Потребовалось почти полувековое блуждание мысли химиков, чтобы преодолеть возникший барьер, основываясь на идеях Авогадро-Жерара. Их учение состояло в отказе от утверждения, что материя только дискретна и признавало, что такие дискретные части материи, как атомы и молекулы, являются различными качественными взаимосвязанными ступенями развития материи.

Преодоление здесь ППБ составило другую химическую революцию, которая произошла в начале второй половины XIX века. За ней непосредственно последовала как ее прямое продолжение революция, вызванная открытием периодического закона, о чем говорилось в предыдущей главе.

В биологии не меньшую, а может быть, и большую по масштабу и значению научную революцию вызвало создание Ч. Дарвином эволюционного учения, а в физике открытие закона сохранения и превращения энергии. В обоих этих открытиях преодолевался как бы удвоенный барьер, в результате чего одновременно происходило перевертывание картины видимости на обратную (это во-первых) и расплавление окаменевших представлений о неизменности органических видов или же видов силы (это во-вторых).

Поэтому середина и начало второй половины XIX века по праву считаются эпохой величайших революций в естествознании. Наука вступила теперь в полной мере в свою зрелую фазу, однако не во всем объеме своего предмета, а только в его видимой части (в области явлений макромира). В области же явлений микромира, невидимого для нас, сложился своеобразный ППБ, суть которого заключалась в том, что качественная природа предметов и процессов обоих миров, видимого и невидимого, макро- и микро-, и их законов отождествлялась. Различия между ними признавались только количественные (по масштабу).

Так, молекулярно-кинетическая теория газов в XIX веке трактовала молекулы с их движением и соударениями как миниатюрные механические системы. В рамках таких представлений и шла тогда разработка соответствующих разделов физики и химии.

Сложившийся ППБ, отождествлявший в качественном отношении макро- и микропроцессы, позволил исчерпать данную ступень познания, и в этом была его прогрессивная роль. Но к концу XIX века он явно устарел, стал тормозить развитие науки, что вынудило ученых начать его преодолевать. Такое его преодоление состояло в раскрытии шаг за шагом специфической природы микрообъектов и их движения, их закономерностей, качественно отличных от того, что мы наблюдаем у макрообъектов.

Это вызвало новый революционный переворот в науке, который В. И. Ленин охарактеризовал как «новейшую революцию в естествознании». Она захватила весь XX век.

Приведем два примера. В 1897 году Дж. Томсон открыл электрон в качестве общей составной части всех атомов, их атомной оболочки. В соответствии с еще не преодоленным ППБ долгое время считалось, что электроны внутри атома движутся по строго определенным орбитам вокруг атомного ядра, подобно тому, как планеты движутся вокруг Солнца. Другими словами, атом представлялся как миниатюрная Солнечная система.

Почти до конца первой четверти XX века ППБ в данном случае играл прогрессивную роль, позволяя накопить необходимый фактический материал для его последующего преодоления. Последнее произошло таким образом, что представление об электроне как о миниатюрном шарике и об его движении по строгой орбите сменилось представлением о некотором электронном облаке с размытыми границами, двигающемся по размытой траектории.

Тем самым было преодолено прежнее качественное отождествление микрообъектов с макрообъектами после того, как соответствующий ППБ выполнил свою прогрессивную роль и помог исчерпать предшествующую ступень познания.

Другой пример мы возьмем из области ядерной физики. Он касается сущности строения вещества. Под строением издавна понималось соединение тем или иным способом внешне соположенных вещей, которые при этом не проникают друг в друга. Так в XIX веке понималось строение молекул из атомов, а в начале XX века — строение атомов из ядер и электронов. И это стало прочно установленным ППБ в понимании данной прс/блемы.

Между тем коррективы в эту картину стали вносить новые данные о составе и строении атомных ядер из нуклонов (протонов и нейтронов). Последние не существуют как рядом положенные внутри ядра, а постоянно превращаются друг в друга, передавая друг другу положительный заряд, то есть нейтрализуясь и тут же заряжажаясь вновь. Поэтому связи между нуклонами внутри ядра считаются носящими обменный характер. Однако существовавший до тех пор ППБ был преодолен тем, что было установлено «строение» элементарных частиц из таких частиц, которые еще не возникли в качестве таковых, а существуют лишь как виртуальные, то есть реально возможные. Тем самым прежний принцип внешнего соположения вещей, сыгравший в качестве ППБ свою прогрессивную роль, был наконец преодолен. Можно сказать, что теперь естествознание вступило уже в полном объеме в свою зрелую фазу.

* * *

В этой главе мы показали, что развитие научного познания, великие и малые открытия и происходившие в нем научные революции совершались путем преодоления, сложившихся ранее познавательно-психологических барьеров. Вполне понятно, что таких барьеров преодолевалось великое множество и, собственно говоря, вся история естествознания есть история того, как они зарождались, формировались и закреплялись с тем, чтобы быть в конце концов преодоленными в ходе дальнейшего развития научного знания. Поэтому нет необходимости сейчас продолжать просто называть все новые и новые ППБ и случаи их преодоления, так как мы уже привели достаточное их число, чтобы убедиться в том, что они действительно существуют. Дальнейшее же их рассмотрение заставило бы нас изложить вообще всю историю естествознания.

Анализ отдельных барьеров убедительно доказывает их историческую оправданность. Они действительно имеют две функции: первоначальную прогрессивную, которая объясняет их образование и заключается в том, чтобы оградить достигнутую ступень познания до ее максимального или оптимального исчерпания, после чего первая функция превращается в свою противоположность, в функцию торможения научного развития, что требует устранения ее, преодоления ППБ.

Такой взгляд позволяет выделить основные периоды в истории естествознания и разделяющие их рубежи, роль которых выполняют крупные ППБ. Таков общий барьер между «детством» и «незрелостью» естественнонаучной мысли, между ее «незрелостью» и «неполной зрелостью» и, наконец, между «неполной» и «полной» ее зрелостью. В первом случае этот рубеж (ППБ) преодолевается целой серией научных революций, перевертывающих картины видимости. Во втором случае — тоже целой серией революций, снимающих абсолютную неизменность и независимость вещей и явлений природы. В третьем случае речь идет опять же о целой серии революционных переворотов, охватываемых общим понятием «новейшей революции в естествознании», преодолевающих ППБ качественного отождествления макро- и микромира.

Через всю цепь каждой из таких серий научных революций проходит один и тот же общий барьер, конкретный характер которого и способ его преодоления варьируют в зависимости от того, о какой области естествознания идет речь. Это означает, что в каждый исторический период, независимо от того, в какой отрасли естествознания совершается научная революция, действуют одни и те же общие причины познавательно-психологического характера, порождающие данный барьер.

