Иногда самые выдающиеся научные открытия рождаются из простейших вопросов. Вопрос может казаться настолько банальным, что почти никому и никогда не приходит в голову задавать его, не говоря уже о том, чтобы искать на него ответ. Для нас как-то не представляют интереса вещи, которые мы привыкли считать вполне естественными. Но если вдруг кто-нибудь решит спросить: «Как это происходит?», мы сразу понимаем, что явление, всегда казавшееся нам слишком обыденным и понятным, в действительности представляет собой настоящую загадку. Все сказанное справедливо и для одного из самых фундаментальных аспектов биологии человека, того, о природе которого мы никогда не задумываемся.

Почему при воспроизведении млекопитающих (включая человека) всегда требуется мужская и женская особь?

При размножении половым путем маленькие, но энергичные сперматозоиды мчатся наперегонки, стремясь как можно быстрее добраться до крупной и относительно неподвижной яйцеклетки. Когда победитель этого спринтерского забега проникает в яйцеклетку, ядра обеих клеток сливаются и создают зиготу, при делении которой образуется каждая клетка организма. Сперматозоиды и яйцеклетки называются половыми клетками или гаметами. Когда в организме млекопитающих образуются гаметы, каждая из них получает только половину нормального количества хромосом. Это означает, что в гаметах по двадцать три хромосомы, по одной из пары. Такой набор называется гаплоидным геномом. Когда два ядра после проникновения сперматозоида в яйцеклетку сливаются, количество хромосом в клетке восстанавливается до нормального, присутствующего во всех обычных клетках (сорок шесть), и этот геном называется диплоидным. Очень важно, чтобы и яйцеклетка, и сперматозоид были гаплоидными, так как в противном случае у каждого следующего поколения было бы вдвое больше хромосом, чем у предшествующего.

Мы могли бы предположить, что причина, по которой у каждого млекопитающего обязательно должны быть мать и отец, заключается в том, что только при этом условии можно объединить два гаплоидных генома, чтобы создать новую клетку с полным набором хромосом. Разумеется, что именно так все и происходит, но эта модель также подразумевает, что единственная причина того, что каждому из нас требуются двое разнополых родителей, состоит в процессе родов.

Внук Конрада Уоддингтона

В 2010 году профессор Роберт Эдвардс получил Нобелевскую премию по физиологии и медицине за выдающиеся разработки в области искусственного оплодотворения, которые привели к появлению так называемых детей из пробирки. В ходе этого процесса яйцеклетка извлекается из организма женщины, оплодотворяется в лабораторных условиях, а затем вновь имплантируется в матку. Искусственное оплодотворение — необычайно сложная задача, и успехи профессора Эдвардса в сфере репродуцирования человека целиком и полностью основываются на многих и многих годах кропотливых экспериментов, проводившихся над мышами.

Работы с мышами заложили прочный фундамент для удивительной серии экспериментов, которые продемонстрировали, что воспроизводство у млекопитающих далеко не ограничивается исключительно процессом родов. Признанным мировым светилом в этой области является профессор Азим Сурани из Кембриджского университета, который начинал свою научную карьеру и получил докторскую степень, работая под руководством Роберта Эдвардса. А так как профессор Эдвардс получил начальное исследовательское образование в лаборатории Конрада Уоддингтона, то мы с полным правом можем считать Азима Сурани интеллектуальным внуком Уоддингтона.

Азим Сурани принадлежит к той славной когорте британских ученых, которые, невзирая на свой статус, очень легко относятся к собственной славе. Действительный член Королевского научного общества, он является кавалером Ордена Британской империи III степени, обладателем престижной Габоровской медали и Королевской медали Королевского научного общества. Следуя по стопам Джона Гердона и Эдриана Берда, он продолжает открывать новые земли в своих странствованиях по океану исследований, в которые он пустился более четверти века назад.

