Лабораторное насекомое палочник вида Carausius morosus представляет собой очень удивительное существо. Обеспечьте его всего несколькими листиками бирючины, чтобы ему было что пожевать, и уже через несколько месяцев он начнет откладывать яйца. В должное время из них вылупятся симпатичные крошечные палочники, выглядящие как миниатюрные копии взрослых особей. Если одного из таких малышей изолировать сразу после рождения и перевести на собственную «жилплощадь», то и он отложит яйца, из которых, в свою очередь, вылупится очередное поколение палочников. И происходит это вопреки тому факту, что родитель никогда и ни с кем не спаривался.
Палочники часто воспроизводятся подобным образом. Для этого они используют механизм, который называется партеногенезом, что с греческого переводится как «девственное размножение». Самки откладывают оплодотворенные яйца, не спариваясь с самцами, и из этих яиц появляются совершенно здоровые маленькие палочники. У этих насекомых в процессе эволюции развился особый механизм, благодаря которому потомство обеспечивается необходимым количеством хромосом. Но все эти хромосомы они получают только от матери.
Как мы убедились в предыдущей главе, это очень отличается от того, что происходит у мышей и людей. Для нас и наших «родственников» — грызунов, существует единственный способ создания новой жизни — мы должны получить ДНК и от матери, и от отца. Казалось бы, что палочники в высшей степени необычные существа, однако это не так. Исключением являемся как раз мы, млекопитающие. У насекомых, рыб, земноводных, рептилий и даже птиц существуют виды, размножающиеся при помощи партеногенеза. Только млекопитающие этого не умеют. Именно наш класс в животном царстве является «белой вороной», поэтому имеет смысл задать себе вопрос, почему так происходит. Начать искать на него ответы мы можем с определения признаков, характерных только для млекопитающих. Итак, у нас есть волосы или шерсть и три косточки в среднем ухе. Ни один их этих признаков не присутствует у других классов, однако представляется маловероятным, что именно они заставили нас отказаться от «непорочного зачатия». Этот вопрос зависит от гораздо более важных факторов.
Самыми примитивными представителями млекопитающих является небольшое число таких животных как утконос и ехидна, которые откладывают яйца. Следующую за ними ступень на шкале усложнения воспроизводства занимают сумчатые, такие как кенгуру и тасманийский дьявол, у которых рождаются недоразвитые малыши. На протяжении подавляющего большинства этапов своего развития потомство этих видов находится вне материнского организма — в ее сумке. Это тот самый знаменитый карман, расположенный снаружи тела.
Безоговорочно наибольшее представительство в нашем классе принадлежит так называемым плацентарным (или высшим) млекопитающим. Люди, тигры, мыши, синие киты — все мы вынашиваем своих детей одинаково. Наше потомство проходит через действительно долгую фазу развития внутри материнского организма, в матке. В течение этого периода эмбрион получает все необходимые ему питательные вещества через плаценту. Это большое, внешне похожее на блин, образование действует подобно интерфейсу между кровеносными системами плода и матери. На самом деле кровь не перетекает из одной системы в другую. В действительности, две системы расположены настолько близко друг к другу, что такие питательные вещества как сахара, витамины, минералы и аминокислоты могут проникать от матери к плоду. Кислород также поступает из материнской крови в кровь плода. Действует эта связь и в обратном направлении, когда плод избавляется от отработанных газов и других потенциально токсичных веществ, которые поступают непосредственно в кровеносную систему матери.
Это очень впечатляющая система, позволяющая млекопитающим снабжать свое потомство всеми необходимыми веществами на протяжении долгих периодов раннего развития. При каждой беременности образуется новая плацента, но команду о ее формировании отдает не мать. Вся информация об этом поступает от плода. Вспомните еще раз нашу модель ранней бластоцисты из Главы 2. Все клетки бластоцисты являются потомками оплодотворенной одноклеточной зиготы. Клетки, которые в конечном итоге станут плацентой, это клетки «теннисного мячика» на внешней поверхности бластоцисты. Фактически, одно из первых решений, которое принимают клетки, когда только начинают скатываться вниз по склонам эпигенетического ландшафта Уоддингтона, заключается в том, станут ли они в будущем плацентарными или соматическими клетками.
Мы не можем избежать своего (эволюционного) прошлого
Хотя плацента и является великолепно организованной структурой, позволяющей питаться плоду, эта система порождает и ряд «спорных вопросов». Говоря языком бизнеса или политики, возникает конфликт интересов, поскольку, в эволюционном смысле, наши организмы сталкиваются с дилеммой.
Вот как звучит эволюционный императив млекопитающего самца, если преобразовать его в человеческие термины:
Эта беременная самка несет мои гены в виде плода. Возможно, мне никогда больше не доведется спариться с ней. Я хочу, чтобы мой плод стал как можно больше, потому что тогда у него будет максимум шансов передать мои гены дальше.
У самки млекопитающего эволюционный императив совершенно иной:
Я хочу, чтобы этот плод выжил и передал мои гены дальше. Но я не хочу, чтобы для этого он истощил меня до такой степени, что я стану неспособна к воспроизводству. Я хочу иметь не только этот единственный шанс передать дальше свои гены.
Эта война полов у млекопитающих зашла в эволюционный тупик. Целый ряд контролирующих факторов гарантирует, что верх в этом сражении не возьмет ни материнский, ни отцовский геном. Мы сможем лучше понять, как это работает, если снова обратимся к экспериментам Азима Сурани, Давора Собела и Брюса Каттанача.
Это те ученые, которые создавали мышиные зиготы, имевшие только отцовскую или материнскую ДНК.