В дальнейших главах мы продолжим наш анализ ППБ, но не просто с целью доказать их действительное существование, а с целью детальнее проследить некоторые особенности их возникновения, равно как и особенности сложного комбинированного характера некоторых из них.

 

ГЛАВА 3

Преодоление барьеров в учении о веществе

Химико-механическая концепция и особая фаза в развитии соответствующего ей ППБ. В предыдущей главе была рассмотрена смена различных основных ППБ и способов их преодоления в соответствии с тем, как научное познание в своем развитии поднималось с одного, более низкого уровня (скажем, незрелого) на другой (не вполне зрелый) и т. д. При этом мы показали, как один и тот же в сущности барьер в различных отраслях науки в разное время принимал различное выражение и как вместе с ним видоизменялся самый способ его преодоления, оставаясь в сущности одним и тем же (скажем, переворачиванием видимости).

Теперь же нам предстоит рассмотреть другой случай эволюции ППБ, когда один и тот же в своей основе барьер претерпевает во времени существенные изменения, сохраняя при этом свой фундамент и проходя стадии первого отрицания и второго отрицания, то есть отрицания отрицания. С этим связаны формирование и смена главных концепций в учении о веществе в XIX и XX веках.

В XIX веке конкурировали две концепции вещества: химико-механическая, берущая начало от И. Ньютона и Дальтона, и химико-электрическая — от И. Берцелиуса. Внутри каждой из них сложился свой особый ППБ, который помогал в рамках данной концепции по возможности исчерпать достигнутую ступень познания. Это удалось сделать только в случае химико-механической концепции в ее односторонней трактовке, между тем как химико-электрическая концепция развернула свои возможности полностью лишь в, XX веке, в условиях «новейшей революции в естествознании».

Рассмотрим сначала вкратце тот барьер, который сложился в рамках химико-механической концепции. Она строилась на признании того, что атомы неделимы, элементы вечны и взаимно непревращаемы, что основным их свойством является их масса (атомный вес), которая носит тоже вечный и неизменный характер.

Периодический закон, открытый Д. Менделеевым, строился на основе именно таких представлений. Однако этот закон позволил ввести в трактовку элементов совершенно новую струю, которая до тех пор отсутствовала в учении о веществе, а именно трактовку элемента как отдельного через периодический закон как общее. Говоря конкретнее, речь шла об определении элемента через указание его места в общей системе, всех элементов, основанной на периодическом законе. «Каждый элемент по периодической системе, — писал Д. Менделеев в «Основах химии», — имеет место, определяемое группою (обозначаем римскою цифрою) и рядом (цифра арабская), в которых находится. Они указывают величину атомного веса, аналогию., словом, главные количественные и качественные признаки элемента…».

Таково менделеевское определение элемента, сохранившее свой основной смысл и в наши днц. Это пример определения отдельного через общее, в основе которого лежит единство противоположностей общего и отдельного. Об их единстве В. И. Ленин писал в «Философских тетрадях». «Значит, противоположности (отдельное противоположно общему) тождественны: отдельное не существует иначе как в той связи, которая ведет к общему. Общее существует лишь в отдельном, через отдельное. Всякое отдельное есть (так или иначе) общее. Всякое общее есть (частичка или сторона или сущность) отдельного. Всякое общее лишь приблизительно охватывает все отдельные предметы. Всякое отдельное неполно входит в общее и т. д. и т. д. Всякое отдельное тысячами переходов связано с другого рода отдельными (вещами, явлениями, процессами) и т. д.».

Это и была та новая струя, которую Д. Менделеев внес в понимание элемента. Так возник новый ППБ, сыгравший в дальнейшем исключительно важную роль. Он опирался на тот установленный ученым факт, что каждому химическому элементу должно ответствовать лишь одно строго определенное место в системе и что на каждое место в ней должен встать только один элемент.

Однако к этому барьеру подключались и некоторые другие признаки, приписываемые элементам согласно химико-механической концепции, а именно: строго определенная, неизменная масса (атомный вес); неделимость атомов; непревращаемость элементов друг в друга. Поэтому клетки системы, заключавшие в себе места отдельных элементов, мыслились как построенные из жестких непроницаемых стенок. Это означало, что элементы не способны переходить с места на место, то есть не способны превращаться друг в друга.

Приведем пример того, как действовал ППБ, связанный с химико-механической концепцией вещества. В 80-х годах XIX века возникла теория электролитической диссоциации разбавленных водных растворов в качестве представительницы зарождавшейся химико-электрической концепции вещества. Один из ее адептов — В. Оствальд рассказывал о своем разговоре с химиком старых химико-механических воззрений. Последний отвергал малейшую возможность того, чтобы в водном растворе могли существовать свободные атомы натрия, хотя бы в электрически заряженном состоянии. И он «с кротким сожалением» посмотрел на В. Оствальда, который отстаивал представление об ионах. Этому химику мешал понять и принять новые химико-электрические представления еще не преодоленный тогда ППБ. К числу таких химиков относился и Д. Менделеев.

Три других типа ППБ в учении о веществах XIX века. Один из них был связан с пониманием химического анализа как чисто препаративного. Qh был основан на учете специфически химических свойств элементов и вообще составных частей сложных веществ. Учитывая такие их свойства, надо было уметь разделять сложное вещество на его составные части и отделять их друг от друга. Очевидно, что с помощью такого препаративного метода люди не могли узнать химического состава Солнца и звезд. Еще О. Конт незадолго до смерти утверждал на этом основании, что люди никогда не узнают, из чего состоят небесные тела.

Такой барьер начал преодолеваться еще накануне открытия периодического закона благодаря созданию спектрального анализа. Последний позволял узнавать химический состав веществ не путем разделения их на составные части, а наблюдая оптический спектр, характерный для отдельных элементов. Так был преодолен прежний барьер и опровергнуто агностическое пророчество О. Конта. Р. Кирхгоф, открывший спектральный анализ вместе с Р. Бунзеном, рассказывал о своем разговоре с химиком старой школы, еще не сумевшим преодолеть прежний барьер. Этот химик спросил Р. Кирхгофа, слышал ли тот, что какой-то сумасшедший утверждает, будто бы он с помощью своего спектроскопа может узнать химический состав Солнца? «Я ответил ему, что это действительно так и есть на самом деле, и не удержался признаться, что этот сумасшедший — я сам», — вспоминал Р. Кирхгоф.

В этом эпизоде мы видим столкновение взглядов двух ученых, из которых один уже преодолел данный барьер, а другой еще нет.

