Время движется вперед, мы стареем. Это неизбежно. И по мере того, как мы становимся старше, наши тела меняются. Как только мы преодолеваем середину четвертого десятка — и многие из нас согласятся с этим, — нам становится все сложнее и сложнее поддерживать прежний уровень физической активности. И дело не только в том, как долго мы можем бежать и как быстро крутить педали велосипеда, прежде чем вынуждены будем сделать перерыв на отдых, или сколько времени нам потребуется для восстановления сил после бурно проведенной ночи. Чем старше мы становимся, тем все более сложными представляются нам реалии окружающего мира. У нас появляются новые боли и недомогания, и мы становимся более уязвимыми для небольших, но досаждающих инфекций.

Старение принадлежит к тем переменам, которые мы очень легко распознаем в окружающих нас людях. Совсем маленькие дети без труда видят разницу между молодыми и старыми, даже если не могут отнести к тем или другим представителей среднего возраста. Взрослые легко объяснят разницу между двадцатилетним и сорокалетним человеком, или же сорокалетним и шестидесятипятилетним. Мы подсознательно делим незнакомых нам людей на условные возрастные группы не потому, что они излучают некие радиосигналы, сообщающие нам о количестве лет, прожитых ими на земле, а благодаря выраженным у них физическим признакам старения. К ним, кроме всего прочего, относится и уменьшение жировой ткани под кожей, вследствие чего лица становятся менее «свежими», а их черты — заостренными. К этим признакам принадлежат морщины, ослабление мышечного тонуса, легкое искривление позвоночника.

Бурное и стремительное развитие косметической хирургии может служить ярким свидетельством того, насколько отчаянны наши попытки бороться с симптомами старения. Цифры социологического опроса, проведенного Международной Ассоциацией эстетической пластической хирургии в 2010 году, говорят, что в ведущих 25 странах в 2009 году было выполнено более восьми с половиной миллионов операций пластической хирургии и почти столько же нехирургических процедур, как например, инъекций «Ботокса» и лазерной дермабразии. Список возглавляют Соединенные Штаты, а за второе место соперничают Бразилия и Китай.

Хотя в целом общество довольно равнодушно воспринимает количество прожитых лет, но оно не может смириться с неизбежно сопровождающим старением физической деградацией. И это далеко не просто тривиальное недовольство. Одним из самых серьезных факторов риска для развития рака является именно старение. То же самое справедливо в отношении болезни Альцгеймера или инсульта.

Последние открытия и новейшие разработки в области здравоохранения значительно повысили как продолжительность, так и качество жизни. Отчасти это обусловлено прогрессом в борьбе со смертностью в младенческом возрасте. Вакцинации против таких тяжелых заболеваний как, например, полиомиелит значительно снизила показатели детской смертности (меньше детей стало умирать) и улучшили качество жизни у выживших (меньше детей остались инвалидами в результате полиомиелита).

Не прекращаются оживленные дискуссии и по вопросу продления срока жизни человека, под которым подразумевается увеличение продолжительности ее конечной стадии, преклонного возраста. Вероятность продления жизни основывается на концепции использования разного рода вмешательств, которые позволят нам жить дольше. Однако, затрагивая эту тему, мы вторгаемся в недостаточно исследованные как с социологической, так и с научной точки зрения области. Чтобы понять причины этого, нам следует разобраться в вопросах, что представляет собой старение и почему этот процесс является неотъемлемой частью долголетия.

Согласно одному из определений, «старение есть прогрессирующее функциональное ухудшение функций тканей, в конечном итоге приводящий к смерти». Именно этот функциональный спад, а не сам уход из жизни, и является для большинства людей наиболее угнетающим аспектом старения.

Собственно говоря, большинство из нас прекрасно понимают значимость не просто существования, а качества жизни. Так, в ходе проведенного 2010 году опроса из 605 взрослых австралийцев почти половина заявила, что они не станут принимать препараты против старения, если таковые будут изобретены. Свой выбор они обосновывали именно стремлением к качеству жизни. Эти респонденты не считали, что подобного рода лекарства способны продлить здоровую жизнь. Идея просто жить дольше казалась им малопривлекательной, если такая жизнь подразумевала постоянно ухудшающееся здоровье и беспомощность. Эти респонденты согласны были продлевать срок собственной жизни лишь в том случае, если бы в последние ее годы они чувствовали себя полностью здоровыми.

Таким образом, в любой научной дискуссии о старении присутствуют два разных аспекта. Это собственно продолжительность жизни и контроль над возрастными изменениями, сопутствующими старению. Неясной остается степень, до которой возможно или разумно разделять эти два аспекта, по крайней мере, при обсуждении продолжительности жизни человека.