Искусственно получив в пробирках такие зиготы, исследователи имплантировали их в матку мышей. Ни в одной лаборатории из этих зигот никогда не рождались живые мыши. Однако зиготы некоторое время развивались в матке, но с заметными аномалиями. Причем аномалии эти были довольно разными, в зависимости oi того, от матери или от отца были получены все хромосомы.
В обоих случаях немногие эмбрионы, которым все же удалось сформироваться, были маленькими и отстающими в своем развитии. Когда все хромосомы являлись материнскими, плацентарные ткани оказывались сильно недоразвитыми. Если все хромосомы были получены от отца, то эмбрион еще более отставал в росте, ко плацентарные ткани у него формировались лучше. Ученые создали эмбрионы из смеси этих клеток — клеток, имевших унаследованные только у отца или у матери хромосомы, но и эти эмбрионы не смогли развиться в полноценный, готовый к рождению плод. При их исследовании ученые обнаружили, что все ткани таких эмбрионов состояли только из материнских клеток, в то время как клетки тканей плаценты оказались исключительно отцовскими.
Эти данные дают возможность предположить, в мужских хромосомах существует определенный фактор, инициирующий программу развития плаценты, а полученный от матери геном по большей мере на сориентирован эмбрион, а не на плаценту. Как это согласуется с конфликтом или эволюционным императивом, изложенным в начале этой главы? Плацента является своего рода порталом, через которые питательные вещества, циркулирующие в материнском организме, поступают в плод. Полученные от отца хромосомы запускают развитие плаценты и тем самым создают механизмы «переадресации» как можно больших количеств питательных веществ из материнской кровеносной системы в организм плода. Материнские хромосомы действуют в противоположном направлении, и в условиях нормальной беременности создается четко уравновешенная патовая ситуация.
Сам собой напрашивается вопрос — все ли хромосомы важны для получения такого результата? Для поисков ответа на него Брюс Каттанач проводил сложные генетические эксперименты на мышах. Его подопытные мыши имели хромосомы, порядок которых был изменен. Проще говоря, у каждой мыши было требуемое число хромосом, но между собой они были «склеены» иначе, чем это бывает в природе. Ему удалось создать мышей, абсолютно точно передававших по наследству аномалии своих хромосом. Например, он смог вывести мышей, унаследовавших обе копии определенной хромосомы только от одного родителя.
В первых экспериментах, ставших достоянием гласности, он работал с мышиной хромосомой 11. Из всех остальных пар хромосом мыши наследовали по одной материнской и одной отцовской хромосоме в каждой паре. Но исключением стала хромосома 11, поскольку Брюс Каттенач вывел мышей, которые наследовали две копии материнской хромосомы 11 и ни одной копии отцовской, или же наоборот. Полученные им результаты представлены на рисунке 8.1.
Рис. 8.1. Брюс Каттенач создал генетически модифицированных мышей, у которых он мог контролировать наследование определенного участка хромосомы 11. Изображенная в середине мышь унаследовала по одной копии у каждого родителя. Мышь, унаследовавшая обе копии у матери, оказалась мельче нормальной мыши. Напротив, мышь, унаследовавшая обе копии у отца, была крупнее нормальных размеров
Эти результаты в очередной раз подтверждают мысль о том, что существуют некие факторы в отцовских хромосомах, способствующие развитию более крупного потомства. Факторы материнских хромосом или действуют в «противоположном направлении», или ведут себя, по большому счету, нейтрально.
Как мы выяснили в предыдущей главе, эти факторы являются эпигенетическими, а не генетическими. Рассматривая предложенный выше пример, давайте предположим, что родители происходят из одной и той же инбредной линии, то есть генетически они идентичны. Если мы исследуем последовательности обеих копий хромосомы 11 у каждого из трех типов потомства, то обнаружим, что они совершенно одинаковы. В них будут содержаться те же самые миллионы пар оснований А, Ц, Г и Т, расположенных в том же самом порядке. Но на функциональном уровне эти две копии хромосомы 11 ведут себя абсолютно по-разному, что отражено в разных размерах мышей, принадлежащих к различным типам. Следовательно, должны существовать эпигенетические различия между материнскими и отцовскими копиями хромосомы 11.
Подовая дискриминация
По той причине, что две копии этой хромосомы ведут себя различно, и эти различия зависят от исходного родителя, хромосома 11 называется импринтинговой хромосомой. В нее впечатана информация об ее происхождении. По мере расширения наших представлений о генетике мы стали понимать, что лишь определенные участки хромосомы 11 несут на себе такую информацию. Есть большие области, где не имеет никакого значения, от кого из родителей получена та или иная хромосома, и области, в которых оба родителя действуют на одинаковых правах. Существуют также и целые хромосомы, не являющиеся импринтинговыми и не несущие в себе никакой информации.
До сих пор при описании импринтинга мы пользовались в основном феноменологической терминологией. Импринтинговые участки представляют собой отрезки генома, где мы можем определить влияние исходного родителя на потомство. Но как эти участки переносят такие эффекты? В импринтинговых областях определенные гены активированы или репрессированы в зависимости от того, у кого они были унаследованы. В приведенном выше примере хромосомы 11 гены, связанные с ростом плаценты, активированы и очень активны в копии этой хромосомы, полученной от отца. Это влечет за собой риски недостатка питательных веществ для матери, которая носит плод, и для их нейтрализации включается компенсаторный механизм. Копии тех же генов материнской хромосомы репрессируются, и это ограничивает рост плаценты. Кроме того, могут быть и другие гены, уравновешивающие влияние отцовских генов, и эти уравновешивающие гены могут быть экспрессированы, главным образом, с материнской хромосомы.