Тот же барьер выступил в учении о веществе на рубеже XIX и XX веков в другом виде. Оказалось, что можно определять химический состав сложных систем, не разделяя их на составные части, но определяя те или иные физические свойства системы в целом, например, ее точку плавления и ее эвтектическую точку. Это положило начало физико-химическому анализу, творцом которого был Н. Курнаков.

Таким образом, здесь повторился методологический путь, пройденный Д. Менделеевым при открытии периодического закона: от учета химических свойств элементов, их сходства и несходства к учету общего их физического свойства (атомного веса). Теперь же речь шла (в случае спектрального и физико-химического анализа) об отказе от химико-препаративного подхода и переходе к учету физических свойств всей системы данных веществ в целом.

Другим примером может служить возникший ППБ в области учения о газах. Еще в первые десятилетия XX века ученым (среди них М. Фарадею) удалось превратить в жидкость почти все газы и пары. Упорно не поддавались сжижению только некоторые газы, названные постоянными: водород, кислород и азот (а значит, и воздух). Возник ППБ, резко разделявший такие якобы «постоянные» газы и остальные — «непостоянные».

Такой барьер коренился в ошибочном представлении, будто сжижение газов может и должно быть достигнуто лишь с помощью одного высокого давления. Это оправдывалось почти всегда, так как обычные газообразные вещества обладали сравнительно высокой критической температурой. Если же она оказывалась в редких случаях достаточно низкой, как это имеет место у водорода, азота и кислорода, то никаким высоким давлением без понижения температуры добиться сжижения таких газов было невозможно. Отсюда и возникло лажное представление о «постоянных» газах и соответствующий ему ППБ.

Случайно во время опытов с применением высоких давлений сосуд со сжимаемым воздухом лопнул, сильно сжатый воздух вырвался наружу и быстро расширился; расширяясь же, он резко охладился и превратился в жидкость. Так был преодолен на практике существовавший до тех пор барьер и исчезли последние следы понятия «постоянного» газа.

С рассмотренным случаем связан третий ППБ. Еще в XVIII веке Г. Кавендиш обнаружил устойчивую разность плотностей у азота, полученного из воздуха, и у азота, выделенного из химических соединений. Однако эта аномалия оставалась необъясненной более 100 лет до тех пор, пока У. Рэлей высказал предположение, что в воздухе имеется еще неизвестный газ, который имеет плотность большую, чем азот. Вместе с В. Рамзаем он исследовал жидкий воздух, удалив из него весь кислород и азот. В остатке обнаружился новый химический инертный газ с плотностью 20. Он был назван аргоном (то есть «недеятельным») и оказался газом с атомным весом 40.

*Д. Менделеев долго отказывался признать аргон за новый химический элемент. Ему казалось, что такому признанию противоречит периодический закон и обусловленный им ППБ. В самом деле, место в периодической системе, соответствующее атомному весу 40, прочно занято кальцием; по соседству с ним тоже не было свободного места. Это, во-первых. А во-вторых, сама формула периодического закона гласила, что химические и физические свойства элементов суть периодическая функция атомного веса; в случае же аргона химические свойства отсутствовали вовсе, а потому не могли быть функцией массы его атома.

Строго придерживаясь рамок сложившегося в его уме ППБ, Д. Менделеев выдвинул предположение, что аргон не обладает элементарной природой, а есть «азотистый озон» (N3=42). Такой барьер препятствовал включению аргона в периодическую систему элементов. Он был преодолен позднее, после того, как В. Рамзай открыл гелий, а затем три других инертных газа, а Эррера в 1900 году ввел новую, нулевую группу в периодическую систему. Только после этого Д. Менделеев присоединился, наконец, к тем, кто уже преодолел этот сложившийся ППБ.

Рассмотрим теперь чрезвычайно сложную ситуацию, которая возникла в учении о веществе после начала «новейшей революции в естествознании».

Действие ППБ в переходное время. В период с 1895 по 1912 годы в физике были сделаны великие революционные открытия, доказавшие устарелость прежней химико-механической концепции. Однако каким именно образом можно и нужно было преодолеть барьер и в чем именно он состоял, поначалу было еще непонятно. И это неизбежно порождало смуту в умах. Д. Менделеев и его сторонники продолжали твердо держаться прежней химико-механической концепции.

Сам Д. Менделеев в начале XX века вйютупил в ее защиту в специальной работе «Попытка химического понимания мирового эфира». Однако спасти старое было невозможно, а преодоление прежнего барьера могло быть осуществлено только путем взаимного обогащения основного менделеевского понятия элемента (через его место в системе) и новейших физических открытий (таких, как лучи Рентгена, радиоактивность, электрон). Этого не могли понять представители старой химии и физики, в том числе и сам автор периодической системы.

Смутное время в науке проявилось прежде всего в том, что на одно место в периодической системе попадал уже не один элемент, а сразу несколько, обладавших разными атомными весами. Так, различные радиоактивные ряды заканчивались различными свинцами, обладавшими разными атомными весами. И это наблюдалось во многих местах в конце периодической системы.

Выходило так, что нарушались некоторые важные характеристики элемента, которые до тех пор были органически связаны с основным менделеевским определением: на одно место приходилось больше одного элемента, атомный вес переставал быть однозначной характеристикой элемента.

Какой же выход из создавшегося в науке положения был найден? Другими словами, как был преодолен сохранившийся в ней ППБ?

Химико-электрическая концепция как другой особый тип ППБ. Преодоление предыдущего ППБ (его «отрицание») состояло в том, что его основа (менделеевское определение) удержалась, а детали были пересмотрены и уточнены. Все это подтверждало сказанное В. И. Лениным по поводу отрицания в диалектике: «…отрицание как момент связи, как момент развития, с удержанием положительного, т. е. без всяких колебаний, без всякой эклектики».

Суть дела заключалась в том, что наряду с прежним понятием элемента как вида атомов в науку было введено новое понятие изотопа как разновидности атома. Теперь масса (атомный вес) стала признаком не элемента (вида), а только изотопа (разновидности). Определяющим же признаком элемента стал теперь положительный заряд атомного ядра, причем это обстоятельство целиком и полностью вытекало из менделеевского признания места в системе как определяющего признака элемента.

В самом деле, открытие связи между этим местом и характеристическим рентгеновским спектром того же элемента привело к установлению признака порядкового номера (Мозли, 1913 год). Тем самым место в системе получило однозначную физическую индексикацию. После этого было установлено (Ван ден Брук и Н. Бор, 1913 год), что порядковое число равно по величине заряду ядра. Тем самым обозначение порядкового номера получило свою физическую интерпретацию.