Эпигенетике, несомненно, принадлежит особая роль в процессе старения. Она является хотя и не единственным, но, определенно, значимым его фактором. Поле деятельности эпигенетики, связанное со старением, в последние годы спровоцировало ожесточенные дебаты в фармацевтической промышленности, и в конце настоящей главы мы еще вернемся к этому вопросу.

Мы должны разобраться, почему, когда мы стареем, наши клетки начинают хуже справляться со своими обязанностями, в результате чего мы в большей степени подвержены риску развития таких заболеваний как рак, диабет 2 типа, сердечнососудистые болезни, слабоумие и еще многих и многих других. Одна из причин этого в том, что программа ДНК в клетках нашего организма меняется, причем не в лучшую сторону. В ДНК накапливаются случайные изменения последовательности. К ним относятся соматические мутации, влияющие на клетки тканей организма, но не на зародышевую линию. Многие виды рака приводят к изменениям последовательности ДНК, часто вызываемым довольно существенными перестановками хромосом, при которых генетический материал передается от одной хромосомы к другой.

Виновен по ассоциации

Однако, в чем мы уже убедились, наши клетки располагают многочисленными механизмами, предназначенными для того, чтобы сохранить схему ДНК максимально неприкосновенной. Где это только возможно, клеточные «настройки по умолчанию» всеми силами поддерживают геном в его исходном состоянии. Но с эпигеномом — другая история. По самой своей природе он более гибок и пластичен, чем геном. По этой причине нет ничего удивительного в том, что эпигенетические модификации у животного с возрастом меняются. Поскольку эпигеном значительно более изменчив и непостоянен, чем геном, он по мере старения организма становится куда в большей степени, нежели геном, предрасположенным к изменениям.

С некоторыми примерами этого мы уже встречались в главе 5, когда говорили о том, почему генетически идентичные близнецы по мере взросления становятся менее идентичными с точки зрения эпигенетики. Вопрос о том, как с возрастом меняется сам эпигеном, был исследован учеными, можно сказать, напрямую. В ходе экспериментов изучались две большие группы людей из Исландии и американского штата Юта, принимавшие участие в программе долгосрочных научных наблюдений. С периодичностью в одиннадцать и шестнадцать лет у этих людей брались образцы крови, из которых затем была выделена ДНК. В крови содержатся красные (эритроциты) и белые (лейкоциты) кровяные тельца. Эритроциты переносят по всему организму кислород и, по сути, представляют собой крошечные мешочки гемоглобина. Лейкоциты являются клетками, генерирующими иммунные реакции на инфекции. Эти клетки обладают ядрами и содержат ДНК.

Исследователи обнаружили, что абсолютные уровни метилирования ДНК в лейкоцитах некоторых образцов со временем меняются. Эти изменения не всегда были одинаковыми. У одних людей уровни метилирования ДНК с возрастом повышались, тогда как у других понижались. Направление изменений, как выяснилось, было однотипным в семьях. Это может означать, что связанные с возрастом изменения в метилировании ДНК были вызваны генетическими факторами или воздействием общей для семьи окружающей среды. Ученые также в деталях исследовали метилирование свыше 1500 отдельных участков CpG в геноме. Эти участки, главным образом, были связаны с кодирующими белки генами. На этих особых участках исследователи обнаружили те же тенденции, которые они зафиксировали при изучении абсолютных уровней метилирования ДНК. У одних исследуемых метилирование ДНК на особых участках оказалось повышенным, а у других пониженным. Уровни метилирования ДНК были повышены или понижены по меньшей мере на 20 процентов приблизительно у каждого десятого из всех, принимавших участие в исследованиях.

На основании данных, полученных в ходе экспериментов, ученые заявили, что «полученные ими результаты свидетельствуют в пользу предположения о том, что связанная с возрастом утрата привычных эпигенетических схем является механизмом, обусловливающим развитие распространенных возрастных заболеваний». Действительно, эти данные согласуются с моделью, в соответствии с которой возрастные ухудшения здоровья провоцируются эпигенетическими механизмами, однако в этом утверждении присутствуют оговорки, о которых мы не должны забывать.

В частности, подобного рода эксперименты обнаруживают важные взаимосвязи между эпигенетическими изменениями и возрастными заболеваниями, но они не доказывают, что одно событие является следствием другого. Люди наиболее часто тонут в периоды, когда растут объемы продаж лосьонов для загара. Из этого факта можно было бы сделать заключение, что лосьоны для загара каким-то образом воздействуют на людей, лишая их способности уверенно держаться на воде. Однако, как мы понимаем, объемы продаж лосьонов для загара повышаются в жаркую погоду, когда многие люди предпочитают проводить досуг у воды. Чем больше людей плавает, тем в среднем выше число утонувших. Это и есть очевидная взаимосвязь между двумя рассмотренными нами факторами (продажа лосьонов и смертность при купании), но ее присутствие не означает, что одно событие вытекает из другого.