Приступив к работе в середине 1980-х годов, Азим Сурани выполнил программу экспериментов, безоговорочно продемонстрировавших, что система воспроизведения млекопитающих далеко не ограничивается одним лишь процессом родов. Мы нуждаемся в биологическом отце и биологической матери отнюдь не только потому, что только таким образом два гаплоидных генома могут слиться и образовать одно диплоидное ядро. Огромнейшее значение имеет тот факт, что одну половину нашей ДНК мы наследуем у матери, а другую — у отца.

На рисунке 7.1 показано, как выглядит только что оплодотворенная яйцеклетка, еще до слияния в ней двух геномов. Рисунок, конечно, во многом упрощен и гиперболизирован, но он выполняет поставленную перед ним задачу. Гаплоидные ядра яйцеклетки и сперматозоида называются пронуклеусами.

Рис. 7.1. Яйцеклетка млекопитающего сразу же после проникновения в нее сперматозоида, но до слияния двух гаплоидных (с половинным набором хромосом) пронуклеусов. Обратите внимание на разницу в размерах пронуклеусов яйцеклетки и сперматозоида

Мы видим, что женский пронуклеус значительно крупнее мужского. Для экспериментальных целей это имеет большое значение, поскольку мы можем визуально различать женский и мужской пронуклеусы. А так как мы можем отличать их друг от друга, у ученых появляется возможность переносить пронуклеус из одной клетки в другую и быть абсолютно уверенными в том, чей именно пронуклеус был перенесен. Исследователи четко представляют, с каким пронуклеусом они работают: с выделившимся из отцовского сперматозоида (мужской пронуклеус) или из материнской яйцеклетки (женский пронуклеус).

Много лет назад профессор Гердон пользовался крошечными микропипетками, чтобы переносить ядра соматических клеток лягушек в лягушачьи икринки. В распоряжении Азима Сурани были более современные технологии для переноса пронуклеусов из одних оплодотворенных яйцеклеток мышей в другие. Затем искусственно оплодотворенные яйцеклетки имплантировались самкам мышей, и там уже продолжалось их развитие. Было важно поместить пронуклеусы именно в оплодотворенные яйцеклетки, поскольку только в них создается необходимая среда для формирования и развития эмбриона после слияния двух иронуклеусов. По той же причине Джон Гердон использовал оплодотворенные лягушачьи икринки в своих работах по перепрограммированию, а Кит Кэмпбелл и Иэн Вилмут воспользовались оплодотворенной яйцеклеткой в качестве реципиента, когда клонировали овечку Долли.

Во множестве работ, опубликованных преимущественно между 1984 и 1987 годами, профессор Сурани продемонстрировал, что для создания новых живых мышат необходимо иметь и мужской, и женский пронуклеус. Графически это показано на рисунке 7.2.

Рис. 7.2. Резюме результатов ранних экспериментов Азима Сурани. Пронуклеус извлекался из яйцеклетки мыши. Затем в эту донорскую яйцеклетку помещались два гаплоидных пронуклеуса, и получившаяся в результате диплоидная яйцеклетка имплантировалась в суррогатную мать. Живые мышата рождались только из тех яйцеклеток, в которых были представлены один мужской и один женский пронуклеус. Эмбрионы яйцеклеток, состоявших из двух мужских или двух женских пронуклеусов, не развивались должным образом и погибали в процессе развития.

Для отслеживания влияния разных геномов ДНК исследователи использовали инбредные линии мышей. Благодаря этому была обеспечена генетическая идентичность всех трех типов оплодотворенных яйцеклеток, показанных на диаграмме. И несмотря на их полную генетическую идентичность, серии экспериментов, проведенных Азимом Сурани и его коллегами, а также исследования, независимо проведенные в лабораториях Давора Солтера и Брюса Каттенача, дали однозначные результаты. Если в оплодотворенной яйцеклетке присутствовали только два женских или два мужских пронуклеуса, мышата никогда не рождались живыми. Для этого необходимо иметь по одному пронуклеусу каждого пола.