С другой стороны, совмещение различных радиоактивных рядов с периодической системой Менделеева привело к открытию закона сдвига (Ф. Содли и К. Фаянс, 1913 год), согласно которому элементы при их радиоактивном распаде сдвигаются по периодической системе на одно место направо (в случае бета-распада) или же на два места налево (при альфа-распаде).

Таким образом, новые физические открытия были совмещены с периодической системой; в результате этого они обогатили ее и основанное на ней менделеевское определение элемента и, в свою очередь, получили сами теоретическое объяснение на ее основе. Так своеобразно был преодолен в 1913 году тот барьер, который в учении о веществе возник на почве химико-механической концепции.

Химико-электрическая концепция передвинула признак массы в характеристике атома на второй план, а на первый выдвинула электрические свойства структурных частей атома, их электрические заряды. Это вполне гармонировало с общей электромагнитной картиной, которая к тому времени в одностороннем порядке утвердилась в науке.

В соответствии с ней сложился и новый ППБ, который расчленял собою такие свойства атома, как его масса и электрический заряд. Согласно этому барьеру утверждалось: элемент определяется не на основании атомного веса (массы), а только на основании заряда его ядра; поведение электронов в атомной оболочке, а значит, и химические свойства элемента определяются только зарядом атомного ядра и никак не зависят от массы атома. Такой барьер, выполняя положительную роль, просуществовал до начала 30-х годов, после чего был преодолен в результате дальнейших открытий в физике и химии.

О том, как действовал ППБ в рамках химико-электрической концепции, можно показать на примере открытия нейтрона, которому этот барьер препятствовал.

Эмпирическое наблюдение нейтронов впервые осуществили супруги Жолио-Кюри, которые буквально держали их в руках перед своими глазами в виде так называемого «бериллиевого излучения». Однако оба супруга выросли в духовной обстановке безраздельного господства электромагнитной концепции и соответствующего ей ППБ. Поэтому, наблюдая какое-то новое, неизвестное еще излучение, они тут же попытались приписать ему электромагнитную природу типа жесткого излучения. Барьер помешал им понять, что перед ними нейтрон.

Напротив, ученик Э. Резерфорда Д. Чэдвик сформировался в совершенно иной духовной обстановке, которую создал его учитель. Ведь именно Э. Резерфорд выдвинул гипотезу о существовании нейтрона как электро-нейтральной частицы, образованной тесным соединением протона и электрона.

Теперь в сообщении супругов Жолио-Кюри о «бериллиевом излучении» Д. Чэдвик сразу же разгадал предвиденный его учителем нейтрон: ему не мог помешать барьер, порожденный односторонне воспринятой электромагнитной концепцией, которая заставляла повсюду искать объяснения, основанные только на ней.

Следует оговориться, что барьер, порржденный концепцией электромагнетизма, не был полностью преодолен ни Э. Резерфордом, ни его учеником. В сущности, сам нейтрон представлялся вполне в духе этой концепции как составленный из двух электрозаряженных частиц. Только после открытия нейтрона Д. Чэдвиком Д. Иваненко и другие физики пришли к выводу, что атомное ядро состоит не из протонов и легких (внутриядерных) электронов, а только из одних тяжелых нуклонов — протонов и нейтронов — и что легких частиц (электронов) вообще нет в составе ядер, а значит, и в составе нейтронов. Только после этого прежний ППБ был преодолен наконец полностью. Начался переход к новой двусторонней концепции, в которой соединился химико-механический взгляд с химико-электрическим и начался частичный возврат к прежним взглядам Д. Менделеева о роли массы в характеристике химического элемента.

Двусторонняя концепция как преодоление предыдущего ППБ.

Необходимость преодолеть предыдущий ППБ вызвали, прежде всего, два открытия: нейтрона, о котором говорилось только что, и тяжелой воды, сделанные в 1932 году. Оба они с разных сторон наносили удар по односторонне трактующей химико-электрической концепции. Нейтрон оказался частицей, лишенной вообще электрического заряда, а тяжелая вода привела к открытию тяжелого изотопа водорода (дейтерия), который химически отличался от легкого водорода (протия), но при этом заряд ядра у него был такой же, как у протия. Различие же заключалось только в массе.

С тех пор химические различия были обнаружены у изотопов других элементов. Это означало, что, как говорил Д. Менделеев, химические свойства в какой-то мере зависят от массы.

В нтоге началось преодоление барьера, сложившегося в рамках химико-электрической концепции. Другими словами, началось новое «отрицание» на этот раз электромагнитной каргины мира в ее одностороннем понимании («отрицание отрицания»). Можно сказать, что сначала был выдвинут тезис в виде химико-механической концепции, затем — антитезис (в виде химико-электрической концепции), а затем начался синтез обеих этих концепций.

Подобный их синтез особенно наглядно можно продемонстрировать на материале открытия искусственной радиоактивности легких элементов (Ф. Жолио-Кюри, 1934 год). Это открытие показало, что масса атома (изотопа) играет детерминирующую, регулирующую роль по отношению к заряду его ядра.

Если масса оказывается больше необходимой и достаточной для того, чтобы сосуществовать с данным зарядом ядра, то происходит бета-минус-распад, то есть выбрасывание из ядра одного электрона и антинейтрино. Значит, происходит превращение элемента в соседний с ним по периодической системе путем увеличения заряда атомного ядра на единицу. Напротив, если масса атома (изотопа) меньше необходимой для стабильности ядра, то происходит бета-плюс-распад и заряд ядра уменьшается на единицу. Так, для фтора стабильным является только один изотоп — F19; это означает, что устойчивым для его ядра является соотношение (масса=19 и заряд=9). Для F20 это соотношение оказывается нарушенным и изотоп F20 путем бета-плюс-распада превращается в неон (Ne2o). Напротив, в случае изотопа Fis происходит его превращение в кислород (Ois) путем бета-минус-распада.

Таким образом, масса ядра как более фундаментальное ц устойчивое свойство прямо определял собою заряд ядра, то есть его электромагнитное состояние как более подвижное, изменчивое свойство. Поэтому теперь можно дать следующее определение элемента: элемент есть вид атомов, все ядра которых имеют одинаковый заряд, причем его устойчивость обусловливается и регулируется величиной его массы.

В связи с этим рассмотрим еще один ППБ, который сложился уже в рамках двусторонней (синтетической) концепции. Выше мы показали на примере искусственной радиоактивности легких элементов, что увеличение массы стабильного изотопа на одну единицу может привести сначала к образованию более тяжелого, неустойчивого изотопа того же элемента с последующим его бета-минус-распадом и сдвигом на одно место вправо. Это наблюдение привело к образованию своеобразного барьера, состоявшего в признании, что увеличение массы стабильного изотопа всегда приводит затем к образованию более тяжелого элемента путем бета-минус-сдвига.