Следовательно, хотя мы и знаем, что эпигенетические модификации со временем меняются, одно это не может служить доказательством, что такие изменения являются причинами заболеваний и ухудшения здоровья, ассоциирующимися с пожилым возрастом. Теоретически, эти изменения могут быть всего лишь случайными вариациями, не имеющими каких-либо функциональных последствий. Они могут быть только лишь изменениями эпигенетического фонового шума в клетке. Мы даже не знаем, приводят ли во многих клетках измененные схемы эпигенетических модификаций к изменениям в экспрессии генов. Ответ на этот вопрос был бы чрезвычайно важен, но получить его в отношении человека более чем затруднительно.

Виновен, более чем по ассоциации

Впрочем, существуют некоторые эпигенетические модификации, которые определенно играют свою роль в возникновении или развитии заболеваний. Наиболее ярким примером такого рода является рак, уже рассмотренный нами в главе 11. Свидетельством тому служат эпигенетические препараты, способные лечить некоторые специфические виды рака. Кроме того, подтверждением этому являются значительные массивы данных, полученных в различных экспериментальных системах. Они свидетельствуют, что изменение эпигенетической регуляции в клетке повышает вероятность ее перерастания в раковую клетку или способствует тому, что клетка, уже являющаяся раковой, становится более агрессивной.

Одним из вопросов, обсуждавшихся в главе 11, было увеличение метилирования ДНК, часто наблюдаемое на промоторах генов-супрессоров новообразований. Такое повышенное метилирование ДНК подавляет экспрессию генов-супрессоров новообразований. Как ни странно, увеличение метилирования ДНК на особых участках часто обнаруживается на общем фоне снижения уровня метилирования ДНК во многих других областях генома в той же раковой клетке. Это понижение метилирования может быть вызвано снижением экспрессии или активности деятельности метилтрансферазы ДНК, ДНМТ1. Такое глобальное падение уровня метилирования ДНК также может способствовать развитию рака.

Для исследования этого вопроса Руди Джениш создал линию мышей, в клетках которых белок Dnmt1 экспрессировался приблизительно лишь на 10 процентов. Уровни метилирования ДНК в их клетках были очень низкими по сравнению с аналогичными показателями обычных мышей. У этих мышей с мутировавшим геном Dnmt1, рождавшихся мелкими и слабыми, в возрасте между четвертым и восьмым месяцами развивались агрессивные новообразования иммунной системы (Т-клеточные лимфомы). Это было связано с перестановками определенных хромосом и, особенно, в дополнительной копии хромосомы 15 раковых клеткок.

Профессор Джениш предположил, что низкие уровни метилирования ДНК делают хромосомы очень нестабильными и подверженными разрывам. Вследствие этого, возрастает опасность того, что хромосомы могут соединиться неверно. Представьте, что вы разломали пополам розовую и зеленую карамельную конфету, получив в итоге четыре кусочка. Вы можете снова вернуть им первоначальный вид, склеив расплавленным сахаром, и тем самым получить новые две единицы способствующего развитию кариеса лакомства. Но, если вы будете заниматься этим в темноте, то возможно у вас получится некий «гибрид», в котором одна половинка будет зеленой, а другая розовой.

Конечным результатом повышения хромосомной нестабильности у мышей Руди Джениша стала аномальная экспрессия генов. Это, в свою очередь, повлекло за собой стремительное разрастание в высшей степени агрессивных клеток, что и привело к раку. Эти данные и является одной из причин, по которым ингибиторы ДНМТ едва ли могут быть использованы для лечения каких-либо иных, кроме рака, заболеваний. Опасность их в том, что эти препараты могут вызвать снижение метилирования ДНК в здоровых клетках, а это может вызвать предрасположенность некоторых типов клеток к раку.

Эти данные свидетельствуют, что сам по себе уровень метилирования ДНК не является важным фактором. Куда большее значение имеет то, где именно в геноме происходят изменения в метилировании ДНК.

Общее снижение уровней метилирования ДНК, сопутствующее старению, было обнаружено не только у людей и мышей, но также и у представителей многих других видов, от крыс до горбуш. Пока еще нет полной ясности в вопросе, почему низкие уровни метилирования ДНК ассоциируются с нестабильностью генома. Возможно, дело в том, что высокие уровни метилирования ДНК могли бы привести к очень компактному строению ДНК, которая структурно стала бы более стабильной. В конце концов, значительно легче перекусить кусачками одну жилу проволоки, чем несколько жил, сплетенных в прочный металлический жгут.