Это абсолютно уникальное открытие. Во всех трех случаях, представленных на диаграмме, в зиготе присутствовало строго одинаковое количество генетического материала. Каждая зигота обладала диплоидным геномом (двумя копиями каждой хромосомы). Если бы единственным условием, необходимым для создания нового индивидуума, было количество ДНК, тогда бы во всех трех типах оплодотворенных яйцеклеток сформировались и развились полноценные мышата.

Одного лишь количества еще недостаточно

Результаты этих экспериментов подводят нас к революционному открытию — материнский и отцовский геномы могут нести одинаковую ДНК, но функционально они не эквивалентны. Для появления потомства недостаточно иметь правильный набор отрегулированных последовательностей ДНК. Мы должны унаследовать ДНК как у отца, так и у матери. Каким-то образом наши гены «помнят», от кого они произошли. И нормально функционировать они будут только в том случае, если были получены от «правильного» родителя. Одного лишь нужного количества копий каждого гена далеко не достаточно для полноценного развития и здоровой жизни.

Мы знаем, что это не какое-то уникальное явление, присущее только мышам, поскольку то же самое происходит естественным образом и у людей. Например, примерно в одном из 1500 случаев беременности у представительниц человечества в матке формируется плацента, но как такового плода в ней нет. Эта плацента аномальна, она вся покрыта наполненными жидкостью и похожими на виноградины «пузырьками». (Клетки оплодотворенной яйцеклетки размножаются не как положено, а начинают бурно и бесконтрольно делиться и наполняются жидкостью, так что напоминают виноградную гроздь. Прим. редактора). Такое образование называется хорионаденомой или пузырным заносом, и в некоторых азиатских странах частота сопровождаемых ею беременностей может достигать одной на 200 случаев. Женщины исправно прибавляют в весе, часто быстрее, чем при нормальной беременности, а по утрам испытывают тошноту, сопровождаемую рвотой, нередко очень сильной. Стремительно растущие плацентарные структуры вырабатывают в аномально высоких количествах гормон, который считается ответственным за симптомы тошноты во время беременности.

В странах с развитой инфраструктурой здравоохранения хорионаденома обычно диагностируется уже при первом ультразвуковом обследовании, после чего медицинские работники проводят необходимые мероприятия по прерыванию беременности. Если патология определена не сразу, то она приводит к самопроизвольному выкидышу, который случается на четвертый-пятый месяц после оплодотворения. Ранняя диагностика хорионаденом очень важна, так как, оставленные без вмешательства, они могут стать причиной образования потенциально опасных опухолей.

Хорионаденомы формируются в случае оплодотворения яйцеклетки, в которой по какой-то причине отсутствует ядро. Почти в 80 процентах хорионаденомных беременностей пустая яйцеклетка оплодотворяется единственным сперматозоидом, и гаплоидный геном сперматозоида копируется для создания диплоидного генома. Примерно в 20 процентах случаев пустая яйцеклетка оплодотворяется одновременно двумя сперматозоидами. В обеих ситуациях оплодотворенная яйцеклетка имеет необходимое количество хромосом (46), но вся ДНК поступает от отца. По этой причине развивается патология плода. Как и экспериментальным мышам, человеку для нормального развития необходимы хромосомы и матери, и отца.

Это встречающееся у человека явление, равно как и эксперименты с мышами, невозможно объяснить моделью, опирающейся только на код ДНК, в которой ДНК является голой молекулой, несущей лишь информацию, зашифрованную в последовательности пар оснований А, Ц, Г и Т. Сама ДНК не несет в себе всю необходимую для создания новой жизни информацию. Кроме генетической информации, для этого требуется нечто еще. Нечто эпигенетическое.