Начиная с 1934 года Э. Ферми с сотрудниками обрабатывал самый тяжелый элемент из известных тогда — уран — медленными нейтронами. В результате этого начались различные бета-распады, и они объяснялись тем, будто образуются бета-минус-радиоактивные трансураны. Так действовал здесь отмеченный выше ППБ.

Но вот среди продуктов распада совершенно неожиданно был обнаружен барий, стоящий не за ураном по периодической системе, а далеко перед ним, почти в ее середине. Его появление казалось необъяснимым, и путь к разгадке преграждал здесь отмеченный выше ППБ. Его смогли преодолеть в конце 1938-го — начале 1939 года О. Ган и Ф. Штрассман: они высказали догадку, полностью подтвердившуюся, что в данном случае при увеличении массы атома урана происходит не сдвиг путем бета-распада, а деление тяжелого ядра на две примерно равные части, скажем, на барий и ксенон. В каждой такой части масса образовавшегося ядра значительно превышает предел его устойчивости (при данном его заряде), а потому начинается цепь последовательных бета-минус-распадов, которые ошибочно были приняты за образование трансуранов.

Так продолжала формироваться и развертываться итоговая двусторонняя концепция вещества, в которой нашли свое отражение такие свойства атомного ядра, как масса и электрический заряд, но не в их противопоставлении друг другу, а в их единстве и взаимообусловленности.

Анализ конструктивной «работы» ППБ. В качестве конкретного примера того, как «работает» ППБ, выполняя свою заградительную функцию, рассмотрим историю постановки и решения проблемы об источнике солнечной и звездной энергии.

Как известно, жизнь на Земле в конечном счете обусловливается действием солнечных лучей. Вполне понятно поэтому, что уже издавна вставал вопрос — откуда Солнце черпает такое громадное количество энергии? Однако было известно также, что энергия не бесконечна и со временем должна будет иссякнуть, а Солнце — погаснуть, как гаснут звезды.

При химико-механической концепции ответ на этот вопрос искался в рамках соответствующего ППБ. Назывались причины тепломеханического характера (Солнце, дескать, остывает, остывая — сжимается, сжимаясь — вновь разогревается) и химического характера (Солнце — это громадный кусок антрацита, постепенно сгорающий). В обоих случаях можно было объяснить лишь ничтожно малую долю энергии, излучаемой Солнцем, а потому в обоих случаях Солнце должно было бы уже давным-давно потухнуть.

Таким образом, соответствующий ППБ не давал возможности найти ответ на поставленную наукой проблему.

В начале XX века «физический» идеализм предложил свое, совершенно несостоятельное, антинаучное решение: он объявил, что препятствием для ее решения является ППБ, основанный на признании несотворимости и неразрушимости материи (массы). Если этот барьер преодолеть, то проблема решается сама собой: энергия небесных светил возникает из того, что материя (масса) все время разрушается и непрерывно превращается в энергию. Так утверждал астрофизик Джинс в 1904 году. Однако предложенное им преодоление указанного ППБ оказалось мнимым, фиктивным. В 1905 году из специального принципа своей теории относительности А. Эйнштейн вывел новый фундаментальный закон природы: Е =mc 2 , откуда следовало признание неразрывности массы и энергии и вместе с тем их количественной соотносительности (эквивалентности).

На основании вновь открытого закона можно было заключить, что обычная масса тел природы, так сказать, их масса покоя (m0), связанная с эквивалентным ей количеством внутренней, неактивной энергии (E0), может превращаться в электромагнитную массу (mс), количественно равную ей, но качественно отличную от нее и связанную с активной формой энергии (Eс).

Таким образом, закон А. Эйнштейна давал возможность объяснить образование солнечной энергии не как превращение массы, а тем более материи, в энергию, но как результат превращения одного вида массы (m0) и связанного с ней вида энергии (E0) в другой вид массы (m с ) и связанный с ним вид энергии (E0). При этом полностью соблюдались законы сохранения суммарной массы (∑m=const) и суммарной энергии (∑E=const). Так уже в рамках химико-электрической концепции и присущего ей ППБ был найден принципиальный ответ на интересующий науку вопрос.

Но оставался все же неясным тот конкретный механизм, посредством которого совершался такой процесс на Солнце и звездах. Ответ был найден лишь в рамках двусторонней концепции и связанного с ней ППБ. В 30-х годах? X. Бете сформулировал представление о так называемом «водородном цикле», который должен совершаться непрерывно на Солнце и звездах. В итоге совершения по стадиям такого цикла все становится на свои прежние места, с той только разницей, что четыре ядра водорода (четыре протона) синтезируются в одно ядро гелия (альфа-частицу). Так как масса исходных четырех водородов равна 4×1,008=4,032, а конечная масса гелия равна 4,003, то так называемый дефект массы (в атомных единицах) будет равен: Δт=0,029. Это и будет источником энергии небесных светил, так как в данном случае согласно закону А. Эйнштейна Δmс 2 =Е с , где с 2 (квадрат скорости света) есть коэффициент огромной величины.

На этом примере мы видели, как «работает» ППБ, выполняя свою оградительную функцию: он не давал мысли ученых выходить за пределы достигнутой ими области (как это пытался сделать Джинс) и направлял их внимание на то, чтобы упорно искать ответа через более полное исчерпание именно данного, достигнутого уже уровня научного познания.

* * *

Итак, мы рассмотрели здесь эволюцию определенного барьера на основе сведений об общей эволюции учения о веществе. В ходе ее все время сохранялся основной стержень воззрений на химические элементы, нашедший свое выражение в менделеевском определении элемента через место в системе. Однако конкретная характеристика свойств элемента, которым приписывалось в одностороннем порядке определяющее значение, менялась на прямо противоположную. Сначала за таковые принимались химико-механические — атомный вес, или масса (тезис), затем совершался переход к одностороннему же признанию химико-электрических свойств в виде зарядов, и это достигалось путем отрицания предыдущего тезиса, то есть выступало в виде антитезиса. Наконец, снова совершался переход в свою противоположность, на этот раз в виде частичного возврата к исходному тезису, что приводило (путем повторного отрицания) к синтезу, или единству обеих противоположных сторон вещества. Здесь конкретизировалось замечание В. И. Ленина: «… «другое» как свое другое, развитие в свою противоположность».

Можно сказать, что все учение о веществе развивалось через внутреннее противоречие и что это проявилось в последовательном закономерном изменении соответствующего ППБ и способов его преодоления.