Важно представлять себе, какие титанические усилия прилагают клетки для заботы о своих хромосомах. Когда хромосома рвется, клетка, если это возможно, мгновенно «латает» разрыв. Если же такой возможности у нее нет, то она может запустить механизм саморазрушения, в конечном итоге приводящий к ее «самоубийству». Происходит это потому, что поврежденные хромосомы могут быть опасными. Лучше убить одну клетку, чем позволить ей выжить, неся в себе поврежденный генетический материал. Например, представьте себе, что в одной клетке рвется одна копия хромосомы 9 и одна копия хромосомы 22. Они могут быть починены надлежащим образом, но может случиться и так, что в результате этого ремонта часть хромосомы 9 соединится с частью хромосомы 22.

На самом деле подобная перестройка хромосом 9 и 22 случается относительно часто в клетках иммунной системы. Более того, она происходит настолько часто, что этот гибрид хромосомы 9 и хромосомы 22 стал обозначаться особым термином. Он называется филадельфийской хромосомой, в честь города, где был впервые описан. 95 процентов людей, больных разновидностью рака, которая называется хронической гранулоцитарной лейкемией, имеют в своих раковых клетках филадельфийскую хромосому. Эта аномальная хромосома вызывает такой вид рака в клетках иммунной системы по той причине, что разрыв и воссоединение хромосом происходит в определенном месте генома. Соединение двух хромосомных участков приводит к созданию гибридного гена под названием Bcr-Abl, который активно вызывает чрезвычайно быстрое деление клеток.

Таким образом, наши клетки сформировали очень сложные и безотлагательные способы немедленного восстановления разорвавшихся хромосом, призванные уберечь их от подобного рода аномальных слияний. А для этого клетки должны уметь распознавать свободные концы ДНК, которые образуются, когда хромосома распадается надвое.

Однако не все так просто. Каждая хромосома в наших клетках вполне естественным образом имеет два свободных конца ДНК, по одному с каждой стороны. И что-то должно не позволять восстановительной механике ДНК считать, что эти концы нуждаются в ремонте. Этим «чем-то» является узкоспециализированная структура, которая называется теломером. На каждом конце каждой хромосомы находится по одному теломеру, то есть в каждой клетке человека содержится по 92 теломера. Именно они блокирует механизм восстановления ДНК на концах хромосом.

Конечные участки

Теломеры играют решающую роль в борьбе со старением. Чем чаще делится клетка, тем мельче становятся ее теломеры. Таким образом, по мере старения организма теломеры становятся все короче. В конечном итоге они уменьшаются до такой степени, что оказываются не в силах функционировать должным образом. Клетки перестают делиться и могут даже активировать собственный механизм саморазрушения. Единственный тип клеток, не подчиняющийся такому развитию событий, это половые клетки, из которых образуются яйцеклетки или сперматозоиды. В этих клетках теломеры всегда остаются длинными, так что следующее поколение не оказывается ущемленным в долговечности. В 2009 году за открытие механизмов защиты хромосом теломерами и фермента теломеразы. Элизабет Блэкберн, Кэрол Грейдер и Джеку Шостаку была присуждена Нобелевская премия в области физиологии и медицины.

Поскольку теломеры настолько важны для процесса старения, имеет смысл рассмотреть, как они взаимодействуют с эпигенетической системой. Теломеры ДНК позвоночных состоят из сотен раз повторенной последовательности ТТАГГГ. На теломерах нет генов. Кроме того, эта последовательность говорит нам, что на теломерах нет мотивов CpG, следовательно, там не может быть метилирования ДНК. Если и существуют какие-либо эпигенетические эффекты, имеющие значение для теломеров, то они должны основываться на гистоновых модификациях.

Между теломерами и основной частью хромосомы располагаются участки ДНК, которые называются субтеломерными областями. В них содержатся множества цепочек повторяющейся ДНК. Эти повторения менее ограничены в последовательностях, нежели теломеры. В субтеломерных областях в незначительных количествах присутствуют гены. В них есть и некоторые мотивы CpG, так что эти области могут подвергаться не только гистоновым модификациям, но и метилированию ДНК.

Виды эпигенетических модификаций, обычно происходящих на теломерах и в субтеломерных областях, считаются высоко репрессивными. Так как в любом случае на этих участках генов очень мало, и эти модификации, вероятно, не предназначены для подавления отдельных генов. Вместо того, эти репрессивные эпигенетические модификации, скорее всего, участвуют в «сдавливании» концов хромосом. Эпигенетические модификации привлекают белки, обволакивающие концы хромосом, и помогают им оставаться настолько туго закрученными, плотными и неприступными, насколько это только возможно. Отчасти это похоже на то, как концы трубы обматывают изоляционной лентой.