Для понимания молекулярной биологии этих эффектов предприняты огромные усилия. Недавно, например, ученые исследовали определенную область мышиной хромосомы 7. На этом участке находится ген, который называется инсулиноподобным фактором роста 2 или Igf2 (от английского insulin-like growth factor 2). Белок Igf2, способствующий росту эмбриона, обычно экспрессируется только с полученной от отца копии хромосомы 7. Исследователи ввели в этот ген мутационные изменения, не позволявшие гену нести информацию о функциональном белке Igf2. Затем они изучили результаты влияния этого вмешательства на потомство. Когда мутация передавалась от матери, новорожденные мыши выглядели совершенно так же, как любые другие. Объясняется это тем, что ген Igf2 в любом случае обычно выключен на материнской хромосоме, поэтому то, что материнский ген был подвергнут мутации, не имело никакого значения. Но когда мутировавший ген Igf2 передавался потомству от отца, мышата в помете рождались намного мельче обычных размеров. Причина этого была в том, что одна копия гена Igf 2, на которую они «рассчитывали» как на фактор, обеспечивающий активный рост плода, оказалась подавленной мутацией.
В мышиной хромосоме 17 есть ген, называемый Igf2Ir. Белок, кодируемый этим геном, «стирает» белок Igf2 и не позволяет ему выполнять свои функции стимулятора роста. Ген Igf2r также является импринтинговым. Поскольку белок Igf2r оказывает «противоположное» влияние на белок Igf2, отвечающего за рост плода, то вы, наверное, не будете удивлены, узнав, что ген Igf2r обычно экспрессируется с материнской копии хромосомы 17.
Ученые выявили около 100 импринтинговых генов у мышей и почти половину этого числа — у человека. Пока точно не известно, действительно ли у человека меньше импринтинговых генов, чем у мыши, или же их просто сложнее обнаружить экспериментальным путем. Импринтинг возник в результате эволюции около 150 миллионов лет назад, и в действительно больших масштабах он присутствует только у плацентарных млекопитающих. Его наличие не обнаружено у представителей классов, которые размножаются с помощью партеногенеза.
Импринтинг представляет собой весьма непростую систему, и, как любой сложный механизм, он может ломаться. Нам уже известно о том, что определенные заболевания у человека возникают в связи с проблемами в функционировании механизма импринтинга.
Когда импринтинг дает сбои
Синдром Прадера—Вилли (СПВ) получил свое название по фамилиям двух ученых, первыми описавших это состояние. СПВ поражает приблизительно одного из каждых двадцати тысяч новорожденных. Младенцы отличаются пониженной массой тела, и их мышечная система сильно ослаблена. В раннем младенчестве их бывает очень сложно кормить, в результате чего они растут крайне медленно. Через несколько лет все меняется кардинальным образом. Они испытывают непрекращающийся голод, поэтому постоянно переедают, что приводит к опасным формам ожирения. Наряду с другими характерными признаками, такими как маленькие ступни и кисти, задержки в развитии речи и бесплодие, людям, страдающим СПВ, часто свойственна умственная отсталость слабой или средней степени. Кроме того, у них присутствуют поведенческие отклонения, включая неконтролируемые вспышки гнева.
Существует и другое заболевания, поражающее приблизительно такое же количество людей, как и СПВ. Оно называется синдромом Ангельмана (СА), который, как и СПВ, назван в честь исследователя, впервые описавшего это состояние. Деги с СА демонстрируют слабоумие в тяжелых формах, у них уменьшенный размер мозга и почти отсутствует речь. Пациенты, страдающие СА, часто подвержены приступам спонтанного смеха, случающимся без всяких на то оснований, и по этой причине в клинических кругах за ними закрепилась возмутительно бестактная характеристика «счастливых кукол».
Родители детей, пораженных и СПВ, и СА, обычно являются совершенно здоровыми людьми. Исследователи выдвинули предположение, что главная причина развития каждого из этих заболеваний заключается, возможно, в серьезных дефекгах хромосом. Так как родители этим эффектам не подвержены, нарушения, вероятно, возникли во время образования сперматозоидов или яйцеклеток.
В 1980-х годах исследователи, изучавшие СПВ, пользовались разнообразными стандартными техниками, пытаясь обнаружить глубинную причину этого состояния. Они искали в геноме области, которые бы различались у здоровых и подверженных этому заболеванию детей. Ученые, занимавшиеся СА, делали, в принципе, то же самое. К середине 1980-х годов стало ясно, что обе группы исследователей изучают одну и ту же часть генома, а именно определенный участок хромосомы 15. У пациентов, страдающих как СПВ, так и СА, был утрачен один и тот же маленький участок этой хромосомы.
Но клиническая картина этих двух нарушений была абсолютно разной. Никто и никогда не спутал бы больного СПВ с больным, страдающим синдромом Ангельмана. Как могла одна и та же генетическая проблема—утрата определенного участка хромосомы 15 — привести к настолько различающимся симптомам?
В 1989 году группа исследователей из Детской больницы Бостона показала, что первостепенную важность имеет не сам факт отсутствия этого участка, а то, каким образом его отсутствие было унаследовано. Представленные ими выводы показаны на рисунке 8.2. Когда аномальная хромосома наследовалась у отца, ребенок приобретал СПВ. Если же такая же аномалия хромосомы передавалась от матери, то у ребенка развивался СА.