 

ГЛАВА 4

Комбинированный барьер как разобщение противоположностей

Разобщение вещества и света, прерывности и непрерывности. До сих пор мы рассмотрели два различных рода барьеров и их эволюции и соответственно этому эволюции способов их преодоления.

В главе 2 мы говорили о смене трех основных типов ППБ, каждый из которых относился к определенному уровню развития научного познания, причем в пределах каждого такого тина мы обнаруживали различное проявление одного и того же барьера в различных отраслях научного знания. В главе 3, по сути дела, мы прослеживали эволюцию одного и того же барьера, которая совершалась через отрицание отрицания, но так, что изменялось каждый раз конкретное выражение этого барьера. Теперь же мы обратимся к эволюции барьера третьего рода, который предполагает многосторонность, или многогранность самого ППБ, его как бы комбинированный характер. В силу такой его природы его преодоление осуществляется не сразу во всем его объеме, а как бы по частям, расчлененно. Собственно говоря, к этому, в сущности, и сводится вся «новейшая революция в естествознании».

Рассмотрим детальнее процесс расчлененного преодоления такого рода барьера.

История науки свидетельствует, что такие противоположности, как вещество и свет, были издавна разобщены, причем веществу приписывалось дискретное, атомистическое строение, а свету — волнообразное, континуальное. Правда, временами в эти представления вносились известные поправки. Так, в XVII–XVIII веках одно время сосуществовали в оптике две противоположные концепции: корпускулярная гипотеза И. Ньютона и волновая — X. Гюйгенса. Однако открытие Френелем явлений интерференции и дифракции света надолго укрепило волновую теорию в оптике, вплоть до начала XIX века. В это же время в химии и молекулярной физике столь же прочно господствовали идеи атомизма. Можно сказать поэтому, что между понятиями «вещество» и «свет», равно как и между их свойствами прерывности и непрерывности, в течение долгого времени складывался и укреплялся познавательно-психологический барьер, резко обособлявший обе противоположности.

Вместе с тем каждая из обеих противоположностей изучалась физикой или химией как ступень особенности в познании материи. О том же, что за этими ступенями особенности может последовать единая ступень всеобщности, включающая в себя обе ступени особенности, практически никто не догадывался. И так продолжалось до самого конца XIX века, когда началась «новейшая революция в естествознании».

Великим событием в физике и во всем естествознании явилось создание М. Планком квантовой теории. Согласно этой теории излучение и поглощение света происходит дискретными порциями (квантами), а его распространение в электромагнитном поле — волнами, то есть как непрерывный процесс. Оба противоположных свойства света продолжали оставаться разобщенными и сосуществовать рядом друг с другом, так что ранее возникший барьер между ними так и оставался непреодоленным.

Такое противоречие усилилось в большей степени, когда в 1905 году А. Эйнштейн ввел понятие фотона как «частицы» света. С другой стороны, открытие электрона в 1897 году Дж. Дж. Томсоном и атомного ядра в 1911 году Э. Резерфордом привело к созданию квантово-электронной модели атома Н. Бором. Впоследствии эта боровская модель постоянно усложнялась, причем для электрона вводились дополнительно все новые физические свойства (магнитный момент, спин и др.) и ему приписывались все новые виды движения внутри атома вплоть до розеточного.

Однако никакие новые дополнения не могли объяснить тонкие детали оптических спектров атомов, так что известная часть этого опытного материала неизменно оставалась за пределами выдвигаемой теории. Другими словами, сохранялись противоречие и разрыв между теорией и экспериментальными наблюдениями. Так продолжалось до конца первой четверти XX века.

Создание квантовой механики как преодоление барьера между разобщенными противоположностями в физике. В 1923–1924 годах молодой тогда Луи де Бройль выдвинул идею, благодаря которой был преодолен наконец барьер между прерывностью и непрерывностью, между веществом и светом. После переписки с А. Эйнштейном, который поощрил его на дальнейшее исследование в начатом направлении, Л. де Бройль выдвинул кардинальное положение, что в области микропроцессов любой частицы соответствует волна определенной длины, а любой волне — определенная микрочастица. Такое их соотношение было названо суперпозицией волн и частиц.

По сути дела, речь шла о раскрытии единства противоположностей волны и частицы, непрерывности и прерывности, дискретности и континуальности в области физических микроявлений. И это единство раскрывалось одновременно и для света (фотонов) и для вещества (электронов) и др. Тем самым преодолевался прежний барьер, разделявший вещество и свет.

Здесь произошло то, о чем писал В. И. Ленин в «Философских тетрадях», цитируя «Науку логики» Г. Гегеля. По поводу континуальности и дискретности Г. Гегель предупреждал, и В. И. Ленин эго выписывает, «что ни одно из этих определений, взятое отдельно, не истинно, а истинно лишь их единство. Таково истинно диалектическое рассмотрение их, так же как истинный результат». Дважды отчеркнув эту запись, В. И. Ленин на полях написал: «Истинная диалектика».

Таким образом, мы видим, что за десять лет до создания квантовой механики В. И. Ленин в общем виде указал на то, каким образом должен сниматься в познании барьер, разделяющий разобщенные между собой противоположности.

Добавлю, что в 1965 году мне пришлось участвовать в научном симпозиуме, который был проведен ЮНЕСКО по случаю десятилетия со дня смерти А. Эйнштейна. На этом симпозиуме с воспоминаниями выступил Л. де Бройль. Он рассказал о своей переписке с А. Эйнштейном, о том, как тот ему настойчиво советовал найти путь к объединению волновых и дискретных концепций, сосуществовавших до тех пор раздельно в оптике. Л. де Бройль вспоминал, как он размышлял об этом, гуляя по берегу Женевского озера, и как он в конце концов пришел к выводу, что любая микрочастица как вещества, так и света представляет собою суперпозицию (в смысле единства) волны и корпускулы, прерывности и непрерывности. Но это и означало, что мысль Л. де Бройля нашла путь к преодолению существовавшего здесь барьера, разделявшего обе эти противоположности, равно как и противоположности вещества и света. Из этой основной исходной позиции Л. де Бройля выросла впоследствии вся квантовая механика.

Снятие барьера между пространством и временем. В течение долгого времени механицизм разрывал пространство и время между собой и отрывал их как внешние формы бытия от самой движущейся материи. В механике Ньютона они рассматриваются, по сути дела, как внешние формы бытия, иначе говоря, как своеобразные арены, на когорых происходят те или иные действия, обусловленные движением материи. Сами пространство и время остаются всегда постоянными, неизменными, они считаются независимыми друг от друга и от движущейся материи. В этом смысле И. Ньютон именует их абсолютными.

Такие взгляды просуществовали до начала XX века, когда А. Эйнштейн создал свою теорию относительности — ее специальный принцип.