Для клетки потенциальная опасность заключена в том, что все ее теломеры имеют одинаковую последовательность ДНК, так как идентичные последовательности в ядре проявляют тенденцию находить себе подобных и связываться с ними. Столь тесное соседство порождает риск того, что концы различных хромосом могут соединяться друг с другом, особенно когда они оказываются поврежденными и открытыми. Это может привести к самым разнообразным ошибкам, когда клетка, пытаясь рассортировать цепочки хромосом, станет создавать «смешанные» хромосомы, подобные той, что вызывает хроническую гранулоцитарную лейкемию. Обволакивание теломеров репрессивными модификациями, делающими концы хромосом действительно плотно упакованными, значительно снижает вероятность того, что разные хромосомы смогут ошибочно соединиться друг с другом.

Клетка, таким образом, оказывается перед дилеммой, представленной на рисунке 13.1.

Рис. 13.1. Аномальное укорачивание или удлинение теломеров в равной степени опасно для клетки

Если теломеры становятся слишком короткими, это может привести к отключению клетки. А если теломеры будут слишком длинными, повысится риск того, что различные хромосомы начнут соединяться друг с другом, создавая новые стимулирующие развитие рака гены. Репрессия клетки, вероятно, является защитным механизмом, сформировавшимся для снижения риска образования новых провоцирующих рак генов. Это и есть одна из причин, по которым весьма затруднительно будет создать лекарственные препараты, которые бы увеличивали продолжительность жизни, но не повышали бы при этом опасность развития рака.

Что происходит, когда мы создаем новые плюрипотентные клетки? Это может быть сделано с помощью переноса ядра соматической клетки, чему мы были свидетелями в главе 1, или при создании iPS клеток, в чем мы убедились в главе 2. Мы можем пользоваться этими техниками, создавая клонированных животных или человеческие стволовые клетки, предназначенные для лечения дегенеративных заболеваний. В обоих случаях нам необходимо создавать клетки, имеющие нормальную продолжительность жизни. В конце концов, нет никакого смысла создавать нового призового жеребца или клетки для пересаживания в поджелудочную железу больному диабетом подростку, если через короткий промежуток времени жеребец или клетки погибнут из-за «старения» теломера.

Это значит, что мы должны создавать клетки с теломерами, имеющими приблизительно ту же длину, что и теломеры в обычных эмбрионах. В естественных условиях это требование выполняется благодаря тому, что хромосомы в зародышевой линии клеток защищены от укорачивания теломеров. Но если мы создаем плюрипотентные клетки из относительно взрослых клеток, то мы имеем дело с ядрами, теломеры которых с большой долей вероятности уже относительно короткие, так как исходные клетки были взяты у взрослых, чьи хромосомы с возрастом стали короче.

К счастью, кое-что необычное происходит, когда мы создаем плюрипотентные клетки в лабораторных условиях. Когда создаются iPS клетки, они активируют экспрессию гена, который называется теломеразой. Теломераза обычно сохраняет и поддерживает требуемую длину теломеров. Но по мере того, как мы стареем, активность теломеразы в наших клетках начинает снижаться. Важно активировать теломеразу в iPS клетках, иначе в них будут очень короткие теломеры, и эти клетки не смогут создать достаточно много поколений дочерних клеток. Факторы Яманаки стимулируют экспрессию высоких уровней теломеразы в iPS клетках.

Но мы не можем прибегнуть к помощи теломеразы для того, чтобы обратить вспять или замедлить старение человека. Даже если бы нам удалось доставить этот фермент в клетки, воспользовавшись для этого, может быть, генной терапией, шансы провоцирования рака были бы при этом слишком велики. Система теломеров предельно точно уравновешена, как и альтернатива между старением и раком.

Ингибиторы гистондеацетилазы и метилтрансферазы ДНК повышают продуктивность факторов Яманаки. Это может быть в некоторой степени вызвано тем, что оба химических соединения частично удаляют репрессивные модификации на теломерах и субтеломерных регионах. Вследствие этого теломеразе становится проще строить теломеры, когда клетки перепрограммируются.

Рассмотрение взаимодействия эпигенетических модификаций с системой теломеров несколько отдалило нас от простого выявления взаимосвязи эпигенетики и процесса старения. Но вместе с тем оно и приблизило нас к модели, благодаря которой мы можем начать чувствовать уверенность, что эпигенетические механизмы могут действительно играть каузативную роль по меньшей мере в некоторых аспектах старения.

Не стареет ли ваше пиво?

Для более углубленного исследования вопроса старения ученые активно используют организм, с которым мы сталкиваемся ежедневно на протяжении всей жизни, когда едим хлеб или пьем пиво. Научным термином для обозначения этого модельного организма является латинское словосочетание Saccharomyces cerevisiae, но нам он знаком под более распространенным и привычным названием пивных дрожжей. Далее для краткости мы будем называть его просто дрожжами.

