О творчестве в науке и технике

Кедров Бонифатий Михайлович

Часть III

К теории научно-технического творчества как познавательно-психологического процесса

 

 

 

ГЛАВА 9

Трехаспектная концепция Ф. Энгельса

Единство генетического и структурного подходов к научно-техническому творчеству. До сих пор, следуя за Ф. Энгельсом, мы прослеживали на материале истории естествознания и техники место трех категорий диалектической логики в ходе работы научно-исследовательской и изобретательской мысли человечества. Мы показали, что категории единичности, особенности и всеобщности действительно отражают последовательные ступени в процессе совершения научных открытий и при решении технических задач. Такую трактовку названных трех категорий мы называем генетической. К ним полностью применимо то, что В. И. Ленин сказал о категориях вообще; он определил их как ступеньки познания мира, как узловые пункты в сети явлений природы, помогающих познавать ее и овладевать ею.

Теперь отметим, что эти же самые три категории выражают собой три сосуществующие в единстве между собой стороны научно-технического творчества. Раскрытие и учет их во взаимодействии составляют сущность такого подхода к изучению творчества ученых и изобретателей, который мы называем структурным.

Сейчас нам важно подчеркнуть диалектическое единство обоих подходов — генетического и структурного, их полную общность и нераздельность. Объясняется это прежде всего тем, что в том и другом случае выступают одни и те же три категории диалектической логики, которые отражают собой одновременно и ступени познания, и стороны самого творческого процесса в науке и технике. В итоге на этой основе возникает трехаспектная концепция, объясняющая генезис движения научной мысли, то есть ее исторический и логический ход, и структуру взаимодействующих исторических, социальных и психологических факторов, обусловливающих этот ее ход.

Как мы уже видели, роль и значение категорий единичности, особенности и всеобщности впервые раскрыл Ф. Энгельс, поставив с головы на ноги логику Гегеля. Поэтому названную выше трехаспектную концепцию с полным правом вы называем энгельсовской. Так ее и следует именовать в нашей литературе, не допуская приписывания ее авторства какому-либо другому лицу.

Со своей стороны считаем нужным пояснить, что мы в наших работах старались развить и конкретизировать эту концепцию Ф. Энгельса применительно к области научно-технического творчества. Этой задаче были посвящены некоторые наши работы 30-х и 40-х годов (генетический разрез проблемы) и 50—70-х годов (структурный разрез проблемы). Было показано, что всеобщее выступает в научно-техническом творчестве как логический момент, особенное — как социально-историческир момент, а единичное — как психологический и биографический. Это соответствовало тому, что всеобщее (общечеловеческое) в развитии науки изучает логика (диалектическая), особенное — история и социология, а единичное — психология и та часть истории науки и техники, которая занимается биографиями ученых и изобретателей. Отсюда следует, что только в теснейшем взаимодействии всех трех названных моментов и должно изучаться научно-техническое творчество в целом. Ибо в нем представлены в нераздельном единстве все три его структурные стороны, выраженные категориями всеобщего, особенного и единичного.

Резюмируя свои исследования 50—60-х годов, я писал: «Рассматривая соотношения между 1) мировой наукой в ее историческом развитии, 2) наукой отдельных стран и 3) творческой деятельностью отдельных ученых, мы видим, что логическую основу этого соотношения составляют категории всеобщего, особенного и единичного. Мировая наука как всеобщее, общечеловеческое знание развивается в особых исторических условиях отдельных стран в определенные отрезки времени в результате деятельности определенных людей (ученых), в головах которых рождаются новые идеи и обобщения и руками которых устанавливаются новые факты. Поэтому история науки является живым воплощением диалектического единства всеобщего, особенного и единичного в пределах данной отрасли человеческой деятельности.

Итак, мы попытались ответить на вопрос о том, что такое марксистская история науки».

Трехаспектную концепцию Ф. Энгельса мы продолжали разрабатывать дальше. В связи со 100-летием периодического закона Менделеева в ряде статей мы поставили вопрос о «климате» науки, причем характеристику различных ее «климатов» мы по-прежнему связывали с соотношением категорий всеобщности, особенности и единичности. Итог этим исследованиям мы подвели путем анализа различных факторов, влияющих на развитие всей науки и на деятельность отдельных ученых. «Все эти факторы в своей совокупности и в своем внутреннем взаимодействии между собой составляют то, что можно было бы назвать «климатом» науки, поскольку в данном случае речь идет о тех условиях, в которых совершается ее развитие. В соответствии с масштабами различных исторических фактов мы можем увидеть в совокупном климате науки как бы три составляющие его климата: 1. Глобальный климат, охватывающий факторы, действующие в масштабах мировой, общечеловеческой науки. 2. Макроклимат, включающий в себя факторы несколько меньшего масштаба, касающиеся условий развития науки в определенной стране и в определенную эпоху. 3. Микроклимат, к которому относятся факторы, связанные с жизнью и творческой деятельностью отдельного ученого, представляющие интерес для историко-научного или психологического исследования».

Затем подробно разбирается каждый из трех названных «климатов» в отдельности и их взаимодействие.

В связи с разработкой общей проблемы о необходимости усиления взаимосвязи общественных, естественных и технических наук, поставленной последними съездами КПСС на очередь дня, мы специально рассмотрели в этом разрезе трехаспектную концепцию Ф. Энгельса и показали, что ее основу составляет единство и взаимодействие таких наук, как история, социология, естествознание и его история, логика и психология.

Однако, поскольку автор этих строк не является по профессии психологом, ему чрезвычайно важно было выяснить отношение к данной им трактовке трехаспектной концепции Ф. Энгельса психолога. С удовлетворением можно констатировать ее одобрение рядом специалистов, в том числе докторами психологических наук В. Давыдовым и М. Ярошевским и кандидатами психологических наук Д. Богоявленской и Н. Гиндилис.

Добавим, что стихийно к этой концепции Ф. Энгельса приближается и Д. Менделеев. В своих работах социально-экономического характера и посвященных вопросам культуры и народного образования он развивал мысль о трех взаимосвязанных факторах: 1) общечеловеческих, 2) национально-государственных и 3) личностных, касающихся отдельного человека как индивидуума. (Не имея возможности подробнее останавливаться на этом вопросе, отсылаем читателя к таким трудам Д. И. Менделеева, как «Толковый тариф», «К сознанию России», «Заветные мысли» и др.)

В свою очередь, мы можем сказать, что та же самая трехаспектная концепция Ф. Энгельса позволяет осветить и понять нераздельность трех сторон воззрений на науку передовых, прогрессивных ученых и историков науки. Эти три стороны суть: 1) принцип интернационализма, то есть международной солидарности всех истинных ученых, 2) принцип патриотизма — горячая преданность своему народу, правильная оценка его духовных достижений, в том числе в области научно-технического творчества и 3) личная беззаветная и бескорыстная преданность ученого своей науке, убежденность в истинности научного мировоззрения, способность жертвовать ради науки всем на свете. Как говорил И. Павлов, обращаясь к молодежи, что если бы была еще одна жизнь, то и ее он мог бы отдать науке целиком и без остатка.

Такова трехаспектная концепция Ф. Энгельса, рассмотренная в разрезе различных ее трактовок.

Концепция Ф. Энгельса как ключ к марксистскому анализу истории науки. Разберем с позиций концепции Ф. Энгельса развитие какой-либо отдельной науки. Причем учтем, что все, что говорилось выше о ППБ, охватывается этой концепцией. Как химику и историку химии, мне легче всего выбрать материал для анализа из области своей специальности.

Можно сказать, что до середины XVII века в химии сложился ППБ, признававший, что для идентификации двух веществ, то есть для установления их тождества, необходимо и достаточно, чтобы хотя бы одно свойство у них было общим, например, горючесть или летучесть. На этом основании отождествлялся спирт с ртутью, а масло с серой. Далее, считалось достаточным просто объявить одно вещество, образовавшееся из другого, составной частью этого другого, без попытки получить первое из второго путем синтеза. А так как пламя (огонь), дым и зола образуются при горении, то они объявлялись составными частями (tria prima) всех горючих тел. Все это были черты существовавшей в средние века алхимии и присущего ей ППБ.

В середине и начале второй половины XVII века в Англии сложились условия для быстрого развития естественных наук, в том числе химии. Буржуазная революция вызвала к активной деятельности целые слои ученых, способных удовлетворить запросы промышленности и ее назревшие потребности. Не случайно, а вполне закономерно, что именно в Англии и именно в эту революционную эпоху химия становится настоящей наукой.

В своей книге «Химик-скептик» (1661 год) Р. Бойль выдвинул принцип, заключавшийся в идее тождественности веществ со сходными сторонами: 1) два вещества могут считаться одинаковыми, если у них одинаковы все свойства; 2) составными частями должны считаться только такие вещества, из которых может быть обратно составлено исходное вещество. «Бойль делает из химии науку», — записал Ф. Энгельс.

Так выступили здесь моменты особенности и единичности: первый — как представляющий обстановку в Англии той эпохи, второй представлен личным творчеством Р. Бойля.

С этого момента начинается этап качественного анализа в развитии химии. Вместе с тем образуется новый барьер, состоящий в том, что он препятствует переходу к количественным методам химии — весовым и объемным. Эти методы химики объявляют чуждыми науке и пригодными лишь в лавках. «Что, разве мы не ученые, а простые торгаши, чтобы взвешивать товары?» — говорили они.

Однако в середине XVIII века в канун французской буржуазной революции все настойчивее промышленность требовала применения количественных методов, без которых невозможно было разобраться в процессах горения, окисления и восстановления металлов из руды, где участвует газовая фаза, а ее изучение невозможно лишь путем одного качественного анализа. Практические потребности общества с приближением, а затем свершением в конце XVIII века буржуазной революции во Франции обусловили широкое развитие весовой и пневматической (газовой) химии, причем ее лидером стал А. Лавуазье, творец кислородной теории.