Яйцеклетки и сперматозоиды — в высшей степени специфические клетки, они располагаются на самом дне одной из уоддинпоновских впадин. Яйцеклетка и сперматозоид никогда не смогут стать какими-либо другими клетками и всегда будут оставаться только яйцеклеткой и сперматозоидом. Они могут только слиться между собой. Слившись, эти две высокоспециализированные клетки образуют одну клетку, которая настолько неспециализированная, что является тотипотентной и дает начало каждой клетке человеческого организма, равно как и плаценте. Это зигота, располагающаяся на самой вершине эпигенетического ландшафта Уоддингтона. По мере целения этой зиготы клетки становятся все более и более специфическими, образуя все ткани нашего организма. Из некоторых этих тканей в конечном итоге формируются яйцеклетки или сперматозоиды (в зависимости, понятно, от нашего пола), и весь цикл готов повториться вновь. Это в полном смысле слова непрекращающийся цикл биологии развития.

Хромосомы в пронуклеусах сперматозоидов и яйцеклеток несут в себе огромное количество эпигенетических модификаций. Они являются частью того механизма, который заставляет гаметы вести себя, как надлежит гаметам, и не превращаться в клетки других типов. Но эти гаметы неспособны передавать дальше свои эпигенетические схемы, так как в противном случае оплодотворенная зигота стала бы неким гибридом, состоящим наполовину из сперматозоида и наполовину из яйцеклетки, чего в действительности, как мы понимаем, не происходит. Это совершенно отличная и от сперматозоида, и от яйцеклетки тотипотентная клетка, дающая начало абсолютно новому индивидууму. Каким-то образом модификации яйцеклеток и сперматозоидов преобразуются в принципиально иной набор модификаций, направляющий оплодотворенную яйцеклетку в иное клеточное состояние, на новое место уоддингтоновского эпигенетического ландшафта. И это часть нормального развития.

Переустановка операционной системы

Почти мгновенно после того как сперматозоид проникает в яйцеклетку, в ней начинают осуществляться разительные превращения. Почти все метилирование мужского пронуклеуса ДНК (то есть полученное от сперматозоида) стирается, и происходит это невероятно быстро. Такие же изменения претерпевает и ДНК женского пронуклеуса, хотя и протекают они намного медленнее. Это означает, что большая часть эпигенетической памяти удаляется из генома. Это жизненно важно для того, чтобы зигота оказалась на вершине уоддингтоновского эпигенетического ландшафта. Зигота начинает делиться и вскоре образует бластоцисту — «мячик для гольфа внутри теннисного мяча» из Главы 2. Клетки «в мячике для гольфа» — внутриклеточная масса или ВКМ — плюрипотентные, те самые, из которых в лабораторных условиях получают эмбриональные стволовые клетки.

Клетки ВКМ вскоре начинают дифференцироваться и образовывать клетки различных типов нашего организма. Это происходит в процессе предельно жестко регулируемой экспрессии некоторых ключевых генов. Какой-нибудь специфический белок, например ОСТ4, активирует другой набор генов, что приводит к следующей ступени генной экспрессии, и так далее. Мы уже встречались с ocmt4 — это важнейший из генов, которые использовал профессор Яманака для перепрограммирования соматических клеток. Такая каскадная экспрессия генов вызывает эпигенетическую модификацию генома, меняя метки на ДНК и гистонах так, чтобы одни гены оставались активированными, а другие репрессировались. Вот в какой последовательности происходят эпигенетические события на самых ранних этапах развития:

1. Мужской и женский пронуклеусы (из сперматозоида и яйцеклетки соответственно) несут эпигенетические модификации;

2. Эпигенетические модификации утрачиваются (в зиготе сразу же после оплодотворения);

3. Новые эпигенетические модификации занимают их место (и клетки начинают специализироваться).

Это, конечно, существенно упрощенная модель. Несомненно, что ученые могут выделить несколько стадий деметилирования ДНК, имеющих место на втором этапе нашего списка. Однако в действительности все происходит еще намного сложнее, особенно в части, касающейся гистоновых модификаций. Пока одни гистоновые модификации удаляются, другие устанавливаются. В то же время, когда удаляется репрессивное метилирование ДНК, вместе с ним также стираются и определенные гистоновые метки, подавляющие генную экспрессию. Их место могут занять другие гистоновые модификации, которые повышают экспрессию генов. Поэтому было бы слишком наивно полагать, что эпигенетические изменения подразумевают лишь удаление одних и установление других эпигенетических модификаций. В действительности перепрограммируется сам геном.