Хотя дрожжи являются простым одноклеточным организмом, они удивительно похожи на нас в некоторых действительно фундаментальных аспектах. В клетках у дрожжей есть ядра (у бактерий их нет), кроме того, они обладают многими белками и биохимическими связями из тех, что присущи таким высшим организмам, к которым относятся млекопитающие.

Так как дрожжи являются настолько простыми организмами, с ними очень легко работать в лабораторных условиях. Клетка дрожжей (мать) способна генерировать новые клетки (дочерей) относительно прямолинейным путем. Материнская клетка копирует свою ДНК. Новая клетка отпочковывается от материнской клетки.

Эта дочерняя клетка, содержащая необходимое количество ДНК, отделяется от материнской клетки и начинает существовать как совершенно независимый новый одноклеточный организм. Дрожжи делятся, образуя новые клетки, очень быстро, а это означает, что эксперименты с ними могут проводиться за несколько недель, а не занимать месяцы или годы, которые бы потребовались для опытов с высшими организмами и, в первую очередь, с млекопитающими. Дрожжи могут выращиваться в жидкой среде или в чашках Петри, что очень облегчает манипуляции с ними. Кроме того, это позволяет довольно легко вызывать мутации в интересующих нас генах дрожжей.

Дрожжам присущ особый признак, делающий их одной из излюбленных модельных систем в эпигенетике. Дрожжи никогда не метилируют свою ДНК, поэтому любые эпигенетические эффекты должны вызываться гистоновыми модификациями. У дрожжей есть и еще одна полезная характеристика. Каждый раз, когда материнская клетка дрожжей порождает дочернюю клетку, у матери на месте отделившейся почки остается шрам. Эта особенность позволяет легко определить, сколько раз делилась каждая клетка. У дрожжей существуют два типа старения, каждый из которых может быть сопоставлен со старением человека, как это показано на рисунке 13.2.

Рис. 13.2. Две модели старения дрожжей — для делящихся и неделящихся клеток

Наибольшее внимание при исследовании вопросов старения уделяется репликационному типу, когда ученые стремятся понять, почему клетки утрачивают свою способность делиться. Репликационное старение у млекопитающих непосредственно связано с некоторыми очевидными симптомами возрастных изменений. Например, в скелетной мышце находятся специфические стволовые клетки, которые называются сателлитными клетками. Они могут делиться лишь ограниченное число раз. Как только они лишатся этой способности, перестанут создаваться и новые мышечные волокна.

В понимании принципов репликационного старения у дрожжей был достигнут значительный прогресс. Один из ключевых ферментов, контролирующих этот процесс, называется Sir2 и является эпигенетическим белком. Он влияет на репликационное старение дрожжей двумя путями. Один из них кажется присущим исключительно дрожжам, тогда как другой обнаруживается и у многочисленных видов на эволюционном древе вплоть до человека.

Sir2 является гистондеацетилазой. Мутировавшие дрожжи, излишне активно экспрессирующие Sir2, отличаются репликационной продолжительностью жизни, которая, по меньшей мере, на 30 процентов превышает обычный срок жизни. И напротив, для дрожжей, не экспрессирующих Sir2, характерна гораздо меньшая продолжительность жизни, уступающая обычной приблизительно на 50 процентов. В 2009 году профессор Шелли Бергер, удивительно трудоспособная исследовательница из Университета Пенсильвании, возглавляемый которой коллектив добился выдающихся успехов в области молекулярной эпигенетики, опубликовала результаты цикла поистине уникальных генетических и молекулярных экспериментов на дрожжах.

Ее исследования показали, что белок Sir2 влияет на старение, удаляя ацетиловые группы с гистоновых белков, и в этом заключается его единственное предназначение. . Это был ключевой эксперимент, поскольку для Sir2, как и для многих гистондеацетилаз, характерна некоторая молекулярная распущенность. Он не просто удаляет ацетиловые группы с гистоновых белков, но и еще у 60-ти других белков клетки. Многие из этих белков не имеют никакого отношения к хроматину или экспрессии генов. Работа Шелли Бергер убедительно продемонстрировала, что Sir2 влияет на старение именно своим воздействием на гистоновые белки. Измененная эпигенетическая схема на гистонах, в свою очередь, влияет на экспрессию генов.

Эти данные, показывающие, что эпигенетические модификации гистонов действительно оказывают решающее влияние на старение, помогли занимающимся этой темой ученым понять, что они движутся в правильном направлении. И важность Sir2 не ограничивается лишь дрожжами. Если мы сильно повысим уровень экспрессии Sir2 в уже полюбившемся нам черве С. elegans, он проживет дольше. Продолжительность жизни дрозофил, активно экспрессирующих Sir2, увеличивается приблизительно на 57 процентов. Может быть, этот ген так же важен и для процесса старения человека?