Качественный анализ ушел со сцены химии, и его заменил количественный, в первую очередь весовой анализ. Преодоление прежнего ППБ сопровождалось образованием нового, согласно которому качественный подход объявлялся несостоятельным, собственно говоря, не строго научным.

Здесь мы снова видим момент особенности и единичности в истории химии: центром ее развития становится и на этот раз та страна, причем в ту эпоху, где и когда вспыхивает социальная революция, а конкретным носителем химического прогресса оказывается А. Лавуазье. Ф. Энгельс отмечает, что если Р. Бойль начинает превращение химии в науку, то А. Лавуазье спустя более 100 лет завершает этот процесс своими открытиями. Его творчество можно понять лишь в свете того особенного, что связано с историей всей Франции той эпохи.

Но уже в самом конце XVIII века, а тем более в первые годы XIX века, стала возникать необходимость возврата к учету качественной стороны химических веществ и химических методов. Это было важно для разработки химико-технологической рецептуры и способов контроля в химическом производстве, в частности, красочном и текстильном (в Манчестере). Именно в этом городе работал как ученый основатель химической атомистики Дж. Дальтон. Хотя лично он и не был связан с промышленными предприятиями, однако уловил выдвигаемый ими «социальный заказ» отыскать принципиальную основу для решения задач, порождаемых практикой. Но для этого нужно было преодолеть тот ППБ, который оставил после себя А. Лавуазье. В чем же он состоял?

Результаты чисто количественного, весового анализа приводятся обычно в процентных выражениях. Но в этом случае невозможно обнаружить, что, скажем, в углекислом газе кислорода ровно вдвое больше, нежели в угарном газе, или что в сернистом ангидриде его в полтора раза меньше, чем в серном. Этому препятствует барьер Лавуазье. Чтобы выявить подобные отношения, необходимо от обычных количественных (безликих, бескачественных) единиц — граммов, литров и процентов — перейти к новым чисто химическим (качественным) единицам (скажем, паям или эквивалентам). Но именно такому переходу и мешает ППБ Лавуазье. Дж. Дальтон же, преодолев его, сумел открыть закон простых кратных отношений и построить на его основе химическую атомистику.

Ф. Энгельс писал «о том, как старые удобные приспособленные к прежней обычной практике методы переносятся в другие отрасли знания, где оказываются тормозом: в химии — процентное вычисление состава тел, которое являлось самым подходящим методом для того, чтобы замаскировать — и которое действительно достаточно долго маскировало — закон постоянства состава и кратных отношений у соединений».

В химической атомистике слились воедино оба ранее разработанные порознь подхода к химическому составу веществ — качественный и количественный, образуя то, что именуют мерой. «В мере соединены абстрактно выраженные качество и количество», — выписывает В. И. Ленин из гегелевской «Науки логики». Само понятие атома представляет единство качественной (мельчайшая частица элемента) и количественной (атомный вес) определенности вещества.

Так Дж. Дальтон преодолел прежний ППБ. Но на его месте он же воздвиг новый, просуществовавший до Д. Менделеева, о чем уже говорилось в главе 1. Сопоставляя оба последних этапа химии, Ф. Энгельс писал: «Новая эпоха начинается в химии с атомистики (следовательно, не Лавуазье, а Дальтон — отец современной химии)».

Заметим, что и в данном случае на развитие химии оказали влияние особенность и единичность в том их значении, которое было установлено выше. Особенность представлена обстановкой Англии после промышленной революции, когда бурно стала развиваться крупная капиталистическая промышленность, а единичное — творческим складом самого Дж. Дальтона.

Перенесемся теперь в третью страну, в Россию 60-х годов XIX века. Особенность здесь выступила как обстановка пореформенной России, где активно вышло на историческую сцену передовое русское общество. Это обстоятельство вызвало к жизни и молодые научные силы, дремавшие до тех пор. Не случайно эти годы в русской истории именуют своеобразной «эпохой возрождения», которая, по словам Ф. Энгельса, «нуждалась в титанах и которая породила титанов по силе мысли, страсти и характеру, по многосторонности и учености».

К. Тимирязев в работе «Пробуждение естествознания в третьей четверти века» так охарактеризовал эту особенную обстановку: «Не пробудись наше общество вообще к новой кипучей деятельности, может быть, Менделеев и Ценковский скоротали бы век учителями в Симферополе и Ярославле… а сапер Сеченов рыл бы траншей по всем правилам своего искусства».

На такой питательной социально-творческой почве вырос и расцвел гений Д. Менделеева (единичное). Если Дж. Дальтон своей атомистикой положил начало химии XIX века, современной Ф. Энгельсу, то Д. Менделеев своим периодическим законом положил начало химии новой исторической эпохи, современной нам.

До сих пор мы рассматривали историю химии более чем за 200 лет в разрезе категорий особенного и единичного. Но не менее существенную роль играла и играет в ней категория всеобщего, характеризующая логику развития мировой химии. Если ее развитие очистить, освободить мысленно от всякого рода случайностей и зигзагов научной мысли, то мы увидим в ее истории строгую логическую последовательность.

Вначале, когда еще не установилось понятие химического элемента, предметом химии (ее алхимической стадии) служило нечто весьма неопределенное в виде неясно понимаемых свойств вещества («первоначал» алхимиков).

Р. Бойль закладывает этап качественных исследований, и это явилось началом химии уже как науки. Затем следует этап количественных исследований, проводимых в одностороннем порядке. Его завершает А. Лавуазье.

Эпоху химической атомистики открывает Дж. Дальтон, и он не только соединяет в мере вещества качество и количество, познанные ранее, но вместе с тем начинает раскрывать сущность химических явлений в виде закона кратных отношений и представления химической реакции как соединения или разъединения атомов. Это, так сказать, сущность первого порядка.

После установления меры, выраженной через атомный вес элемента, логически выступает задача связать все такие однопорядковые меры между собою в виде «узловой линии отношения меры». Такую именно задачу поставил и решил Д. Менделеев своей периодической системой элементов. Этим он прямо продолжил основную идею атомистики Дж. Дальтона. Он говорил, что «объяснить и выразить периодический закон — значит объяснить и выразить причину закона кратных отношений…».

И он пояснял: «Связав понятие о химических элементах новыми узами с Дальтоновым учением о кратном или атомном составе тел, периодический закон открыл в естественной философии новую область для мышления».

Такая новая область была представлена более глубоким проникновением в сущность химических явлений. Можно сказать, что если мера перешла в сущность первого порядка (в законы химической атомистики), то раскрытие узловой линии отношений меры означало проникновение в их сущность второго порядка.

Так функционировал момент всеобщего в истории химии. Здесь прекрасно конкретизировались общие положения диалектической логики, разработанные В. И. Лениным. Характеризуя общий ход всего человеческого познания (всей науки вообще), он подчеркивал, что этот ход состоит в том, что познание в непосредственных явлениях открывает их сущность (закон причины, тождества, различия и т. д.). «Сначала мелькают впечатления, затем выделяется нечто, — потом развиваются понятия качествй # (определение вещи или явления) и количества». Тут В. И. Ленин делает примечание, что по Л. Фейербаху качество и ощущение — это одно и то же. «Самым первым и самым первоначальным является ощущение, а в нем неизбежно и качество».

Итак, качество есть первое, и его раскрытие подготавливает возможность перейти к количеству, ибо количество есть не что иное, как отвлечение от качества, познанного перед тем. А это означает, что для перехода к количественным исследованиям необходимо предварительно провести качественные или по крайней мере в общих чертах знать качественную структуру изучаемого предмета. Знаменитый химик Ю. Либих предупреждал, что прежде, чем взвешивать, надо знать, что взвешиваешь. К этому вопросу мы вернемся потом, когда будем рассматривать ленинские взгляды на статистику.

Продолжая анализ общего хода познания, В. И. Ленин отмечает, что после раскрытия качества и количества изучение и размышления направляют мысль к познанию тождества — различия — основы — сущности по отношению к явлению — причинности и г. д.

Так функционирует момент всеобщего в истории химии наряду и во взаимосвязи с моментами особенного и единичного. Каков же механизм единства и взаимодействия всех этих трех моментов, выраженных тремя категориями диалектической логики?

Взаимодействие трех моментов (категорий) как ядро трехаспектной концепции Ф. Энгельса. Переходим теперь к самому главному вопросу в характеристике энгельсовской концепции. Единичное, представленное творчеством отдельного ученого или изобретателя, функционирует не само по себе, изолированно, а лишь на общем фоне или в атмосфере всеобщего и особенного.

Всеобщее выступает при этом как запросы самой науки, которая в своем развитии подошла к постановке и необходимости решения очередной задачи, вытекающей из общего логического хода движения познавательной мысли. Так, в начале второй половины XVI века назрела необходимость возникновения химии как науки путем ее перехода со ступени алхимии и ятрохимии (когда выделялось только «нечто») к выделению качественной определенности вещества. Такую задачу, назревшую в рамках химии всего мира, но назревшую исторически и логически (всеобщее), и должен был уловить определенный ученый (единичное). Как правило, подобные задачи улавливаются так или иначе не одним лицом, а многими одновременно; ибо эти задачи, можно сказать, «витают в воздухе» данной эпохи и влияют на многие умы.

Нам понятно огромное принципиальное значение слов К. Маркса, сказанных по поводу критической истории технологии, которая показала бы, как мало то или иное техническое изобретение XIX века принадлежит отдельному лицу. Это касается и всей науки и техники вообще.

Их анализ должен исходить из указания К. Маркса о том, что всякий научный труд, всякое открытие, всякое изобретение является всеобщим трудом: он обусловливается частью кооперацией современников, частью использованием труда предшественников.