Именно перепрограммированием занимался Джон Гердон в своих фундаментальных экспериментах, когда переносил ядра взрослых лягушек в лягушачьи икринки. Именно перепрограммирование имело место, когда Кит Кэмпбелл и Иэи Вилмут клонировали овечку Долли, перенеся ядро из клетки молочной железы в яйцеклетку. Именно перепрограммирование осуществил Яманака, когда ввел в соматические клетки четыре ключевых гена, каждый из которых нес информацию о белках с естественно высоким уровнем экспрессии.

Яйцеклетка — удивительная штука, оттачивавшаяся свои качества на протяжении сотен миллионов лет эволюционного развития, чтобы превратиться в чрезвычайно эффективный механизм генерирования огромных количеств эпигенетических изменений, затрагивающих миллиарды пар оснований. Ни один из искусственных способов перепрограммирования клеток не способен даже приблизиться к этому естественному процессу, если вести речь о его скорости и продуктивности. Но яйцеклетка не проделывает все это самостоятельно. По крайней мере, мужской пронуклеус поддается перепрограммированию относительно легко только благодаря модели эпигенетических модификаций, заложенной в сперматозоиде. Перепрограммирование генома сперматозоида — важнейшая и первоочередная задача.

К несчастью, эти первичные хроматиновые модификации (как и многие другие функции ядра сперматозоида) утрачиваются, если взрослое ядро перепрограммируется при введении его в оплодотворенную яйцеклетку. То же самое происходит, и когда взрослое ядро перепрограммируется при обработке его четырьмя факторами Яманаки для создания iPS клеток. В обоих случаях полная перезагрузка эпигенома взрослого ядра представляет собой слишком сложную задачу.

Возможно, как раз в этом и заключается причина того, что очень многим клонированным животным свойственны разного рода аномалии и короткая продолжительность жизни. Отклонения, наблюдаемые у таких клонированных животных, являются еще одним подтверждением того, что если ранние эпигенетические модификации окажутся неверными, то таковыми они могут остаться на всю жизнь. Аномальные схемы эпигенетических модификаций приводят к неизменно ошибочной экспрессии генов и, как следствие, к постоянно слабому здоровью.

При нормальном раннем развитии перепрограммирование генома меняет эпигеном гамет и создает новый эгшгеном зиготы. Это создает условия для замены схем экспрессии генов яйцеклетки и сперматозоида схемами экспрессии генов зиготы и переходу на следующий этап развития. Но и при таком перепрограммировании возможны отклонения. Клетки могут аккумулировать неподходящие или аномальные эпигенетические модификации у различных генов. Это нарушает нормальную экспрессию генов и может стать причиной болезни, в чем мы убедимся ниже. Перепрограммирование яйцеклетки и сперматозоида не позволяет им передавать от родителей потомству какие бы то ни было нежелательные эпигенетические модификации, которые они аккумулировали. Происходит не то что бы полное удаление операционной системы, а скорее ее переустановка.

Создание «переключателя»

Но при этом возникает парадокс. Эксперименты Азима Сурани показали, что мужской и женский пронуклеусы функционально неэквивалентны; для появления нового млекопитающего всегда необходим и тот, и другой. Это называется эффектом исходного родителя, поскольку, по сути, он означает, что каким-то образом зигота и ее дочерние клетки способны различать хромосомы матери и отца. Это не генетический, а эпигенетический эффект, поэтому должны быть некие эпигенетические модификации, которые действительно передаются от одного поколения другому.