Рис. 8.2. Двое детей могут иметь хромосому 15 с одним и тем же отсутствующим участком — на рисунке ей соответствует укороченная горизонтальная полоска с одним пропущенным фрагментом. Но фенотип этих детей будет разным в зависимости от того, кто из родителей передал им эту аномальную хромосому. Если аномальная хромосома была унаследована от отца, у ребенка разовьется синдром Прадера—Вилли. Если же аномальная хромосома была унаследована от матери, ребенок приобретет синдром Ангельмана. который очень сильно отличается от синдрома Прадера—Вилли.
Это явный случай эпигенетического наследования родительского дефекта. Дети с СПВ и СА имеют абсолютно одинаковую генетическую проблему — у них отсутствует один и тот же участок хромосомы 15. Единственное различие заключается в том, как они унаследовали эту аномальную хромосому. Это еще один пример влияния исходного родителя.
Существует и другой путь, которым больные могут наследовать СПВ или СА. У некоторых людей, страдающих этими заболеваниями, присутствуют две совершенно нормальные копии хромосомы 15. В этих копиях нет пропущенных звеньев или других мутаций какого бы то ни было типа, однако у детей развиваются такие заболевания. Чтобы понять, как такое может происходить, стоит вспомнить о мышах, наследовавших обе копии хромосомы 11 от одного родителя. Те же исследователи, которые раскрыли секрет возникновения СПВ из-за отсутствующего участка хромосомы, обнаружили, что в отдельных случаях этого заболевания у детей присутствуют две нормальные хромосомы 15. Проблема же заключается в том, что обе они были унаследованы у матери, и ни одной — у отца. Это явление известно под названием однородительская дисомия — две хромосомы наследуются у одного родителя. В 1991 году коллектив исследователей из Института детского здоровья в Лондоне выяснил, что в некоторых случаях СА также может вызываться однородительской дисомией, но противоположной СПВ формы. У таких детей присутствуют две нормальные копии хромосомы 15, но обе они унаследованы у отца.
Это является очередным доказательством того, что СПВ и СА принадлежат к числу эпигенетических заболеваний. Дети с однородительской дисомией хромосомы 15 наследовали абсолютно нормальное количество ДНК, но только не от каждого из родителей. В их клетках содержались все нужные гены и в нужных количествах, но это не уберегло их от столь серьезного заболевания.
Для нас очень важно наследовать этот довольно маленький участок хромосомы 15 надлежащим образом, поскольку он является импринтинговым. На этом участке содержатся гены, которые экспрессируются только или с материнской, или с отцовской хромосомы. Один из таких генов называется UBE3A. Этот ген важен для нормального функционирования мозга, но экспрессируется он только с унаследованного у матери гена в этой ткани. А что будет, если ребенок не унаследует копию UBE3A у матери? Такое может произойти, если обе копии UBE3A будут получены от отца из-за однородительской дисомии хромосомы 15. При другом варианте развития событий ребенок может унаследовать копию хромосомы 15 у матери, в которой отсутствовал ген UBE3A, поскольку часть хромосомы была утрачена. В обоих случаях в мозгу у ребенка не будет экспрессироваться белок UBE3A, а это приведет к развитию симптомов синдрома Ангельмана.
С другой стороны, существуют гены, которые обычно экспрессируются только с отцовской версии этого участка хромосомы 15. В их число входит ген SNORD116, хотя и другие не менее важны. Рассматривая тот же сценарий, в котором фигурировал ген UBE3A, мы всего лишь поменяем местами слова «материнский» и «отцовский». Если ребенок не унаследует этот участок хромосомы 15 у отца, у него разовьется синдром Прадера—Вилли.
Можно привести еще множество примеров импринтинговых нарушений у человека. Наиболее известным из них является синдром Беквита—Видеманна, названный, как и оба предыдущих, по фамилиям исследователей, впервые описавших это заболевание в медицинской литературе. Для этого заболевания характерен чрезмерный рост тканей, в результате которого дети рождаются с непомерно развитыми мышцами, в том числе и языком, и целым рядом других симптомов. Механизм возникновения этого состояния несколько отличается от того, который мы описали выше. Когда при синдроме Беквита—Видеманна импринтинг передается некорректно, материнская и отцовская копии гена в хромосоме 11 включаются одновременно, тогда как экспрессироваться должна только полученная от отца версия. Ключевым геном здесь, вероятно, является igf2, несущий информацию о белке фактора роста, с которым мы уже встречались, когда обсуждали мышиную хромосому 7. При экспрессировании двух копий этого гена, вместо одной, вырабатывается вдвое больше белка IGF2, чем это необходимо, и плод растет слишком интенсивно.
Противоположным по фенотипу синдрому Беквита—Видеманна состоянием является синдром Рассела—Силвера. Для детей, страдающим этим заболеванием, характерен замедленный рост до и после рождения, а также и другие симптомы, связанные с поздним развитием. В большинстве случаев это расстройство также вызывается нарушениями на том же участке хромосомы 11, что и при синдроме Беквита—Видеманна, но в случае синдрома Рассела—Силвера экспрессия белка IGF2 подавляется, и рост плода замедляется.
Эпигенетический импринтинг
Итак, под импринтингом подразумевается ситуация, когда экспрессируется только один из пары генов, и эта экспрессия может быть или материнской, или отцовской. Чем контролируется включение какого-либо гена? Наверное, для вас не станет неожиданностью то, что действительно большую роль в этом процессе играет метилирование ДНК. Метилирование ДНК на хромосоме отключает гены на этой хромосоме. Другими словами, если унаследованный от отца регион хромосомы метилирован, это значит, что полученный от отца ген подавлен.