У млекопитающих существует семь разновидностей гена Sir2, от SIRT1 до SIRT7. Основное внимание при изучении старения у человека ученые уделяют гену SIRT6, представляющим собой довольно необычную гистондеацетилазу. Истинный прорыв в этой области был сделан в лаборатории молодого доцента Стэнфордскош центра долголетия Катрин Чуа, (которая приходится сестрой Эми Чуа, автора вызвавших в высшей степени оживленную полемику мемуаров «Боевая песнь матери-тигрицы»).

Катрин Чуа вывела линию мышей, которые никогда не экспрессируют белок Sirt6, даже в период собственного развития (они стали известны как нокаутные мыши по гену Sirt6). При рождении эти животные выглядели вполне нормальными, хотя и уступали в размерах обычным мышам. Но, начиная с двухнедельного возраста, они демонстрировали целый ряд признаков, присущих процессу старения. В их число входили утрата подкожного жира, искривление позвоночника и нарушение метаболизма. В возрасте одного месяца эти мыши умирали, тогда как обычные мыши в лабораторных условиях способны прожить до двух лет.

Большинство гистондеацетилаз крайне неразборчивы. Под этим мы подразумеваем, что они деацетилируют любой ацетилированный гистон, который смогут разыскать. Более того, как уже упоминалось выше, многие из них даже не ограничиваются только гистонами и удаляют ацетиловые группы с любых белков. Однако SIRT6 в этом плане просто уникален. Он удаляет ацетиловые группы исключительно с двух особых аминокислот — лизин 9 и лизин 56, которые обе находятся на гистоне H3. Этот фермент, как представляется, также предпочитает гистоны, расположенные на теломерах. Когда Катрин Чуа «нокаутировала» ген SIRT6 в человеческих клетках, она обнаружила, что теломеры этих клеток оказались поврежденными, и хромосомы в них начали соединяться. Клетки утратили способность делиться и прекратили выполнять подавляющую часть своих функций.

Отсюда следует, что клетки человека нуждаются в SIRT6 для сохранения нормальной структуры теломеров. Но это не единственная роль белка SIRT6. Ацетилирование гистона 3 на аминокислоте 9 связано с экспрессией генов. Когда SIRT6 удаляет эту модификацию, эта аминокислота может быть метилирована другими ферментами, присутствующими в клетке. Метилирование этой позиции на гистоне связано с репрессией генов. Катрин Чуа продолжила эксперименты, результаты которых подтвердили, что изменение уровней экспрессии SIRT6 меняет экспрессию отдельных генов.

Создавая комплекс с определенным белком, SIRT6 в качестве своей мишени избирает специфические гены. Если этот белок присутствует в этих генах, то SIRT6 участвует в петле обратной связи, способствующей подавлению экспрессии гена, включаясь в классический порочный круг. У мышей с нокаутированным геном SIRT6 уровни гистонового ацетилирования на этих генах остаются высокими, потому что петля обратной связи не может быть активирована. Благодаря этому экспрессия этих генов-мишеней у мышей с нокаутированным SIRT6 повышается. Генами-мишенями являются те, которые способствуют саморазрушению или вхождению клетки в состояние перманентного стаза, известного как одряхление. Такие результаты объясняют, почему нокаут гена SIRT6 вызывает преждевременное старение. Дело в том, что гены, ускоряющие процессы, связанные со старением, активируются слишком рано или слишком бурно, и происходит это в молодом возрасте.

Представьте себе пронырливого ремесленника, который встраивает в свои изделия скрытый механизм, вызывающий преждевременный износ. Определенное количество лет это устройство должно бездействовать, иначе, если процесс износа запустится слишком рано, то мастер рискует приобрести репутацию производителя некачественного товара, и никто не станет приобретать его изделия. Нокаут SIRT6 в клетках отчасти похоже на программный сбой, активирующий запуск встроенного механизма износа через, скажем, один месяц вместо двух лет.

Другие гены-мишени SIRT6 связаны с провоцированием воспалительных и иммунных реакций. Это также имеет большое значение для старения, поскольку в результате повышения активности этих путей определенные состояния по мере старения становятся все более частыми. В их число входят специфические признаки определенные сердечнососудистых заболеваний и таких хронических нарушений как ревматоидный артрит.

Есть такое редкое генетическое заболевание, которое называется синдромом Вернера. Страдающие им люди начинают стареть значительно быстрее и гораздо раньше, чем их здоровые сверстники. Этот процесс вызывается мутацией гена, входящего в трехмерную структуру ДНК, где он способствует поддержанию ее правильной конфигураций и закрученности до необходимой для определенного клеточного типа степени сжатости. Обычный белок связывается с теломерами. И делает он эго наиболее эффективно, когда гистоны на теломерах утрачивают ацетиловые группы на аминокислоте 9 гистона H3. Именно эта модификация удаляется ферментом SIRT6. Это еще более убеждает нас в значимости роли белка SIRT6 для контроля старения.