Согласно этой теории при скоростях, близких к скорости света, обнаруживается взаимозависимость пространства и времени у движущегося тела. Дело происходит так, что пространство способно сокращаться, а время при этом удлиняется. Или же наоборот, время как бы сжимается, а пространство расширяется. Следовательно, обе формы бытия обнаруживают взаимозависимость и зависимость своей метрики от скорости движения тела, а это значит, что они способны переходить друг в друга при скоростях движения, близких к скорости света. Тем самым А. Эйнштейн преодолел их разобщенность как противоположных форм бытия и вместе с тем барьер, который отрывал их от движущейся материи.

Снятие барьера между массой и энергией. Подобно тому как механицизм в течение нескольких веков расчленял материю и движение и ставил между ними барьер в познании человека, так это же самое он делал в отношении массы и энергии как фундаментальных физических свойств движущейся материи. При этом масса рассматривалась как физическое выражение материи, а энергия — как физическое выражение движения.

Во второй половине XVIII века М. Ломоносов, а за ним А. Лавуазье открыли закон сохранения массы вещества при химических реакциях С этих пор открытый ими закон лег в основу всей химии.

В 40-х годах XVIII века был открыт закон сохранения и превращения энергии, который лег в основу физики и фактически всего естествознания.

Каждый jf3 этих законов охватывал свою особую область или ступень познания и разрабатывался в рамках своей особенности. Между обоими законами образовался своего рода барьер, который закреплял их разобщенность, хотя были уже известны многочисленные факты, говорившие об их взаимосвязанности. Так, еще в 70-х годах XIX века Д. Менделеев предвидел гипотетическую возможность изменения массы атомов в результате реакции образования более сложного и тяжелого элемента путем синтеза более простых и легких.

Как уже говорилось, в 1905 году А. Эйнштейн, разрабатывая специальный принцип теории относительности, вывел из него соотношение, гласившее, что общая энергия системы (Е) равна массе ее (т), помноженной на квадрат скорости света (с2) :Е=mc 2 .

Открытием этого нового фундаментального закона физики был впервые снят барьер, разделявший оба закона сохранения. Отныне оба они выступали в единстве: суммарная масса системы сохраняется столь же строго и постоянно, как суммарная энергия той же системы. Отсюда логически следовало признание неразрывности массы и энергии.

Указание на путь преодоления существовавшего тут ранее барьера мы видим в книге Ф. Энгельса «Анти-Дюринг». Он писал, что материя и движение неотделимы друг от друга и как пет движения без материи, так нет материи без движения. Это означало, что путь преодоления барьера между ними, возведенного механицизмом, лежит через раскрытие их единства как единства противоположностей. Отсюда прямо следовало, что тот же путь должен вести к раскрытию единства массы и энергии и тем самым к преодолению разделяющего их барьера.

Таким образом, и в данном случае задача решалась путем перехода от особенности в форме их разобщенных противоположностей ко всеобщности в форме их единства.

Пример ложного барьера и его ликвидация. Закон сохранения энергии заранее исключал возможность ее сотворения из ничего и ее уничтожения, то есть превращения в ничто. Между тем в истории науки имели место случаи, когда этот закон, казалось бы, не соблюдался и от него предлагалось отказаться. Делалось это так, что закону сохранения приписывалась тормозящая функция барьера, и требовалось отказаться от него якобы ради дальнейшего развития научной мысли. Следовательно, надо отказаться от допущения подобного барьера, ликвидировать его и признать возможность уничтожения энергии и сотворения ее пз ничего.

Приведем реальный случай, имевший месго в истории науки. В начале второй четверти XX века было обнаружено, что бета-радиоактивное ядро атома, испуская электроны (бета-частицы), теряет больше суммарной энергии, нежели уносят вылетающие из нее электроны. Куда же девается остальная часть теряемой ядром энергии?

Было предложено два обьяснения этого явления. Одно было самым простым. Оно состояло в том, что надо устранить барьер, объявляемый при этом ложным, который, дескать, заставлял признать сохранение энергии, ее несотворимость и неразрушимость. Другое объяснение, которое дал В. Паули, основывалось на безусловной правильности закона сохранения энергии и отвергало допущение существования какого-то ложного барьера.

Но если энергия строго сохраняется, то, значит, вторая половина энергии, теряемой ядром при бета-излучении, уносится какими-то другими, еще неизвестными нам микрочасгицами! Они должны быть очень маленькими, электронейтральными и не иметь массы покоя или же почти не иметь, так как иначе мы могли бы их обнаружить с помощью наших приборов. Таким частицам дали название «нейтрино», что значит маленькие нейтроны — нейтрончики.

Так показана несостоятельность попытки ввести в физику ложный барьер с последующим его преодолением, тогда как в действительности в данном пункте никакого барьера не было, а его фиктивное преодоление означало попросту отказ от закона сохранения энергии.

Итак, мы рассмотрели случаи, когда ступени особенного выступают в научном познании как разобщенные противоположности, а ступень всеобщего — как взаимосвязывание их в виде единства противоположностей. Во всех этих случаях барьер, закрепляющий собой разобщение противоположностей, преодолевался в результате раскрытия их внутреннего единства.

Комбинированный барьер и расчлененность процесса его преодоления. Обратим теперь внимайие на то, что в некоторых из приведенных выше случаев действовал один и тот же усложненный (многогранный) барьер, выступавший в различных условиях различными своими сторонами.

По сути дела, речь шла о познании реальных противоречий, которое совершается таким образом, что исходное противоречие, существующее в природе, предварительно расчленяется нами на его противоречивые части. Эти последние сначала познаются в их обособлении и даже противопоставлении одна другой, причем ППБ на этой стадии играет оградительную роль. Он призван удерживать нашу мысль на данной ступени ее развития до тех пор, пока она не будет максимально или оптимально исчерпана. Иначе говоря, до того момента, когда назреет возможность (и необходимость) перейти к изучению обеих противоречивых сторон действительности не изолированно друг от друга, а в их единстве, в их взаимодействии.

Здесь конкретизируется общее ленинское положение, с рассмотрения которого В. И. Ленин начинает изложение своего фрагмента «К вопросу о диалектике»: «Раздвоение единого и познание противоречивых частей его… есть суть (одна из «сущностей», одна из основных, если не основная, особенностей или черт диалектики…)». В другом месте «Философских тетрадей» у Ленина сказано: «В собственном смысле диалектика есть изучение противоречия в самой сущности предметов».