Так взаимодействует всеобщее с единичным. Но в это их взаимодействие вклинивается особенное, ибо именно оно имеет дело с конкретными причинами, обусловленными временем, местом и обстоятельствами, в силу которых данная научная или техническая проблема встала именно в этой стране, в эту эпоху и в такой именно форме. Если логически развитие науки подошло к тому, чтобы подняться на более высокую ступень (всеобщее), но соответствующие социально-экономические факторы, стимулирующие научный прогресс, отсутствуют (особенное), то реальный переход науки на более высокую ступень задерживается иногда очень надолго. Так это имело место в течение тысячелетнего средневековья, задержавшего переход естествознания с натурфилософской ступени на аналитическую вплоть до эпохи Возрождения. Ф. Энгельс писал: «Но история имеет свой собственный ход, и сколь бы диалектически этот ход ни совершался в конечном счете, все же диалектике нередко приходится довольно долго дожидаться истории».

Вот почему для того чтобы ученый или изобретатель (единичное) мог правильно и полно уловить запросы времени, как бы «витающие в воздухе», он должен уловить одновременно и те запросы, которые выдвигает развитие всей его науки (всеобщее), и те, которые выдвигает его страна с ее нуждами и потребностями, его эпоха (нередко революционная) и вся окружающая его общественная и Духовная жизнь.

* * *

Теперь мы можем сформулировать, каким же образом «работает» энгельсовская концепция, построенная, на учете единства и взаимопроникновения трех категорий: всеобщности, особенности и единичности. Иначе говоря, как именно осуществляется это их единство и взаимодействие. И мы приходим к следующему выводу: ученый или изобретатель (единичное) должен уметь улавливать, схватывать и связывать между собой то, что несут с собой всеобщее и особенное, «витающие в воздухе» и не зафиксированные на бумаге в виде плановых заданий. Их улавливание может осуществиться только интуитивно. Ученый или изобретатель, обладающий способностью интуитивно мыслить, должен уметь делать соответствующие выводы для себя из своей творческой деятельности, из всего прочитанного им (научно-технической литературы), виденного (устройства и конструкции, явления природы и т. д.) и слышанного (во время бесед и дискуссий, симпозиумов и конгрессов).

Этим мы закончим характеристику энгельсовской трехаспектной концепции, которая с полным правом может рассматриваться как основа познавательно-психологической теории научно-технического творчества.

 

ГЛАВА 10

Метод исследования научно-технического творчества

Индукция или анализ? При проведении нашего исследования естественно возникал вопрос: каким научным методом нам следует воспользоваться?

Со времени возникновения экспериментального естествознания господствующее положение занял метод индукции, то есть движение от частного к общему путем «наведения», о чем уже говорилось выше. Он предполагает собирание достаточно большого количества однотипных фактов, желательно оптимального или даже максимального их числа, и последующую их обработку. Эта последняя предполагает выявление некоторых общих сторон у собранных фактов с целью выявления тех или иных закономерностей у изучаемых явлений. Так, в случае изучения научно-технического творчества можно было бы таким индуктивным путем выяснить, например, кто — мужчины или женщины — в большинстве случаев делает открытия или изобретения и в каком возрасте они чаще делаются (причем в зависимости от области науки или техники).

Так мы установили бы, наверное, что математические открытия чаще совершаются в раннем возрасте, иногда юношеском или даже отроческом, а, скажем, философские — в более зрелом, если не в преклонном. И это понятно, ведь философия предполагает «любовь к мудрости», а мудрость приходит с возрастом.

Точно так же мы могли бы выяснить, в какое время суток делаются открытия, и, вероятно, установили бы, что чаще по утрам, во всяком случае, после длительного отдыха — недаром говорится, что утро вечера мудренее.

Вероятно, мы смогли бы выявить то время года, которое в большей степени способствует их совершению, и, возможно, убедились бы, что это, во всяком случае, не лето, которое располагает к прогулкам и отдыху, а не к напряженной умственной работе. Ведь недаром же А. С. Пушкин считал осень лучшим периодом для своего поэтического творчества.

Идя таким же путем, мы могли бы выяснить, учитывая большинство наблюдений, не влияет ли отрицательно или положительно на протекание творческого процесса дождливая погода. И т. д. и т. п.

Однако поставим вопрос: помогли ли бы таким индуктивным методом обработанные факты и наблюдения раскрыть сущность процессов научно-технического творчества, понять их закономерность, их познавательно-психологическую природу?

Мы твердо убеждены в обратном. Нет, индуктивный путь здесь не мог бы дать чего-либо ценного.

На принципиальную недостаточность одного только индуктивного метода указывал еще Ф. Энгельс, опираясь на опыт термодинамики: «Термодинамика дает убедительный пример того, насколько мало обоснована претензия индукции быть единственной или хотя бы преобладающей формой научных открытий. Паровая машина явилась убедительнейшим доказательством того, что из теплоты можно получить механическое движение. 100 000 паровых машин доказывали это не более убедительно, чем одна машина, они только все более и более заставляли физиков заняться объяснением этого. Сади Карно первый серьезно взялся за это, но не путем индукции. Он изучил паровую машину, проанализировал ее, нашел, что в ней основной процесс не выступает в чистом виде, а заслонен всякого рода побочными процессами, устранил эти безразличные для главного процесса побочные обстоятельства и сконструировал идеальную паровую машину (или газовую машину), которую, правда, также нельзя осуществить, как нельзя, например, осуществить геометрическую линию или геометрическую плоскости, но которая оказывает, по-своему, такие же услуги, как эти математические абстракции…»

В самом деле, задача перед исследователем была поставлена так, что ему предстояло найти законы превращения тепла в механическое движение (то, что позднее получило название второго начала термодинамики), а для этого надо было глубоко и всесторонне проанализировать процессы, совершающиеся в паровой машине. Никакое поверхностное описание работы сколь угодно большого числа ее экземпляров не могло помочь в решении этой задачи. Тут нужен был анализ, а не индукция.

Точно такое же положение мы встречаем при изучении научно-технического творчества. Всесторонний, исчерпывающий анализ хотя бы одного крупного открытия или изобретения только и может привести к желанной цели, чего не может дать поверхностное описание в целях их индуктивной обработки сколь угодно большого числа крупных и малых открытий и изобретений.

Собственно говоря, для установления факта появления барьера (ППБ) и его последующего преодоления нам было бы достаточно тщательно проведенного анализа такого великого открытия, как открытие периодического закона Д. Менделеевым. Но если бы мы ограничились только этим, то вряд ли могли бы убедить в общности сделанных нами выводов о функционировании ППБ и о способах их преодоления.

Возможно последуют критические замечания, что нельзя-де, мол, такие ответственные выводы делать при рассмотрении только одного, хотя и великого открытия. Ведь когда С. Карно путем анализа одной паровой машины вывел соответствующий закон термодинамики, то другие экземпляры машины не могли прибавить к этому ничего нового. А потому обобщение здесь напрашивалось и оправдывалось само собой.

Напротив, каждое научное открытие, как и каждое техническое изобретение, носит ярко выраженный индивидуальный, то есть неповторимый характер. Это, несомненно, не различные варианты одного и того же открытия или изобретения, подобно тому, как мы видим на примере паровой машины. Особенно это бросается в глаза в случае предельного своеобразия подсказок-трамплинов!

И тем не менее их сущность, как мы показали в части I, касающейся ППБ, и в части II, касающейся трамплинов, является общей, хотя она и скрывается в оболочке самых различных своих проявлений.

Это обстоятельство и заставило пас проанализировать не одно только менделеевское открытие, а достаточно большое их число, а также несколько изобретений (это — для изучения трамплинов) с тем, чтобы показать, что каждое из них может быть подвергнуто такому же анализу, как и менделеевское открытие или кекулевское нахождение формулы бензола.

Таким образом, мы однозначно отвечаем, что, только, пользуясь методом анализа, но отнюдь не индукции, можно решать такого рода задачи.

В связи с этим нам хочется остановиться на методе З. Фрейда, который он применил в своем психоанализе.

Критики его учения нередко видят один из коренных пороков психоанализа в том, что здесь анализируются только отдельные события, а не обрабатывается индуктивным или статистическим путем достаточно большое число однотипных событий для получения и обоснования соответствующих выводов. Из сказанного вытекает, что сам по себе такой метод не является порочным при изучении познавательно-психологических процессов, а как раз напротив, наиболее надежным. Однако все дело в том, как и к чему, к какому конкретному материалу такой аналитический метод применяется. И в атом отношении позиция З. Фрейда является не просто уязвимой, а, на наш взгляд, принципиально несостоятельной, ненаучной. К этому вопросу мы сейчас и обратимся.

Надежность и доброкачественность анализируемого материала. Анализируя научно-техническое творчество в аспекте предложенных нами представлений о барьерах (ППБ) и подсказках-трамплинах, мы стремились опираться на твердо установленные факты и прежде всего свидетельства самих ученых и изобретателей, но отнюдь не на какое-то произвольное, удобное нам толкование этих фактов, а тем более не на их примысливание. Только в некоторых отдельных случаях мы позволяли себе выдвижение гипотез, оговаривая каждый раз необязательность их принятия. Весь собранный и проанализированный нами фактический материал убедительно свидетельствует, в частности, о том, что никакого «божественного прозрения», «наития свыше» и других подобных «чудес» в момент открытия или изобретения не происходит. Совершается лишь вполне естественный, хотя, возможно, необъяснимый для самого ученого или изобретателя, выход его творческой мысли из сферы бессознательного в сферу сознательного. Кстати сказать, подобное религиозно-теологическое толкование творческой работы человеческой мысли отвергает и З. Фрейд. Но недостатком всего его учения мы считаем полнейшую недостоверность и недоброкачественность того материала, который он подвергает анализу и выдает за достоверно установленные факты. В действительности же это отнюдь не факты в научном смысле, а пустые вымыслы и догадки, в лучшем случае же произвольные толкования случайных обрывков рассказов о сновидениях и т. п. вещах.