Давайте в качестве примера рассмотрим ген UBE3A, с которым мы познакомились при обсуждении синдромов Прадера—Вилли и Ангельмана. Обычно в копии, унаследованной от отца, содержится метилированная ДНК, и этот ген выключен. На копии, унаследованной от матери, нет такой метки метилирования, и этот ген включен. Нечто подобное происходит с геном Igf2r у мышей. Отцовская версия его обычно метилирована, и ген неактивен. Материнская версия того же гена неметилирована, и ген экспрессируется.
Если роль метилирования ДНК и не стала сюрпризом, то вы, возможно, будете удивлены, узнав, что метилируется часто вовсе не тело гена. Часть гена, несущая информацию о белке, окажется, по большому счету, эпигенетически одинаковой, если мы будем сравнивать материнскую и отцовскую копию хромосомы. А вот участок хромосомы, контролирующий экспрессию гена, метилируется у двух геномов по-разному.
Представьте, что дивным летним вечером вы гостите у друзей и прогуливаетесь по саду, едва освещенному расставленными среди растений декоративными светильниками. К сожалению, удивительная атмосфера постоянно нарушается оттого, что бродящие по саду гости то и дело попадают в поле обзора детекторов движения, и система безопасности автоматически включает мощные прожекторы. Они установлены слишком высоко на стене, чтобы на них можно было что-то набросить и спрятаться от их слепящего света, но, наконец-таки, до гостей доходит, что накрывать прожекторы нет необходимости. Нужно накрыть Датчики, реагирующие на движение и включающие свет. Это во многом похоже на то, что происходит при импринтинге.
Метилирование, или его отсутствие, имеет место на участках, которые называются регионами контроля импринтинга. В некоторых случаях механизм контроля импринтинга очень прост и легок для понимания. Участок промотора гена метилируется на гене, унаследованном у одного из родителей, и не метилируется на гене, полученном от другого родителя. Такое метилирование сохраняет ген в репрессированном состоянии. Этот механизм работает, когда единственный ген в каком-либо участке хромосомы является импринтинговым. Но многие импринтинговые гены могут собираться в пучки и располагаться очень близко друг к другу на общем для них участке одной хромосомы. Одни гены в таких пучках будут экспрессироваться с полученной от матери хромосомы, другие — с унаследованной от отца. Метилирование ДНК по-прежнему остается ключевым требованием, но правильно выполнять свои функции ему помогают другие факторы.
Область контроля импринтинга может действовать на больших расстояниях, и определенные участки могут связывать крупные белки. Эти белки ведут себя подобно городским дорожным заставам, изолируя друг от друга различные участки хромосомы. Такое распределение функций между различными генами придает процессу импринтинга дополнительный уровень сложности. Благодаря этому область контроля импринтинга может управлять многими тысячами пар оснований, но это не означает, что на каждый отдельный ген в этих тысячах пар оснований оказывается одинаковое воздействие. Разные гены в определенных импринтинговых участках хроматина могут ответвляться от своей хромосомы и контактировать друг с другом так, что репрессированные гены связываются в своего рода хроматиновые узлы. Активированные гены из того же участка хромосомы могут сцепляться друг с другом и образовывать собственные узлы..
Интенсивность импринтинга варьируется от ткани к ткани. Особенно активно импринтинговые гены экспрессируются в плаценте. Именно этого мы и должны были ожидать от нашей модели импринтинга как средства уравновешивания потребностей в ресурсах материнского организма. Не в меньшей степени влиянию импринтинга, как оказалось, подвержен и мозг. Причины этого явления не столь очевидны и потому не очень ясны. В данном случае труднее объяснить контроль исходного родителя над экспрессией генов в мозге борьбой за питательные вещества, которая имеет место в плацентарной ткани. Профессор Гудрун Мур из медицинского колледжа Лондонского университета выдвинула по этому поводу интригующую гипотезу. Она предположила, что высокие уровни импринтинга в мозге представляют собой послеродовое продолжение войны иолов. По ее мнению, некоторые мозговые импринты являются попытками отцовского генома спровоцировать юное потомство на поведение, которое вынудило бы мать продолжать расходовать ресурсы своего организма, как это происходит, например, при продолжительном грудном кормлении.
Количество импринтинговых генов довольно невелико, их значительно меньше 1 процента от числа всех генов, несущих информацию о белках, и даже этот ничтожный процент представлен не во всех тканях. Во многих клетках экспрессия копий, унаследованных от отца и матери, одинакова. Происходит это не потому, что схемы метилирования различаются от ткани к ткани, а по той причине, что клетки варьируются по способам, которыми они «прочитывают» это метилирование.
Схемы метилирования ДНК на участках контроля импринтинга присутствуют во всех клетках организма и показывают, кто из родителей передал потомству свою копию хромосомы. Это дает нам очень важную информацию об областях импринтинга. Они должны уклоняться от перепрограммирования, происходящего после того, как сперматозоид и яйцеклетка, слившись, образуют зиготу. В противном случае привносимые метилированием модификации оказались бы стертыми, и клетки не смогли бы определить, кем из родителей были переданы те или иные хромосомы. Подобно тому, как ретротранспозоны IAP остаются метилированными в процессе перепрограммирования зиготы, действуют и развившиеся в процессе эволюции особые механизмы, защищающие области импринтинга от этого широкомасштабной утраты факторов метилирования. Ученым пока не до конца понятно, как это происходит, но такое явление жизненно важно для нормального развития и здоровья.