В 1987 году исследователи из лаборатории Сурани опубликовали одну из первых статей о попытках обнаружить такой механизм. Они выдвинули предположение, что эффект исходного родителя может быть вызван метилированием ДНК. На тот момент известно было лишь о хроматиновой модификации, поэтому их гипотеза стала отличной отправной точкой для дальнейших исследований. Ученые создали генетически модифицированных мышей. Эти мыши отличались наличием дополнительного участка ДНК, который мог вводиться случайным образом в любое место генома. Последовательность ДНК в этом дополнительном участке не представляла для исследователей особого интереса. Куда более важным было то, что они могли легко измерить, насколько сильно метилирована ДНК на этой последовательности, и точно ли передается этот уровень метилирования от родителя потомству.

Азим Сурани с сотрудниками исследовали семь линий мышей с этим избирательно вводимым участком ДНК. В шести линиях уровни метилирования введенной ДНК, переходя от поколения к поколению, оставались прежними. Но в седьмой линии произошло нечто очень странное. Когда мать передавала введенную ДНК, то у ее потомства та всегда оказывалась сильно метилированной. Но если она переходила к потомству от отца, у следующего поколения мышат неизменно был низкий уровень метилирования этого участка ДНК. Графически это представлено на рисунке 7.3.

Черным цветом показана метилированная введенная ДНК, а белым — неметилированная ДНК. Отцы всегда передают потомству белую, неметилированную ДНК, а матери — всегда черную, метилированную ДНК. Другими словами, метилирование ДНК у потомства зависит от пола родителя, передавшего ему эту введенную ДНК. Оно ни в коем случае не обусловлено уровнем метилирования ДНК у самого родителя. Например, у «черного» самца потомство всегда будет с «белой» ДНК.

Рис. 7.3. Мыши, появившиеся с метилированными или неметилированными введенными участками ДНК. Черным цветом представлена метилированная ДНК, а белым — неметилированная. Когда мать передавала эту введенную ДНК, у ее потомства, независимо от того, была ли сама мать «черной» или «белой», та всегда оказывалась сильно метилированной (черной). Противоположную картину мы видим у самцов, потомство которых всегда имело неметилированную, «белую», ДНК. Это стало первой экспериментальной демонстрацией того, что некоторые участки генома могут быть помечены, что позволило определить, были ли они унаследованы по материнской или же по отцовской линии

Эта статья Азима Сурани и еще одна, опубликованная в то же время, показали, что когда млекопитающие формируют яйцеклетки и сперматозоиды, они каким-то образом кодируют ДНК в этих клетках. Как будто каждой хромосоме вручается маленький флажок. Хромосомы в сперматозоидах несут флажки, на которых написано: «Я — от папы», а хромосомы в яйцеклетках размахивают похожими флажками со словами: «Я — от мамы». А метилированная ДНК — это ткань, из которой «сшиты эти флажки».

На языке ученых это называется импринтингом — на хромосомах отпечатана информация об их происхождении, о том, от кого из родителей они получены. Эти два вопроса — импринтинг и эффект исходного родителя — мы рассмотрим более подробно в следующей главе.

Что произошло с введенной ДНК в экспериментах, заставив ее менять уровни метилирования при передаче от родителя потомству?

Она—совершенно случайно — вводилась в участок мышиной ДНК, над которым был водружен один из таких флажков. Как следствие, введенная ДНК также стала получать флажки метилированной ДНК, передаваясь от одного поколения другому.

Тот факт, что только у одной из семи линий мышей был продемонстрирован этот эффект, заставляет предположить, что не весь геном «утыкан такими флажками». Если бы геном был целиком помечен таким образом, то мы могли бы ожидать, что подобный эффект проявится у всех линий, подвергнутых экспериментам. Однако такое соотношение одного к шести свидетельствует о том, что «помеченные флажками» участки являются скорее исключениями, чем правилами.