Выше мы рассмотрели то, каким образом возник барьер, разделивший такие противоположные стороны действительности, как вещество и свет, прерывность и непрерывность, масса и энергия и др. Их расчленение на обособленные, противопоставленные одна другой стороны достигалось именно тем, что между ними прочно на долгое время устанавливался ППБ, дававший возможность изучать каждую сторону противоречия саму по себе, вне ее нераздельной связи с другой стороной.

«Новейшая революция в естествознании», начавшаяся на самом рубеже XIX и XX веков, начала ломать сложившийся ранее познавательно-психологический барьер, разделявший учение о веществе и о свете. Однако в самом процессе его преодоления выявилось отсутствие его цельности, его монолитности. Обнаружилось, что он как бы составлен из нескольких различных компонентов, которые способны преодолеваться не все сразу одноактно, но последовательно, один за другим. Более того, после создания М. Планком теории квантов (1900 год) этот барьер как бы распался на две части. Одна из них, разделявшая структуру вещества (дискретную) и структуру света, оказалась теперь преодоленной, ибо вместе с квантами и фотонами в учение о свете вошла та же идея дискретности, которая характеризовала до тех пор только учение о веществе. Что же касается волновых представлений, то они не только по-прежнему как барьер отделяли учение о свете от учения о веществе, но и раскололи теперь само учение о свете на две обособленные области знания.

Что же касается свойств объекта (вещества и света), то здесь преодоление прежнего барьера оказалось наиболее ощутимым. Изучение движения электрона доказало, что его масса не является постоянной величиной, но изменяется со скоростью, а в общем случае у движущегося тела масса возрастает, так что при движении она оказывается больше, чем в случае состояния покоя. Измерение давления света, произведенное П. Лебедевым в 1900 году, доказало, что свет обладает массой, а потому и может оказывать давление. Позднее ученик П. Лебедева С. Вавилов показал, что в опытных результатах его учителя применительно к свету содержались уже соотношения, которые можно рассматривать как частный случай закона А. Эйнштейна: электромагнитная масса света равна энергии света, деленной на квадрат его скорости:

m c =E c /c 2.

Таким образом, свойство массы оказалось присуще не только веществу, но и свету. Для вещества и света в равной степени оказался общим закон Эйнштейна, выведенный из теории относительности: Е=mc 2 .

В результате этого был преодолен соответствующий участок первоначального комбинированного ППБ.

Что же касается взаимной превращаемости вещества и света, то здесь продолжал действовать прежний барьер.

Последние остатки первоначального комбинированного ППБ были преодолены прежде всего благодаря созданию квантовой механики, которая раскрыла противоречивую корпускулярно-волновую природу всех физических микрообъектов как у вещества, так и у света. Из позднейших открытий здесь особенна важно подчеркнуть изучение волновой природы потока электронов, их дифракции, в качестве специфически оптического явления. Техническое использование такого рода явлений позволило сконструировать электронный микроскоп, возможности которого значительно превышают разрешающую способность обычного микроскопа.

Любопытйо отметить, что в данной области существовал свой ППБ, который исходил из признания, что самыми короткими световыми волнами являются те, которые составляют видимый нашему глазу оптический спектр. В XIX веке не было абсолютно никаких оснований даже подозревать, что в природе могут существовать волны, длина которых будет меньше длины электромагнитных волн видимой части спектра. Поэтому в физике сложился прочный барьер. Его, в частности, сформулировал в «Анти-Дюринге» Ф. Энгельс, полностью опираясь на данные современной ему науки. Он писал по поводу атомов и молекул: «…если интерференция световых. волн не вымысел, то у нас нет абсолютно никакой надежды увидеть эти интересные вещи своими глазами».

Это потому так, что размеры самих атомов и молекул значительно меньше длины волн видимого спектра, так что эти волны как бы обтекают микрочастицы материи и не способны их фиксировать. С помощью же «электронных волн», длина которых значительно меньше размеров многих молекул, эти последние фиксируются в электронном микроскопе, и мы можем теперь их увидеть с его помощью.

Как уже говорилось выше, свойство массы оказалось общим для вещества и света: у вещества она выступила как масса покоя, а также масса движения, а у света — как электромагнитная масса. Та и другая в равной степени охватываются фундаментальным законом: Е=mc 2 .

Наконец, с открытием позитрона в 1938 году было обнаружено явление аннигиляции пар — позитрона и электрона — с их превращением в свет, в жесткое электромагнитное гамма-излучение и их обратное образование из гамма-фотонов при прохождении последних в поле тяжелого ядра (рождение пары). Тем самым была экспериментально доказана взаимная превращаемость вещества и света.

Обобщая весь этот длительный процесс последовательного преодоления первоначального ППБ, С. Вавилов сформулировал замечательную мысль, что вещество и свет суть два основных физических вида материи, из которых вещество характеризуется массой покоя, а свет — отсутствием массы покоя и наличием одной лишь массы движения.

Так завершился процесс воссоединения первоначально разобщенных противоположностей, причем преодоление исходного ППБ происходило ступенеобразно, что свидетельствовало о его комбинированном характере, о его многогранности, которая позволяла преодолевать одни его стороны независимо от других.

Заканчивая первую часть нашего исследования, мы полагаем, что доказали с полной убедительностью, во-первых, действительное существование познавательно-психологических барьеров в развитии науки, во-вторых, наличие у них основной оградительной функции (формы разврхтия) и, в-третьих, превращение этой их функции в тормозящую (оковы развития) после того, как исчерпается (максимально или оптимально) достигнутая ступень познания.

В порядке общего вывода отметим следующее исключительно важное обстоятельство: как мы видели, во всех без исключения случаях барьеры возникают самопроизвольно, автоматически, без какого-либо сознательного участия научной мысли, иначе говоря, бессознательно. Только после того, как ППБ, ставший уже тормозом (препятствием) для дальнейшего прогресса, преодолен, ученые осознают post factum, что он имел место, в чем бн состоял и как он был преодолен.

Однако его преодоление не происходит автоматически, а требует активного действия со стороны научной мысли, которая, не зная, в чем конкретно состоит препятствие на ее пути к истине, призвана найти способ преодолеть это неизвестное препятствие. Такая своеобразная и глубоко противоречивая ситуация и составляет логически и психологически предпосылку и основу всякого научного открытия. При этом незначительное по масштабу открьь тие может оказаться незафиксированным даже в сознании самого автора. Великие же открытия, как правило, оставляют след в памяти целых поколений ученых, свидетельствуя о том, как процесс научного движения из сферы бессознательного выходит в сферу сознательного ц выступает в виде научного открытия. Это последнее нередко образно именуется прозрением.

А теперь нам предстоит перейти ко второй части нашего исследования и рассмотреть познавательно-психологический механизм научного открытия, а также технического изобретения.