Устанавливаем импринт, убираем импринт…
Однако это ставит перед нами еще один вопрос. Если импринтинговые метки метилирования ДНК настолько стабильны, то, как они меняются, передаваясь of родителей потомству? Мы знаем, что они действительно меняются, благодаря экспериментам Азима Сурани с мышами, которые мы обсуждали в предыдущей главе. Его опыты продемонстрировали, что метилирование последовательности, контролируемой в экспериментальных целях, менялось при переходе к следующему поколению. Речь идет о том эксперименте из предшествующей главы, в котором мы рассказывали о мышах с «черной» и «белой» ДНК.
Честно говоря, как только ученые обнаружили, что эффект исходного родителя действительно имеет место, они предсказали существование некого способа перезагрузки эпигенетических меток, еще до того, как узнали, чем эти метки являются. Давайте для примера рассмотрим хромосому 15. Я унаследовала одну копию этой хромосомы от матери, и одну — от отца. Область контроля импринтинга UBE3A, полученной от матери, была неметилированной, тогда как та же область хромосомы, переданной мне отцом, была метилированной. Это обеспечило необходимые схемы экспрессии белка UBE3 А в моем мозге.
Когда в моих яичниках формируются яйцеклетки, в каждой из них содержится лишь по одной копии хромосомы 15, которую я передам своему ребенку. Так как я женщина, каждая копия хромосомы 15 должна нести материнскую метку на UBE3A. Но на одной из моих копий хромосомы 15 оказалась отцовская метка, которую я унаследовала от отца. Единственный вариант, при котором я могу быть уверена, что передам своим детям хромосому 15 с правильной материнской меткой, подразумевает, что мои клетки знают способ, как удалить отцовскую метку и поставить вместо нее метку материнскую.
Очень похожий процесс происходит и в том случае, когда мужчины вырабатывают сперматозоиды. Все приобретенные от матери модификации должны быть стерты с импринтинговых генов, а их место должны занять модификации, полученные от отца. Именно это в действительности и происходит. Это очень специфический процесс, происходящий только в клетках, дающих начало зародышевой линии.
Основной принцип действия этого механизма схематично показан на рисунке 8.3.
Рис. 8.3. На диаграмме показано, что все соматические клетки, возникающие из оплодотворенной зиготы, несут те же схемы метилирования ДНК, что и любые другие, на импринтинговых генах, но на половых клетках импринтинговое метилирование удаляется, а затем устанавливается заново. Это гарантирует, что женщины передадут потомству только материнские Мётки, а мужчины — только отцовские
После слияния яйцеклетки и сперматозоида формируется бластоциста, и большинство регионов генома перепрограммируются. Клетки начинают дифференцироваться, преобразуясь в предшественников плаценты и разнообразных типов клеток организма. Так что на этом этапе клетки, являвшиеся частью ВКМ, маршируют стройными рядами под барабанный бой процесса развития вниз по склонам многочисленных желобов эпигенетического ландшафта Уоддингтона. Но очень незначительное число клеток (которых меньше 100) начинают прислушиваться к совсем другому ритму. В этих клетках включается ген под названием BLIMP 1. Белок BLIMP 1 отдает этим клеткам команду не торопиться к своим соматическим тупикам. И тогда они начинают возвращаться вверх по уоддингтоновским траншеям. Кроме того, по пути они теряют свои импринтинговые метки, сообщавшие клетке, кем из родителей на каждой паре хромосом они были оставлены.
Крошечная группка клеток, участвующих в этом процессе, называется первичными половыми клетками. Именно эти клетки в конечном итоге сформируют гонады (яички или яичники) и будут вести себя как стволовые клетки, вырабатывающие гаметы (сперматозоиды и яйцеклетки соответственно). На стадии, описанной в предыдущем абзаце, первичные половые клетки возвращаются в состояние, более похожее на то, в котором пребывают клетки внутриклеточной массы (ВКМ). По существу, они становятся плюрипотентными, потенциально способными преобразоваться в большинство типов тканей организма. Эта стадия очень скоротечна. Первичные половые клетки быстро направляются по новому пути развития, на котором они, дифференцируясь, превращаются в стволовые клетки, дающие начало яйцеклеткам и сперматозоидам. Чтобы это стало возможным, они приобретают новый набор эпигенетических модификаций. Некоторые из этих модификаций определяют специфику клетки, то есть активируют гены, делающие яйцеклетку яйцеклеткой. А незначительное количество других модификаций служат метками исходного родителя с той целью, чтобы у следующего поколения импринтинговые регионы генома могли быть отождествлены с соответствующим исходным родителем.
Все это кажется ужасно сложным. Если мы пройдем путь, начинающийся с оплодотворения сперматозоидом яйцеклетки и заканчивающийся образованием нового сперматозоида у потомства мужского пола, то основные его вехи будут следующими:
1. Сперматозоид, проникающий в яйцеклетку, несет на себе эпигенетические модификации;
2. Эти эпигенетические модификации утрачиваются, за исключением тех, которые находятся на импринтинговых регионах (в зиготе, немедленно после оплодотворения);
3. Устанавливаются новые эпигенетические модификации (когда клетки ВКМ начинают специализироваться);
4. Эти эпигенетические модификации утрачиваются, включая и те, которые находятся на импринтинговых регионах (когда первичные половые клетки поворачивают вспять с пути соматической дифференциации);
5. Устанавливаются новые эпигенетические модификации (когда начинают формироваться сперматозоиды).
На первый взгляд может показаться, что это излишне витиеватый способ возвращения к тому, с чего все начиналось, однако он продиктован необходимостью.