В главе 6 мы убедились, что иногда животные действительно наследуют у родителей приобретенные признаки. Работа Эммы Уайтло, среди прочих, подтверждает, что некоторые эпигенетические модификации в самом деле переходят от родителя к потомству через сперматозоид или яйцеклетку. Этот тип наследования довольно редкий, но само его наличие укрепляет нашу веру в существование неких особых эпигенетических модификаций. Они не подменяются другими, когда яйцеклетка и сперматозоид сливаются для образования зиготы. Значит, хотя подавляющая часть генома текопитающих и перезагружается при слиянии яйцеклетки и сперматозоида, его незначительный процент остается иммунным к этому перепрограммированию.

Эпигенетическая гонка вооружений

Всего лишь 2 процента нашего генома кодируют белки, и целых его 42 процента состоят из ретротранспозонов. Это очень необычные последовательности ДНК, произошедшие, возможно, от вирусов в нашем далеком эволюционном прошлом. Некоторые из ретротранспозонов транскрибированы для производства РНК, и это может оказывать влияние на экспрессию соседних генов. Для клетки это может иметь самые серьезные последствия. Если, например, экспрессия генов, заставляющих клетку размножаться, станет слишком агрессивной, то эта клетка может переродиться в раковую.

Эта гонка вооружений существует на протяжении всей эволюции, но в наших клетках выработались специальные механизмы для контролирования активности такого типа ретротранспозонов.

Одним из главных механизмов, которыми пользуются для этого клетки, является эпигенетика. Ретротранспозон ДНК метилируется клеткой, в результате чего подавляется экспрессия ретротранспозона РНК. Тем самым РНК лишается возможности вмешиваться в экспрессию соседних генов. Один определенный класс, известный как ретротранспозоны IAP, представляется основной мишенью этого механизма контроля.

Во время перепрограммирования на самых ранних этапах существования зиготы метилирование удаляется с большей части нашей ДНК. Но ретротранспозоны IAP являются исключением. В процессе эволюции механизм перепрограммирования научился проскакивать эти нестандартные ретротранспозоны, оставляя на них метки метилирования ДНК. В результате эти ретротранспозоны удерживаются в эпигенетически подавленном состоянии. Такой механизм сформировался в результате естественного развития, вероятно, для снижения опасности случайного реактивирования этих потенциально опасных ретротранспозонов IAP.

Эго очень важно, поскольку двумя наиболее изученными примерами трансгенерационного наследования негенетических признаков являются мышь агути и мышь Axin Fu , с которыми мы уже встречались в предыдущей главе. Фенотипы обеих этих моделей определяются последовательностью уровней метилирования ретротранспозона IAP над геном. Уровни метилирования ДНК родителя перешли к потомству, как и фенотип, вызванный уровнями экспрессии ретротранспозона.

В главе 6 мы рассматривали и другие примеры трансгенерационного наследования приобретенных характеристик, включая влияние питания на последующие поколения и трансгенерационное воздействие таких загрязняющих веществ как винклозолин. Исследователи в настоящее время рассматривают возможность того, что эти экологические стимуляторы способны провоцировать эпигенетические изменения в хроматине гамет. Такие изменения, вероятно, происходят в участках, защищенных от перепрограммирования на ранних этапах развития после слияния яйцеклетки и сперматозоида.

Подобно Джону Гердону, Азим Сурани и сегодня продолжает в высшей степени эффективно трудиться в области, первооткрывателем которой он стал. Его работа посвящена вопросу, как и почему яйцеклетки и сперматозоиды кодируют свои ДНК таким образом, чтобы их молекулярная память передавалась следующим поколениям. В большой степени первые эксперименты Азима Сурани были связаны с манипуляциями с ядрами клеток млекопитающих, которые он при помощи крошечных пипеток переносил из одной клетки в другую. Технически это усовершенствованная версия методик, которыми настолько успешно пользовался Джон Гердон пятнадцатью годами ранее. Удивительно приятно думать, что профессор Сурани работает сейчас в исследовательском институте в Кембридже, носящем имя профессора Гердона, и что они часто встречаются в его коридорах или в университетском кафе.