Разумеется, можно понять фрейдистов, которые не обладают возможностями собрать весь необходимый для теоретического построения материал и волей-неволей вынуждены ограничиваться случайно оброненными фразами или обрывками мысли. Это обстоятельство открывает’ большой простор для заполнения огромных «белых пятен» путем придумывания всякого рода объяснений и толкований. При этом бросается в глаза то, что врачебная практика З. Фрейда как психиатра, лечившего различные неврозы, навела, естественно, его мысль на ложный путь: переносить на психику здоровых людей то, что он обнаруживал у психически больных, не вполне нормальных. Эта особенность и сказалась в стремлении З. Фрейда приписывать специфически сексуальную направленность самым обычным вещам и явлениям, с которыми сталкивается человек в своей обыденной жизни.

Мы не можем здесь даже кратко разобрать фрейдизм. Отметим только, что за отсутствием строго научного метода для установления, доказательства и проверки фактов З. Фрейд, на наш взгляд, не смог правильно реализовать метод глубокого и всестороннего анализа отдельных явлений, о которых говорилось выше. Тем не менее важно подчеркнуть, что его попытка проникнуть в совершенно темную до него область бессознательного сама по себе, независимо от ее успешности или неуспешности, заслуживает пристального внимания. Может быть, именно эта попытка и вызвала такой интерес к фрейдизму у некоторых психологов и психиатров.

Кульминационный пункт научно-технического творчества. Таким пунктом, несомненно, является выход движущейся творческой мысли, ученого или изобретателя из сферы бессознательного в сферу сознательного. А этот выход и есть научное открытие или техническое изобретение.

Представим себе условно две смежные области деятельности человеческой психики: бессознательную и сознательную. Между ними проходит граница, которая может быть резкой, а может быть и размытой в виде некоторой переходной полосы.

Творческая мысль так или иначе вынуждена пересечь эту границу в том или другом ее месте, что зависит от многих обстоятельств, на которых мы сейчас останавливаться не будем. Нас интересует следующее: все без исключения, что мы можем узнать о процессе движения творческой мысли в сфере бессознательного и о самой этой сфере бессознательного, мы узнаем только после того, как творческая мысль выйдет в сферу сознательного. Но ничего, кроме того, что мы при этом узнаем, о сфере бессознательного мы все же не знаем.

Оговоримся, что под бессознательным мы понимаем, как и обычно, ту область нашей психической деятельности, которая не контролируется нашим сознанием, нашим мышлением, а под сознательной — ту, которая контролируется ими.

Следовательно, то, что предшествует открытию или изобретению и происходит в сфере бессознательного, мы обнаруживаем и осмысливаем лишь после того, как оно (через открытие или изобретение) попадает в сферу сознательного.

Между тем З. Фрейд поступает как раз наоборот: он пытается ввести в сферу бессознательного то, с чем мы сталкиваемся в сфере сознательного, или то, что является отголосками этого сознательного. А так как проверить и доказать фактами подобное вторжение в темную сферу бессознательного невозможно, то он ограничивается словесными декларациями и бездоказательными утверждениями, что отнюдь не придает достоверности его построениям.

Таким образом, изложенное нами понимание бессознательного в его соотношении с сознательным (в области научно-технического творчества) мы считаем гораздо более научным, нежели фрейдовское.

* * *

Итак, мы попытались рассмотреть специфический метод изучения научно-технического творчества, который направлен на раскрытие сущности соответствующих познавательно-психологических процессов.

Само собой разумеется, что, как и всякий научный метод, он опирается на метод материалистической диалектики, в том числе на принцип историзма, позволяющий брать изучаемый предмет, явление в его историческом движении, в прохождении определенных ступеней и фаз, что находит яркое выражение в трехаспектной концепции Ф. Энгельса.

 

ГЛАВА 11

Движение творческой мысли

Информация Д. Менделеева о сделанном им открытии. О том, как Д. Менделеев открыл периодический закон и какой ППБ он при этом преодолел, мы уже подробно говорили в главе 1. Сейчас же нас интересует то, какова была его первая информация о сделанном открытии.

Вполне естественно, что Д. Менделеев понимал, что для современных ему химиков не представляет особого интереса узнать, каким путем при написании своих «Основ химии» он пришел к периодическому закону. Это могло представить интерес только для него лично. Химиков же в первую очередь могло и должно было заинтересовать само содержание сделанного открытия, его сущность. Именно этому и посвятил он в основном свою первую статью «Соотношение свойств с атомным весом элементов», написанную сейчас же после 17 февраля (1 марта) 1869 года.

Мы уже говорили, что реально периодичность элементов (всеобщее) Д. Менделеев открыл путем сопоставления и сближения между собой различных естественных групп и семейств (то есть через особенное), причем по ходу открытия он менял атомные веса у некоторых элементов (бериллия) и предсказывал некоторые отсутствующие еще элементы (будущий галлий и др.). Это значит, что, не открыв еще до конца всеобщее, он уже из первых его проявлений находил обратный путь от всеобщего к особенному я единичному.

Какова же была первая его информация о сделанном открытии? В заключение названной выше статьи в первом же выводе из нее ученый писал: «Элементы, расположенные по величине их атомного веса, представляют явственную периодичность свойств».

В соответствии с этим общим выводом рассказывается о ходе открытия таким образом, что будто бы сначала все элементы были расположены в один общий ряд по возрастанию их атомных весов, а затем была обнаружена повторяемость их свойств через определенные периоды. Он так и писал, рассказывая, как старался основать систему элементов на величине их атомного веса: «Первая проба, сделанная в этом отношении, была следующая: я отобрал тела с наименьшим атомным весом и расположил их по порядку величины их атомного веса. При этом оказалось, что существует как бы период свойств простых тел, и даже по атомности элементы следуют друг за другом в порядке арифметической последовательности величины их цая».

Вслед за тем приведены два первых коротких периода периодической системы (Li — F и Na — Cl), поставленные первый над вторым, и начало первого длинного периода (от К до V). Далее Д. Менделеев сообщил, что в разряде элементов, имеющих пай более 100, мы встречаем совершенно аналогичный непрерывный ряд (Aq — J).

Таким образом, мы видим, что в качестве «первой пробы», то есть начального пункта открытия, Д. Менделеев называет не сопоставление групп (то есть особенное), а образование непрерывного ряда всех элементов, расположенных по возрастанию их атомного веса; иначе говоря, он показывает, как периодичность (всеобщее) может быть выведена непосредственно из сопоставления отдельных элементов (единичного).

Кстати говоря, подобная информация породила среди некоторых химиков мысль о том, что так именно и был открыт периодический закон. Более того, я вспоминаю, что в одном киносценарии, посвященном творчеству Д. Менделеева, картина рисовалась такой, будто он ползает по полу, располагая в один длинный ряд шестьдесят с лишним карточек с написанными на них символами элементов.

Однако тщательное изучение черновых записей, сдеданных им во время открытия, и в особенности дешифровка хода разложенного им «химического пасьянса» убедительно доказали, что действительный ход открытия закона шел через сопоставление групп элементов, то есть через особенное ко всеобщему. Зачем же, спрашивается, автору таблицы потребовалось представить дело иначе?

Объяснение напрашивается само собой. Д. Менделеев, сделав открытие, стремился убедить химиков в его истинности, а для этого он, естественно, избрал самый короткий, легко проверяемый всеми логический путь: располагая элементы в один непрерывный ряд по величине атомного веса, каждый на собственном опыте сразу же может убедиться в периодической повторяемости их свойств.

То есть, это был умный дидактический прием хорошего педагога, каким и проявлял себя Д. Менделеев.

На этом примере мы видим, как различаются между собою два пути научной мысли: первый — ее движения к открытию, к познанию истины, второй — путь информации ученого о найденной истине, то есть путь доведения информации об этой мысли до сознания других людей, путь восприятия ими этой мысли.

Сопоставляя оба пути, мы можем на примере Д. Менделеева сказать, что второй путь может оказаться обратным первому. Так, мы видели, что у ученого первый путь завершился обнаружением периодичности элементов и сопоставлением их общего непрерывного ряда. А второй путь начался с составления такого именно ряда выявления в нем периодичности свойств элементов.

Теперь для того, чтобы убедиться в общности подобного соотношения между двумя путями движения научной мысли — к открытию истины и информации о ней, — рассмотрим подробно историю возникновения химической атомистики в работах Дж. Дальтона.

Ход открытия химической атомистики Дж. Дальтоном. Разберем последовательно работу творческой мысли Д. Дальтона. Он жил в эпоху начавшейся промышленной революции, когда паровая машина совершала свое торжественное шествие по странам Западной Европы и в особенности Англии; причем жил и творил он в Манчестере — центре английской текстильной промышленности.

Паровая машина и механизм ее действия не могли не привлечь внимания молодого ученого-самоучки. Его остро интересовал вопрос о том, как и почему работает в ней водяной пар. Но было еще и другое обстоятельство, которое привлекло его внимание к водяным парам: в ранней молодости он начал заниматься метеорологическими наблюдениями и тщательно вел записи о них вплоть до последнего дня своей жизни. А в этих наблюдениях большое место занимали показатели влажности атмосферы, наличия в ней водяных паров.