Модификации, делающие сперматозоид сперматозоидом, а яйцеклетку яйцеклеткой, должны быть удалены на стадии 2, иначе зигота не сможет стать тотипотентной. Вместо этого она будет содержать в себе геном, на одну половину запрограммированный на то, чтобы стать яйцеклеткой, и на другую половину — чтобы стать сперматозоидом. Развитие будет невозможным, если унаследованные модификации останутся нетронутыми. Но для образования первичных половых клеток некоторые клетки из дифференцирующейся ВКМ должны утратить свои эпигенетические модификации. Только при этом условии они смогут стать временно более плюрипотентными, утратить свои импринтинговые метки и начать специализироваться как половые клетки.
Как только первичные половые клетки обращаются в своем развитии вспять, геном подвергается очередным эпигенетическим модификациям. Происходит это отчасти по той причине, что при развитии многоклеточного организма плюрипотентные клетки потенциально чрезвычайно опасны. Казалось бы, как было бы удобно, если бы клетки нашего организма могли делиться безостановочно и давать начало множеству клеток других типов, однако это далеко не так. Именно таким образом ведут себя раковые клетки. Поэтому в процессе эволюции предпочтение было отдано механизму, при котором первичные половые клетки могут на короткий период восстановить плюрипотентность, но затем она вновь подавляется эпигенетическими модификациями. Это вкупе с утратой импринтов приводит к тому, что хромосомы могут быть заново помечены своим исходным родителем.
Иногда этот процесс установления новых импринтов на предшественников яйцеклеток или сперматозоидов может давать сбои. Именно так и происходит при синдромах Ангельмана и Прадера—Вилли, когда импринты не стираются должным образом на стадии первичных половых клеток. Например, у женщины могут сформироваться яйцеклетки, в которых хромосома 15 несет на себе отцовскую метку, унаследованную ею от своего отца, а не необходимую материнскую метку. Когда такая яйцеклетка оплодотворяется сперматозоидом, обе копии хромосомы 15 будут действовать как отцовские хромосомы и создадут фенотип, наблюдаемый при однородительской дисомии.
И сегодня ученые продолжают исследования того, как и чем контролируются все эти процессы. Мы пока еще не полностью понимаем, каким образом импринты защищены от перепрограммирования после слияния яйцеклетки и сперматозоида, и как они лишаются этой защиты на стадии первичных половых клеток. Также мы не до конца знаем, как именно новые импринты оказываются на нужных местах. Эта картина по большей части все еще покрыта туманом, хотя некоторые ее детали уже начинают проступать из мглы.
Возможно, участие в этом принимает небольшой процент гистонов, присутствующих в геноме спермы. Многие из них расположены в регионах контроля импринтинга и могут защищать эти регионы от перепрограммирования после слияния сперматозоида и яйцеклетки. Гистоновые модификации также играют свою роль в установлении «новых» импринтов во время формирования гаметы. Представляется важным, чтобы области контроля импринтинга утрачивали все гистоновые модификации, влияющие на активацию генов. Только после этого может быть добавлено постоянное метилирование ДНК. Именно это постоянное метилирование ДНК отмечает гены репрессивными импринтами.
Долли и ее дочери
Перепрограммирование, происходящее в зиготе и первичных половых клетках, оказывает огромное влияние на поразительно широкий круг эпигенетических явлений. Когда в лабораторных условиях перепрограммируют соматические клетки с помощью факторов Яманаки, только самый незначительный процент из них образует iPS клетки. Они далеко не являются точными копиями ЭС клеток — настоящих плюрипотентных клеток из внутриклеточной массы бластоцисты. Группа ученых из Бостона, работающих в Массачусетской центральной больнице и Гарвардском университете, исследовала генетически идентичные iPS и ЭС клетки мышей. Они искали в этих клетках гены, которые отличались бы в экспрессии у двух типов клеток. Единственное существенное различие в экспрессии обнаружилось на хромосомном участке Dlk1-Dio3. Несколько iPS клеток этого участка экспрессировали гены очень близко к тому, как это делают ЭС клетки. Это были наиболее подходящие iPS клетки для формирования самых разных тканей организма.
Dlk1-Dio3 является импринтинговой областью мышиной хромосомы 12. Пожалуй, нет ничего удивительного в том, что импринтинговый регион оказался настолько важным. Техника Яманаки запускает процесс перепрограммирования, который в природе начинается после слияния сперматозоида с яйцеклеткой. При нормальном развитии импринтинговые области генома устойчивы к перепрограммированию. Похоже, что они представляют собой слишком серьезное препятствие для перепрограммирования, происходящего при методе Яманаки в полностью искусственной среде.
Регион Dlk1-Dio3 уже давно привлекает к себе внимание исследователей. У людей однородительская дисомия в этом участке связана, наряду с другими симптомами, с отклонениями в росте и развитии. Эта область также, как выяснилось, крайне важна для предотвращения партеногенеза, по меньшей мере, у мышей. Ученые из Японии и Южной Кореи проводили генетические эксперименты над этим участком мышиного генома. В лабораторных условиях они воссоздали оплодотворенную яйцеклетку с двумя женскими пронуклеусами. Участок Dlk1-Dio3 в одном из пронуклеусов был изменен таким образом, что в нем оказался эквивалент отцовского, а не материнского, импринта. Родившиеся в результате этого эксперимента живые мыши стали первым образцом плацентарного млекопитающего с двумя материнскими геномами.