Этот вопрос занимал не только Дж. Дальтона, но и французских химиков из школы Лавуазье — Бертолле. Французские химики выдвинули чисто химическое объяснение процессов испарения и насыщения водяных паров. Они считали, что подобно тому, как вода растворяет сахар или соль, причем до определенного предела (насыщения), так и атмосферный воздух «растворяет», то есть втягивает в себя водяные пары и тоже до момента насыщения ими. Значит, заключили они, между воздухом и водяными парами существует определенное притяжение (взаимодействие), подобное химическому.

На этом основании они утверждали, что когда происходит смешение (диффузия) разных газов, то это объясняется их взаимным притяжением друг к другу.

Дж. Дальтон категорически отверг подобную концепцию. Представлению о химическом притяжении газов и паров он противопоставил механическую концепцию отталкивания частиц каждого газа друг от друга. В этом отношении он шел и от идей Ньютона, высказанных в «Математических началах натуральной философии» при объяснении И. Ньютоном закона Бойля об обратной зависимости между объемом и давлением воздуха.

Положению о том, будто разные газы тяготеют друг к другу Дж. Дальтон противопоставил положение, что они независимы между собою. Но почему же в таком случае один газ проникает в другой подобно тому, как частицы воды (ее пары) проникают в воздушную атмосферу? Дж. Дальтон отвечал: да потому, что частицы воды отталкиваются друг от друга, а воздух не играет здесь никакой роли, он только мешает свободному проникновению частиц воды в пространство, которое он занимает. И Дж. Дальтон экспериментально доказывал это: ведь если воздух действительно играет роль растворителя по отношению к воде, то чем больше мы его возьмем, тем больше воды он растворит, и наоборот. Между тем, если мы возьмем его вдвое меньше, то при испарении воды предел насыщения паров (при данной температуре и в данном объеме) будет тот же, как и при атмосферном давлении. Более того, это будет наблюдаться даже в том случае, когда воздух будет полностью удален, то есть испарение воды будет происходить в пустоту.

Так Дж. Дальтон, применяя приемы индукции — сопутствующих изменений и отсутствия, — экспериментально доказал, что воздух не есть причина испарения воды и вообще, что мнимое взаимное притяжение газов не есть причина их смешения (диффузии).

Но что же в таком случае является причиной названных физических (а не химических!) явлений? Ведь если бы такой причиной было взаимное отталкивание частиц материи вообще, то частицы воды отталкивались бы не только одна от другой, но и от частиц воздуха, а это препятствовало бы испарению воды. То же самое наблюдалось бы и при смешении разных газов. Значит, заключил Дж. Дальтон, необходимо допустить, что существуют специфические отталкивания — например, у частиц воды — только друг от друга. Следовательно, надо допустить столько различных видов отталкивания, сколько существует на свете качественно различных веществ. К такому итогу Дж. Дальтон пришел в 1801 году. Его противники во Франции сразу же обнаружили эту слабую сторону его объяснений и обрушились на нее с острой критикой. Дж. Дальтон, конечно, понял уязвимость своего объяснения. Он стал искать способ заменить множество выдуманных им отталкивательных сил, которых все равно никто не признает, только одной, но которую признали бы все. И он вскоре нашел: это была теплота.

Но спрашивается: каким же образом она действует, если благодаря ей частицы воды отталкиваются только друг от друга, но не от частиц воздуха? И тут на ум ему пришло сравнение: оно сработало, очевидно, как подсказка-трамплин, — все дело в размерах самих частиц.

Подобно тому как мелкие дробинки проваливаются в промежутки между крупными ядрами, так и мелкие частицы, отталкиваясь одна от другой, «проваливаются» в промежутки между крупными частицами.

Такое чисто механическое представление в глазах Дж. Дальтона позволяло преодолеть ППБ, согласно которому явления испарения и диффузии приписывались химическому фактору. Но Дж. Дальтону как ученому было мало высказанной им гипотезы: он понимал, что ее надо доказать экспериментально. Но как это сделать?

Тут мысль Дж. Дальтона совершила в течение двух лет длинный и весьма запутанный путь, а главное, фантастически причудливый. Прежде всего следовало установить, что надо понимать под размером газовых или паровых частиц. Дж. Дальтон, как и его предшественник И. Ньютон, был атомистом. Но атомы он понимал своеобразно, а именно как окруженные (каждый) тепловой атмосферой (оболочкой из вещества теплорода). Именно этими своими атмосферами (оболочками) они и отталкиваются друг от друга. А как же вычислить размеры этих оболочек?

Так как они вплотную примыкают друг к другу, заполняя весь объем, занятый данным газом или паром, то, очевидно, надо разделить этот объем на общее число таких частиц, присутствующих в нем. Все это было хорошо, но каким образом можно сосчитать число газовых или паровых частиц, находящихся в данном объеме?

Эту головоломную задачу Дж. Дальтон решил следующим оригинальным образом: надо общий вес газа (пара) в данном объеме разделить на вес отдельной частицы, что и даст нам желаемое знание о числе присутствующих здесь частиц. А так как абсолютного значения веса отдельной частицы Дж. Дальтон не знал и знать, конечно, не мог, то он пришел к гениальной мысли определить относительный вес частицы, то есть вес заключенного в ней атома.

Так было рождено само понятие атомного веса как относительного свойства, и вся задача свелась к тому, чтобы установить значение этого свойства у отдельных элементов. А для этого нужно было принять вес атома одного какого-нибудь элемента за единицу. За таковую Дж. Дальтон принял вес атома наиболее легкого элемента — водорода. Заметим, кстати, что он не делал различия между атомом и молекулой.

Теперь возникла еще одна трудность: как определить состав сложных частиц, состоящих из двух, а может быть, и большего числа элементов. Дж. Дальтон нашел выход из положения: если известно только одно такое вещество, то ему надо приписывать простейший состав: один атом одного элемента соединяется с одним же атомом другого. Поэтому состав частицы воды им мыслился так: один атом водорода соединен с одним атомом кислорода. Отсюда он вычислил (причем получил, конечно, совершенно фиктивные числа), что объем частицы водорода якобы во много раз превышает объем, скажем, частицы азота, так что частицы азота, выходит, могут «проваливаться» между частицами водорода, как дробинки между ядрами. Так Дж. Дальтон счел доказанным свое объяснение явлений диффузии (смешения газов) и испарения, ради чего и были предприняты поиски, завершившиеся открытием атомного веса элементов.

Но сейчас же стало очевидным, что самостоятельное, решающее значение приобрело именно это открытие, а вовсе не то объяснение, ради которого велись поиски. Мысль Дж. Дальтона продолжала работать уже в новом направлении, в сторону создания химической атомистики.

Его внимание привлек тот факт, что существуют соединения двух элементов в различных пропорциях, например, углерод и кислород соединяются, образуя угарный газ или углекислый газ, азот и кислород дают по меньшей мере пять различных соединений. Как атомист, Дж. Дальтон считал атомы неделимыми, поэтому соединяться они должны только целыми порциями: как один с одним или один с двумя и т. д., но не как один атом с половиной другого атома или какой-то другой его частью. Если это наблюдается у атомов, то и в крупных масштабах такие же соотношения должны наблюдаться и в макроскопических дозах веществ, с которыми имеет дело химик в лаборатории. Так из области физики Дж. Дальтон переходил в область химии.

Мы уже говорили выше, что процентное выражение химического состава соединений препятствовало выявлению здесь кратных отношений. Приведем пример: в угарном газе 57,1 процента кислорода и 42,9 процента углерода. А для углекислого газа имеем 27,3 процента углерода и 72,7 процента кислорода. Из сопоставления этих четырех чисел никакой закономерности вывести нельзя. Необходимо отказаться от безликого процентного выражения химического состава веществ и перейти к другим, чисто химическим, паевым (эквивалентным). Они состоят в том, что ставится вопрос: если в угарном газе на 42,9 весовой части (но не процентов!) углерода приходится 57,1 весовой части кислорода, то на то же количество углерода — 42,9 весовой части — в углекислом газе сколько придется весовых частей кислорода? Легко вычислить, что его придется 114,2 весовой части, то есть ровно вдвое больше, чем в угарном газе.

Точно такие же целочисленные (кратные) отношения между составными частями Дж. Дальтон обнаружил и в других случаях парных соединений. В итоге он открыл важнейший закон химии — закон простых кратных отношений, составивший эмпирическую основу всей химической атомистики. При этом он опирался на опытные аналитические данные, полученные не им самим, а другими химиками. Результаты сделанного открытия он записал в своем рабочем дневнике в сентябре 1803 года.

Важно отметить, что Дж. Дальтон, будучи атомистом, наперед руководствовался атомистическим учением с его представлением о неделимом атоме, который вступает в соединение как цельная нерасчленяемая частица. Именно отсюда и проистекало как следствие первоначальное предположение о простоте и кратности количественных отношений у макроскопических доз соединенных веществ, которое затем подтвердилось данными количественного анализа.

Не удовлетворяясь данными других химиков, он взялся сам проверить экспериментально найденный им закон. В августе 1804 года он взял два углеводородных газа — болотный (метан) и маслородный (этилен), проанализировал их состав и обнаружил, что в первом на одно и то же количество углерода приходится вдвое больше водорода, чем во втором. С этого момента Дж. Дальтон окончательно превратился из физика в химика.

Первая информация Дж. Дальтона о сделанном открытии. В том же августе 1804 года навестить Дж. Дальтона в Манчестер приехал автор известного тогда учебника химии Т. Томсон. Встреча их была весьма кратковременной, и за считанные часы Дж. Дальтону пришлось информировать Т. Томсона о создании химической атомистики.

Здесь мы видим ту же картину, какую уже отмечали в случае, когда Д. Менделеев сообщал о своем открытии. А именно: информация начиналась с того, чем завершилось открытие, а о самом процессе открытия и обо всем, что ему предшествовало и сопутствовало, не было сказано ни слова. Дж. Дальтон учитывал привычный для химиков ход исследований: сначала проводятся опыты — химические анализы различных веществ, подобные тому, какие в тот момент проводил он сам, анализируя состав двух углеводородных газов. Такие опыты проводятся без предубеждения, то есть без стремления получить заранее ожидаемые результаты.

Затем, получив опытные данные, химик обнаруживает в них указание на какую-то закономерность и эмпирически выявляет ее. Так, видимо, Дж. Дальтон и информировал Т. Томсона, продемонстрировав ему, что анализ углеводородов показывает кратность отношений элементов в их составе. Наконец, подводя Т. Томсона к результатам своего открытия, он, по-видимому, показал, как можно объяснить эмпирически открытый закон кратных отношений с помощью атомных представлений и как отсюда можно вывести понятие атомного веса.

Это означает, что, учитывая типичный для химиков того времени (в том числе и для Т. Томсона) ход мышления, Дж. Дальтон построил свою информацию по следующей общедоступной схеме: сначала — непосредственные данные химического анализа, затем — выявление эмпирической закономерности и, наконец, — ее теоретическое объяснение.

Короче говоря, сначала эмпирия, а затем теория как ее объяснение и обобщение. Такой путь, как правильно рассчитал Дж. Дальтон, должен был быть самым понятным химикам, доступным их пониманию.

О том, что именно так была построена первая информация Дж. Дальтона, мы можем судить по публикациям Т. Томсона о состоявшейся его беседе с Дж. Дальтоном. Во всяком случае, именно так Т. Томсон воспринял рассказ собеседника о том, как была открыта химическая атомистика. И хотя потом сам же Дж. Дальтон в лекции, прочитанной в 1810 году, подробно рассказал о том, как было сделано им данное открытие, а именно, что теория не последовала за эмпирией, а предшествовала ей и указывала ей путь, тем не менее все химики как один восприняли версию Т. Томсона. Нюансы допускались лишь в том отношении, анализ каких именно соединений привел Дж. Дальтона к открытию закона кратных отношений и его последующему объяснению с помощью атомистики. И так продолжалось на протяжении всего XIX столетия вплоть до самого его конца, когда Э. Роско и А. Гарден опубликовали в книге «Новый взгляд на происхождение атомной теории» (по дневникам и записям Дальтона) истину о том, как было сделано это открытие.

Это пример того, как в сознании ученых прочно застревает та версия, которая соответствует стилю и методу их собственного мышления (от эмпирии к теории), именно потому, что эта версия кажется им наиболее правдоподобной и естественной, тогда как истинная история открытия (от теории к эмпирии) кажется искусственной и надуманной.

* * *

Вопрос о том, каким путем совершается открытие и как затем строится информация о нем, имеет большое значение для разработки общей теории научно-технического творчества. Можно сказать, что в ходе открытия психологически оправданно и объяснимо включаются различные моменты, помогающие работе изобретательской или научной мысли, но не сохраняющиеся в итоге работы, а потому отбрасываемые в ходе информации об этом ее итоге. Здесь мы имеем дело со своего рода «строительными лесами», без которых было бы невозможно возводить здание, но которые в ходе постройки становятся излишними и даже мешающими его правильному использованию.

Освобождение же выстроенного здания от психологических «лесов» (что мы видим уже при первой информации об открытии) осуществляется с помощью логики. Именно логика показывает (в отличие от психологии) не то, как работала мысль ученого или изобретателя в поисках истины, двигаясь логически наиболее коротким путем. Это мы видим, в частности, в том случае, когда работу интуиции (после ее свершения), то есть получение непосредственного умозаключения, мы начинаем логически обрабатывать, выявляя в ней скрытые звенья последовательного хода рассуждений, которые творческая мысль смогла «проскочить» с помощью интуиции.

Таким образом, и здесь мы видим своеобразное соотношение между логикой и психологией при рассмотрении истории научных открытий и технических изобретений.

Во всяком случае, вся эта проблема имеет исключительно важное значение для разработки общей теории научно-технического творчества. Тут никак нельзя упускать из виду ни логической, ни психологической стороны вопроса, надо брать их в единстве и взаимодействии.

 

ГЛАВА 12

Анализ творческой деятельности

Принцип дополнительности в его познавательно-психологической трактовке. В нашей совместной работе с Н. Гиндилис был рассмотрен вопрос о том, можно ли перенести из области квантовой физики в область психологии боровский принцип дополнительности? Такая идея возникла у Н. Гиндилис, а затем мы подробно разработали ее применительно к психологии научного творчества. Мы убедились, что принцип дополнительности, понимаемый в весьма широком смысле, действительно имеет место в названной области психологической науки, причем здесь он выступает двояко: во-первых, как требование преодоления барьера, разобщающего различные стороны единого научного исследования, которые должны быть связаны между собой; во-вторых, как требование обеспечения преемственной связи между различными поколениями ученых.

Начнем с первого вопроса. Возникшая еще в XV веке дифференциация наук разобщила естествоиспытателей, специалистов в различных областях естествознания, в частности, химиков и физиков. К 80-м годам XIX века дело дошло до того, что они часто вообще не понимали ДРУГ друга.

Между тем потребность в создании физической химии вполне назрела, ибо в поле зрения ученых все чаще попадали такие явления природы, которые требовали одновременно применения и физики и химии. По этому поводу Ф. Энгельс писал в 1882 году: «При изложении действия электрической искры на процессе химического разложения и новообразования Видеман заявляет, что это касается скорее химии. А химики в этом же случае заявляют, что это касается уже более физики. Таким образом, и те и другие заявляют о своей некомпетентности в месте соприкосновения науки о молекулах и науки об атомах, между тем как именно здесь надо ожидать наибольших результатов».

Но еще за 20 с лишним лет до этого перед учеными вставали такие задачи, решение которых требовало одновременно знания и химии и физики. Естественно, возникала задача: как быть в таких случаях. Разумеется, было бы очень кстати, если бы появился такой ученый, который соединил бы в себе и физика и химика, то есть был бы одинаково хорошо подготовлен как теоретик и экспериментатор и там и там. К сожалению, такие ученые широкого профиля могли появляться в XVII и XVIII веках и даже в начале XIX века, но во второй половине XIX века вследствие далеко продвинувшейся дифференциации наук вряд ли могли. Поэтому для развития науки оставался только один путь: соединить в научном творчестве физика и химика для обоюдного решения одной и той же физико-химической задачи. В итоге два ученых, работающих рука об руку, воссоздавали бы цельность, восполняя ее до необходимой полноты. Этим преодолевался бы барьер, возводивший непереходимую преграду между физикой и химией. В этом и заключается принцип дополнительности в науке.

Рассмотрим несколько случаев. В 50-х годах XIX века возникла необходимость создания спектрального анализа. В отдельности такую задачу не мог бы решить ни один химик, ни один физик. Она требовала соединенных усилий их. В содружестве физик Кирхгоф и химик Бунзен успешно ее решили, осуществив на деле принцип дополнительности: в 1860 году они создали спектральный анализ.

Таких примеров история науки знает немало. В конце XIX века П. Кюри (физик) и М. Склодовская (химик), объединившись, открыли новый элемент радий. Его открытие как по методу исследования (с помощью электроскопа), так и по характеру изучаемого материала — химического вещества (урановая руда) — предполагали именно взаимодополнение физики и химии.

Вскоре после открытия радия физик Э. Резерфорд и химик Ф. Содди в 1902–1903 годах создали первую теорию радиоактивности как спонтанного (самопроизвольного) распада атомов и превращения элементов. Тут вновь выступила необходимость дополнить одну науку другой в целях решения общей задачи.

Нечто сходное в других условиях проявилось в творчестве Ирэн Кюри и Фредерика Жолио.

Во всех этих случаях дополнительность выступала как соединение в едином русле естественнонаучных исследований представителей двух специальностей, которые нуждались в поддержке друг друга.

Теперь мы можем на приведенных примерах рассмотреть, какие другие условия должны быть соблюдены, чтобы принцип дополнительности мог бы привести к желаемым результатам.

Первым и главным таким условием является идейная и гражданственная общность жизненных интересов обоих ученых, дополняющих друг друга. Речь идет об общности их мировоззрения, их беззаветной преданности делу науки, их бескорыстии, ибо если хотя бы один из них будет гнаться за славой и богатством, то это разрушит их творческий союз. Это условие выполнялось в приведенных выше случаях.

Далее, чтобы такой союз мог быть прочным и длительным, необходимо соблюдение еще одного условия: психологические портреты обоих ученых должны быть совместимыми, не должны создавать почвы для личных конфликтов между ними, а напротив, обусловливать их взаимное доверие и тесную дружбу. В случае, если дополняющие друг друга по специальности ученые — разного пола, то их дополнительность находит наиболее яркое выражение в супружестве, как это мы видим у двух поколений семейства Кюри.

Напротив, наличие таких черт, как преувеличение своих собственных достоинств, выпячивание своей личности, приписывание себе заслуг другого, рано или поздно должно привести к разрушению возникшего было научного содружества. Так это было в случае с Содди.

Дополнительность ученых по специальности может носить и несколько иной характер: она может проявляться в том, что у одного ученого развита способность выдвигать новые идеи при недостатке умения обрабатывать их литературно, а у другого — как раз наоборот: умение прекрасно оформлять идеи своего напарника. Так выступал принцип дополнительности в содружестве двух физиков-теоретиков: Л Ландау и Е. Лифшица. О них шутили, что в их книгах нет ни одной мысли, принадлежащей Лифшицу, и ни одной строчки — Ландау. О их совместной книге Е. Лифшиц сказал: «Перо было мое, мысли — Ландау».

Второй тип проявления принципа дополнительности предполагает взаимодействие между учителем и учеником, зачинателем научного направления и его продолжателем, а шире — между двумя поколениями ученых — старшим и младшим.