Перепрограммирование, происходящее в первичных половых клетках, не является абсолютно всеобъемлющим. Оно почти не затрагивает метилирование на некоторых ретротранспозонах IAP. Уровень метилирования ДНК ретротранспозона Axin Fu в сперматозоиде совершенно такой же, как и в соматических клетках той же линии мышей. Это говорит о том, что при перепрограммировании первичных половых клеток метилирование ДНК не утрачивается даже несмотря на то, что большинство других областей генома утрачивает эту модификацию. Такая устойчивость ретротранспозона Axin Fu к эпигенетическому перепрограммированию на обоих уровнях (в зиготе и в первичных половых клетках) и является механизмом трансгенерационного наследования признака извилистого хвоста, с которым мы встречались в предыдущих главах.
Мы знаем, что не все процессы трансгенерационного наследования происходят одинаковым образом. У мышей агути фенотип передается по линии матери, а не отца. В этом случае метилирование ДНК на ретротранспозоне IAP утрачивается и у отцов, и у матерей во время обычного перепрограммирования первичных половых клеток. Однако матери, ретротранспозон которых изначально нес метилированную ДНК, передают своему потомству особую гистоновую метку. Она является репрессивной гистоновой модификацией и действует как сигнал для механизма метилирования ДНК. Этот сигнал привлекает ферменты, которые запускают репрессивное метилирование ДНК на определенный участок хромосомы. Окончательный результат оказывается всегда одинаковым — метилирование ДНК матери восстанавливается и у потомства. Самцы мышей агути не передают факторы ни метилирования ДНК, ни репрессивных гистоновых модификаций на ретротранспозоне, и по этой причине наследование фенотипа происходит только по материнской линии.
Это несколько более косвенный способ передачи эпигенетической информации. Вместо непосредственного перенесения метилирования ДНК используется его промежуточный заменитель (репрессивная гистоновая модификация). Вероятно, поэтому передача фенотипа по материнской линии оказывается слегка «смазанной». Не все потомство рождается точно таким же, как мать, потому что при переустановке метилирования ДНК остается небольшая «возможность для маневра».
Летом 2010 года в британской прессе появились сообщения о клонировании сельскохозяйственных животных. Мясо, получаемое от потомства клонированных коров, вошло в пищевую цепочку человечества. Не самих клонированных коров, а только их потомства, появившегося на свет уже естественным путем. Хотя среди этих публикаций и проскальзывали устрашающие истории о людях, которым помимо их воли навязывают «франкен-говядину», в целом реакция средств массовой информации была довольно спокойной.
Такое позитивное отношение было вызвано, по меньшей мере, отчасти, весьма любопытным феноменом, несколько сгладившим тревоги, которые испытывали некоторые ученые перед возможными последствиями клонирования. Когда клонированные животные размножаются естественным путем, их потомство оказывается здоровее своих родителей. Почти наверняка причина этого заключается в перепрограммировании первичных половых клеток. Для создания клонированного животного соматическое ядро переносится в яйцеклетку. Это ядро проходит только через первую стадию перепрограммирования, ту самую, которая имеет место в естественных условиях, когда сперматозоид оплодотворяет яйцеклетку. Скорее всего, это эпигенетическое перепрограммирование оказывается не абсолютно эффективным, так как заставить яйцеклетку перепрограммировать «не то» ядро — задача нереальная. Вероятно, по этой причине сами клонированные животные и не отличаются богатырским здоровьем.
Когда клонированные животные размножаются естественным образом, они передают потомству или сперматозоид, или яйцеклетку. Прежде чем клон произведет эти гаметы, его первичные половые клетки пройдут через второй цикл перепрограммирования, как это происходит с ними в нормальных условиях. Эта вторая стадия перепрограммирования, очевидно, и перезагружает эпигеном должным образом. Гаметы утрачивают аномальные эпигенетические модификации своих клонированных родителей. Эпигенетикой объясняется не только слабое здоровье клонированных животных, но и отсутствие подобных проблем у их потомства. В действительности, потомство клонированных животных практически неотличимо от животных, родившихся естественным путем.
Вспомогательные репродуктивные технологии (такие как искусственное оплодотворение) сочетают в себе определенные технические аспекты с некоторыми методиками, применяемыми в клонировании. В частности, плюрипотентное ядро может переноситься между клетками, и клетки выращиваются в лаборатории, прежде чем их имплантируют в матку. В научной периодике не утихает полемика по поводу потенциальной опасности, которую таит в себе эта процедура. Некоторые авторы считают, что вспомогательные репродуктивные технологии вызывают нарушения импринтинга во время беременности. Под этими заявлениями подразумевается, что такие процедуры как выращивание оплодотворенных яйцеклеток вне организма могут быть причиной отклонений в жестко выверенной программе контроля перепрограммирования, особенно в областях импринтинга. Однако важно отметить, что по вопросу о клинической релевантности этой проблемы единого мнения на сегодняшний день не существует.
Процесс перепрограммирования генома на ранних этапах развития влечет за собой множество последствий. Он позволяет двум в высшей степени дифференцированным клеточным типам слиться и образовать одну плюрипотентную клетку. Он уравновешивает противоречивые потребности материнского и отцовского геномов и гарантирует, что это состояние равновесия будет восстанавливаться в каждом поколении. Перепрограммирование также не позволяет неподходящим эпигенетическим модификациям переходить от родителя к потомству. Это означает, что даже если клетки аккумулировали потенциально опасные эпигенетические изменения, они будут утрачены прежде, чем их унаследует потомство.
Вот почему мы обычно не наследуем приобретенные признаки. Но существуют определенные регионы генома, такие как ретротранспозоны IAP, которые относительно устойчивы к перепрограммированию. Если мы захотим выяснить, как конкретные приобретенные характеристики — реакции на винклозолин, например, или на питание отца — могут передаваться от родителя потомству, то начать нам свои поиски ответов лучше всего именно с этих ретротранспозонов IAP.