Если в предыдущем случае разделяющий барьер преодолевался путем объединения представителей разных специальностей или «жанров» научной работы, то в данном случае барьер, разделяющий поколения, преодолевается созданием научных школ. Здесь в неменьшей степени действуют те условия, о которых сказано выше и соблюдение которых обеспечивает успешное осуществление принципа дополнительности.

Когда речь идет об отношениях между учителем и учеником, руководителем и молодым исполнителем работы, исключительно важное значение приобретает вопрос о том, не присваивает ли себе представитель старшего поколения труд своего младшего сотрудника. Такое явление, типичное для капиталистического общества, к сожалению, имеет место в отдельных случаях и у нас.

Между тем нужно ясно понимать, что молодой начинающий ученый, встретивший е самого же начала на своем творческом пути подобное отношение к себе, легко может выработать в своем характере склонность в будущем так же относиться к труду своих будущих молодых помощников.

Напротив, особенно ценны образцы бережного, заботливого, а главное, бескорыстного и честного отношения маститых ученых к своим молодым помощникам. В этом случае барьер между поколениями может считаться преодоленным.

В конце XIX века выдающийся химик, близкий друг К. Маркса и Ф. Энгельса К. Шорлеммер, член Лондонского Королевского общества (что равносильно Академии наук), пригласил из Германии в Манчестер молодого студента в качестве своего помощника. Он оплатил его проезд и пребывание в Англии, дал тему и создал все условия для ее выполнения, а когда работа была закончена, то опубликовал ее за подписью студента. Это вызвало недоумение у английской профессуры, по мнению которой К. Шорлеммер купил за свои деньги всю эту работу, а потому имел полное право опубликовать ее только за одной своей подписью.

Буржуазные ученые нередко критерий купли и продажи и денежных расчетов привыкли вводить и в область науки, что вполне соответствует общим воззрениям общества при капитализме. Между тем истинные ученые никогда не допустят того, чтобы использовать денежный критерий или служебную зависимость подчиненных им сотрудников в качестве возможности присваивать себе чужой научный труд.

Образцом бережного, заботливого, поистине отеческого отношения к молодому поколению будущих ученых может служить известное письмо академика И. Павлова к молодежи, написанное им незадолго до смерти. Это письмо — образец общения великого ученого не только со своими молодыми учениками и последователями, но и со всеми, кто хочет посвятить свою жизнь науке. И в сознании молодежи будут всегда звучать слова их учителя о том, что наука требует от ученого всей жизни.

Замечательным образцом педагога и исследователя был Д. Менделеев. Все свои работы он создавал личным трудом и каждый раз обязательно оговаривал, если кто-нибудь ему помогал в этом. Его «Основы химии» могут служить примером того, как он воспитывал в своих слушателях любовь и преданность науке, бескорыстное стремление к познанию истины.

К великому сожалению, среди современной ему русской молодежи, не говоря уже об иностранной, было мало таких будущих ученых, способных продолжить разработку основного открытия Д. Менделеева и всего его учения о химических элементах. Отрицательную роль при этом играло и то обстоятельство, что многие химики старой школы долгое время не принимали периодического закона, не понимая его глубокого смысла, его сущности. Еще 10 лет спустя после сделанного открытия (в 1879 году) Дмитрий Иванович признавался, что ему самому следовало бы теперь дополнить то, чего еще не хватает для более полной разработки периодического закона: «Но сейчас я поглощен другими интересами и должен предоставить заботу о развитии этого вопроса будущему и новым силам, которые, надеюсь, постараются дать первым обильным плодам периодического закона новое философское обобщение, оперев его на устои, подкрепленные новыми опытами…»

В тот момент, когда писались эти слова, ученый не знал, что где-то есть «новые силы», способные осуществить его надежды, а собственных учеников, могущих сделать это, у него не было. Но вскоре счастье ему улыбнулось: молодой, начинающий чешский химик Б. Браунер (ему было тогда 25 лет) обратился к Д. Менделееву с письмом, в котором рассказал о своей борьбе за периодический закон. Дмитрий Иванович в лице Б. Браунера угадал как раз те «новые силы», от которых он так страстно ожидал дальнейшей разработки периодического закона. С этого момента между Д. Менделеевым и Б. Браунером, которые еще лично не встречались друг с другом, заочно установились отношения учителя и ученика, зачинателя и основоположника нового научного направления и его верного последователя. В дальнейшем их личная дружба и тесное научное сотрудничество продолжались и крепли.

Таков яркий пример проявления принципа дополнительности в истории науки, когда преемственная связь соединяет между собой представителей двух научных поколений — старшего и молодого, учителя с учеником, причем личное знакомство между ними может не предшествовать, а последовать за установлением их научного содружества.

Научные дискуссии как способ преодоления ППБ. В предыдущих главах, разбирая примеры, взятые из истории науки, мы уже несколько раз касались роли научных споров и дискуссий и вообще научной критики в деле преодоления устаревших или ошибочно возведенных барьеров в области науки. Теперь же специально остановимся на этом вопросе.

Отметим, что если при рассмотрении принципа дополнительности мы имели в виду совпадение взглядов ученых, объединение усилий специалистов при разработке общей проблемы, то теперь мы обратимся к процессам диаметрально противоположного характера — к столкновениям различных, а тем более противоречивых воззрений, к борьбе научных мнений, к взаимной критике ученых, к дискуссиям между противниками.

Хорошо извёстно, что научные дискуссии и споры способствуют нахождению истины, иначе говоря, способствуют преодолению барьеров, существовавших на пути к ней. Объясняется это тем, что сторонник определенных взглядов, в том числе и таких, которые вносят нечто новое в науку, не всегда сам замечает слабые и даже явно ошибочные стороны своих взглядов, а потому и не может вовремя уточнить и развить то, что он отстаивает, освободив это от слабостей и недостатков.

Наоборот, противник его взглядов, отвергая их, ищет прежде всего слабые места в критикуемых им воззрениях и находит их гораздо быстрее и убедительнее, чем защитник этих взглядов. И это обстоятельство становится своеобразной подсказкой-трамплином для работы мысли защитника критикуемых воззрений. Увидя, что его взгляды содержат явно слабые, ошибочные пункты, на которые нападает его противник, он начинает искать способы их преодоления. Тем самым он продвигается вперед к истине и преодолевает до конца прежний, стоявший на пути к ней барьер.

Такую картину мы видели выше, анализируя историю зарождения химической атомистики, когда Дж. Дальтон подвергся критике со стороны своих французских противников, обнаруживших в его первоначальных работах серьезный недостаток — придумывание множества мнимых отталкивательных сил. В результате прошедшей дискуссии он нашел путь не только к объяснению диффузии газов, но и к химической атомистике.

Правильно говорится поэтому, что в споре рождается истина, ибо научный спор при всей его остроте и бескомпромиссности позволяет преодолеть достаточно полно ППБ, закрывавшие до тех пор дорогу к истине.

Говорят также о достижении «золотой середины». При этом некоторые понимают под этой «серединой» примирение противоположных точек зрения, беспринципное соглашение между ними, эклектический компромисс. Такое ее понимание глубоко противоречит всему творческому духу науки. Наоборот, если под выражением «золотая середина» понимать обоюдное преодоление барьеров односторонности, которыми характеризовалась каждая из противоположных сторон, то мы получим частный случай приведенного положения: «В споре рождается истина».

В самом деле, если между собою борются сторонники двух противоположных, но в равной степени односторонних теорий, то их борьба разрешается не путем договоренности взять кусочки от той и другой теории, а путем преодоления барьера односторонности одновременно у обеих теорий.

В итоге на место двух прежних односторонних концепций приходит принципиально новая, основанная на единстве противоположностей. Так, диалектический материализм Маркса и Энгельса родился не из внешнего сочетания диалектики Гегеля и материализма Фейербаха, а из коренной критической переработки обоих этих учений и создания существенно нового учения, в котором диалектика и материализм, метод и теория познания были с самого начала слиты в одно цельное, последовательное учение.

Но кроме указанного случая, когда истина раскрывается путем преодоления барьера односторонности двух взаимно противоположных учений, мы нередко имеем дело с тем, что борющимися сторонами в дискуссии являются, с одной стороны, истинное, правильное учение, а с другой — ложное, ошибочное. В таком случае дискуссия разрешается в конце концов утверждением в науке первого и полным отвержением второго.

Разберем теперь несколько примеров из истории науки. В самом начале XIX века в химии вспыхнул горячий спор между сторонниками признания постоянства, определенности состава химических соединений и их противниками, защитниками иДеи переменности, неопределенности их состава.

Первую точку зрения защищал Ж. Пруст, вторую — К. Бертолле, который в подтверждение своих взглядов ссылался на сплавы, растворы и стекла. Спор продолжался семь лет и завершился победой Ж. Пруста. Объяснялось это тем, что химия вступила на путь химической атомистики, а эта последняя, в свою очередь, опиралась на закон определенности и постоянства химического состава веществ.

Победа Ж. Пруста и утверждение химической атомистики Дальтона привели к образованию своеобразного ППБ, защитная функция которого состояла в том, чтобы ограждать от расшатывания устои атомного учения в химии. И эту функцию названный ППБ четко выполнял в течение всего XIX века. Лишь в XX веке, как мы уже говорили выше, наука пришла к раскрытию единства противоположностей.

Иначе протекало развитие органической химии в середине XIX века. Здесь сложились и сосуществовали две противоположные теории: теория радикалов, которая учитывала устойчивые межатомные связи в органической молекуле, и теория типов, которая, напротив, учитывала изменчивые связи атомов в молекуле. Обе теории содержали в себе частицу истины и в то же время в силу своей односторонности включали в себя моменты, не соответствовавшие действительности.

Между сторонниками этих противоположных теорий разгорелась острая продолжительная дискуссия, которая завершилась тем, что А. Бутлеров освободил каждую теорию от ее метафизической односторонности и создал принципиально новую теорию химического строения органических веществ. В его теории оба противоположных момента — устойчивости и изменчивости межатомных связей — выступили не в противопоставлении друг другу, а в их единстве и взаимообусловленности.

Так здесь научная дискуссия завершилась устранением барьеров односторонности, мешавших познанию истины.

Мы говорили сейчас о химии. Коснемся теперь для полноты картины физики и биологии, причем в обоих случаях будем говорить о дискуссиях и спорах между сторонниками подлинной науки и обскурантами, которые боролись против передовой науки и защищали ложные, антинаучные взгляды.

Это мы видим на примере того, как встретили механисты, защитники старого, отжившего механического мировоззрения, теорию относительности А. Эйнштейна. Они объявили ее насквозь идеалистической и отвергли полностью. В этом духе в номерах 1–2 только что созданного журнала «Под знаменем марксизма» выступил профессор А. Тимирязев. В следующем номере того же журнала № 3 за 1922 год, В. И. Ленин отверг тимирязевский обскурантизм. Он отнес А. Эйнштейна к «большинству великих преобразователей естествознания, начиная с конца XIX века». Он взял под защиту достижения «новейшей революции в естествознании», которые использовались в реакционных целях модными философскими направлениями на Западе, «начиная хотя бы с тех, которые были связаны с открытием радия, и кончая теми, которые теперь стремятся уцепиться за Эйнштейна».

В дискуссию вокруг теории относительности включились и философы-махисты и некоторые физики — сторонники А. Тимирязева. Она не утихала в течение более 30 лет и окончилась в нашей стране полным поражением «опровергателей» теории относительности примерно в середине 50-х годов… Истина одержала победу над заблуждением, и барьер отсталости, который возводили механисты на пути признания этой теории, был, наконец, преодолен.

Нечто сходное имело место и в области биологии. Здесь обскуранты объявили идеализмом и метафизикой все достижения научной генетики, в том числе (и прежде всего) признание вещественного, материального носителя наследственности как общего свойства всего живого. Отвергались представления о хромосомах, о генах, о генетических и прочих функциях нуклеиновых кислот (ДНК и РНК). Сама же научная, физико-химическая генетика объявлялась чуть ли не «служанкой идеологии империализма».

Некоторые обскуранты доходили до того, что объявляли самую идею о генах и нуклеиновых кислотах возвращением к давно отвергнутым наукой взглядам о существовании флогистона и теплорода. К таким гонителям подлинной науки вполне применима ленинская характеристика, данная взглядам и высказываниям махиста Петцольда. «Совершенно все равно, — писал этот гонитель передовой науки, — держится ли мир на сказочном слоне или на молекулах и атомах, если мыслить их себе в гносеологическом отношении реальным…» По этому поводу В. И. Ленин с возмущением заметил: «Ведь это все — сплошной обскурантизм, самая отъявленная реакционность. Считать атомы, молекулы, электроны и т. д. приблизительно верным отражением в нашей голове объективно реального движения материи это все равно, что верить в слона, который держит на себе мир! Понятно, что за подобного обскуранта, наряженного в шутовской костюм модного позитивиста, ухватились обеими руками имманенты».

Совершенно аналогично этому мы вправе назвать сплошным обскурантизмом заявление, что признание реальных вещественных носителей наследственности равносильно будто бы признанию давно отброшенных мифических флогистона и теплорода.

Борьба в защиту передовой научной генетики против ее «опровергателей» и гонителей завершилась в нашей стране после ноября 1964 года полным преодолением ППБ, который возводили обскуранты на пути к познанию истины. В дальнейшем по расчищенной дороге развернулось победное шествие советской биологии.

Так по-разному протекали научные споры и дискуссии в естествознании, и так по-разному они завершались с достижением каждый раз одного и того же главного результата — открытия и утверждения истин в науке. В одних случаях, как мы видели, научная дискуссия приводила к выработке нового ППБ с оградительными функциями в отношении новых учений; в других — к преодолению барьеров односторонности и удержанию достигнутых ранее порознь относительных истин, органически вливающихся в новое цельное учение: наконец, в-третьих — к преодолению и разрушению барьеров обскурантизма и победе истинного учения. Во всех этих случаях научные споры и дискуссии способствовали устранению барьеров, воздвигавшихся на пути к познанию истины, и тем самым способствовали общему научному прогрессу.

Типология ученых с позиций трехаспектной концепции. В работах ряда историков науки, а также психологов, занимающихся изучением научного творчества, было предложено немало классификаций типов ученых. Так, широко известна типология, предложенная В. Оствальдом, с разделением ученых на «классиков» и «романтиков». Интересна также выдвинутая М. Фарадеем типология научного творчества.

Мы не будем здесь излагать эти различные классификации и их познавательно-психологическое обоснование, поскольку это увело бы нас далеко в сторону от обсуждаемой нами проблемы. Отметим только, что соответствующие черты творчества ученого, как и психологии самого ученого, не могут быть рассмотрены изолированно от той ступени познания, к которой относятся труды этого ученого.

Как мы видели, в общем случае процесс научного познания в той или иной его области проходит последовательно три главные ступени: единичность, особенность и всеобщность.

На ступени единичности, когда устанавливаются новые факты, в творчестве ученого исключительно важна такая черта, как наблюдательность. В самом деле, обнаружить и констатировать новизну вновь открытого факта нельзя, если ученый не обладает тонкой наблюдательностью. Он может не суметь объяснить новый факт, но он должен, во всяком случае, заметить его, уловить его новизну, сравнивая его с другими, ранее уже известными фактами.

Так, Э. Резерфорд, бомбардируя атомы альфа-частицами, наблюдал, как эти частицы бвободно проходят почти через весь объем бомбардируемого ими атома и лишь около центра атома их путь (трэк) несколько искривляется. Получается так, словно на пролетающие сквозь атом альфа-частицы влияет отталкивающим образом нечто находящееся в центре атома. Это было фактом пока еще необъяснимым. Наконец, в отдельных случаях наблюдалась такая странная картина: попадая в самый центр атома, альфа-частица прерывала свое движение через атом и словно «отскакивала» назад, наткнувшись на что-то твердое. По свидетельству П. Капицы, Э. Резерфорд, его учитель, сказал: «Это невозможно, как невозможно представить себе, что пуля, вылетевшая из револьвера, отскакивает от листа бумаги».

Следующая ступень — особенность. Она предполагает не просто наблюдательность, а способность группировать, систематизировать наблюденные факты, связывать их между собою, а значит, мыслить, причем мыслить индуктивно, формально-логически.

Так, Р. Бойль, установив ряд внешне независимых между собою фактов, когда он менял то объем, то давление воздуха, заметил, что все эти факты между собою связаны некоторым особым соотношением: чем больший объем занимает данная порция воздуха, тем меньше ее давление и наоборот. Значит, заключил он, между объемом и давлением воздуха существует отношение обратной пропорциональности. И это была ступень к раскрытию между ними причинных отношений.

И пока, по сути дела, мы не выходим за пределы эмпирического мышления, которое как раз и соответствует ступени особенности.

Наконец, на ступени всеобщности обнаруживаются такие черты ученого, как способность к абстрактному, теоретическому мышлению, к теоретическим обобщениям, раскрывающим сущность изучаемого и наблюдаемого явления.

Так, в те времена, когда Э. Резерфорд проводил упомянутые выше эксперименты, в физике господствовали взгляды его учителя Дж. Дж. Томсона: атом представляет собою желеобразный кусочек материи, заряженный положительно, в который вкраплены электроны. Поэтому такой мощный «снаряд», как альфа-частица, должен пробивать его насквозь во всех направлениях. Вот почему результат проведенного эксперимента вызвал поначалу такое недоумение у Э. Резерфорда.

Но он был теоретически мыслящим ученым, а потому сделал правильный вывод из наблюденного им факта: взгляды Дж. Дж. Томсона неверны, атом имеет в своем центре очень маленькое твердое ядро, ударяясь о которое альфа-частица отскакивает.

Можно сказать, что ученому, выступающему на ступени всеобщности, должны быть присущи не только специфические черты, проявляющиеся на этой ступени, но и те, которые проявляются на более низких ступенях, начиная от наблюдательности, способности связывать факты и т. д. Однако на высшей ступени могут находиться и такие ученые, которые сами ставить и проводить эксперименты не могут, а потому их наблюдательность направлена не на установление новых опытных данных (фактов), а на выявление теоретическим путем новых связей и отношений у изучаемых предметов и способов проникновения в их сущность.

Этим мы закончим рассмотрение различных сторон или элементов будущей теории научно-технического творчества, которые нами еще не соединены здесь в единое, цельное. Стороны эти таковы: 1) трехаспектная концепция Ф. Энгельса, 2) характеристика познавательно-психологического метода исследования научно-технического творчества, 3) общая схема функционирования ППБ и преодолевающего его трамплина и 4) анализ деятельности ученого в личностном плане.

В дальнейшем мы продолжим наше исследование, перенеся его в область некоторых бытовых, простейших проявлений человеческого духа, наблюдаемых у всех людей, в том числе и в детском возрасте. При этом мы будем руководствоваться положением о единстве высокого и малого, которое, в частности, было выражено Д. Менделеевым, сопоставившим открытие закона природы с поисками грибов (смотри «Введение»).

Говоря конкретнее, нам предстоит рассмотреть модели научно-технического творчества, построенные на основе своеобразных, в том числе и искусственно придуманных ППБ и трамплинов для их преодоления, не относящихся к области научно-технического творчества, а касающихся совершенно иных сторон человеческой деятельности.