Учитывая, что SIRT6 является гистондеацетилазой, было бы интересно исследовать влияние на старение ингибитора гистондеацетилазы. Мы могли бы предположить, что он должен оказывать такое же воздействие, как и нокаут экспрессии фермента SIRT6, то есть ускорить процесс старения. А это, в свою очередь, заставит нас лишний раз задуматься, прежде чем мы станем лечить пациентов такими ингибиторами гистондеацетилазы как САГК. В конце концов, противораковое средство, заставляющее пациента стареть быстрее, едва ли может считаться эффективным.

К счастью, с точки зрения лечения раковых больных, SIRT6 принадлежит к особому классу ферментов гистондеацетилазы, которые называются сиртуинами. В отличие от ферментов, с которыми мы имели дело в главе 11, сиртуины не подвержены влиянию САГК или любых других препаратов-ингибиторов гистондеацетилазы.

Ешьте меньше — проживете дольше

И опять мы возвращаемся к вопросу о том, удалось ли нам хоть сколько-нибудь приблизиться к открытию средства, которое мы могли бы предложить людям, мечтающим жить дольше. Имеющиеся на сегодняшний день данные не выглядят многообещающими, особенно при учете того, что многие механизмы, лежащие в основе процесса старения, являются защитными приспособлениями против развития рака. Нет большого смысла в создании лекарственных средств, способных увеличить продолжительность жизни лет на 50, если они спровоцируют развитие новообразования, которое может убить нас уже через пять лет. Однако существует один способ увеличения продолжительности жизни, уже доказавший свою удивительную эффективность не только для дрожжей или дрозофил, но и для червей и млекопитающих. И называется он ограничением потребления калорий.

Если содержание калорий в рационе грызунов при свободном доступе к пище будет понижено до 60 процентов калорий, это окажет поразительный эффект на продолжительность их жизни и развитие возрастных заболеваний. Чтобы результат был очевиден, такое ограничение следует начинать в самом раннем возрасте и придерживаться его на протяжении всей жизни. У дрожжей снижение количества глюкозы (пищи) с 2 до 0,5 процентов повышает продолжительность их жизни приблизительно на 30 процентов.

Не прекращаются оживленные дискуссии по поводу того, обусловлен ли эффект, вызванный снижением калорий, такими сиртуинами, как Sir2 у дрожжей, или вариантами Sir2 у других животных. Sir2 частично регулируется ключевым химическим веществом, уровень которого зависит от количества питательных веществ, поступающих в клетки. Это заставило некоторых авторов предположить наличие связей между этими двумя компонентами, и такая гипотеза выглядит привлекательной. Тот факт, что Sir2 действительно важен для продолжительности жизни, не подвергается сомнению. Ограничение калорий также играет очень важную роль. Вопрос в том, действуют ли эти два фактора совместно или раздельно. На этот счет пока нет единого мнения, а результаты экспериментов в большой степени зависят от используемых модельных систем. Они могут сводиться к углубленному исследованию деталей, которые на первый взгляд выглядят незначительными, таких как, например, природа штамма пивных дрожжей или точное определение количества глюкозы в питательном растворе.

Вопрос о том, как именно работает снижение калорий, может показаться менее значимым в сравнении с самим фактом его действенности. Однако этот механизм для нас чрезвычайно важен, если мы хотим определить стратегию борьбы со старением, поскольку вопрос ограничения калорий применительно к человеку сопряжен с определенными проблемами. Понятие питания включает в себя колоссальные социальные и культурные аспекты, так как потребляемые нами продукты для нас являются не только топливом. И кроме этих социологических и психологических барьеров, ограничение калорий обладает собственными побочными эффектами. К наиболее очевидным из них принадлежат мышечное истощение и утрата либидо. Поэтому не станет сюрпризом то, что на предложение прожить дольше, но при наличии этих побочных эффектов, большинство людей ответят отказом.

Это была одна из причин, почему опубликованная в 2006 году в журнале Natur статья Дэвида Синклера из Гарвардской медицинской школы вызвала столь небывалый фурор. Ученые исследовали состояние здоровья и продолжительность жизни мышей, на которых воздействовали химическим соединением под названием ресвератрол. Ресвератрол является мощным растительным антиоксидантом, содержащимся в семенах, кожице и листьях винограда. Он входит в состав красного вина. На момент написания статьи ресвератрол уже успел зарекомендовать себя как средство, увеличивающее продолжительность жизни дрожжей, С. elegans и дрозофил.

Профессор Синклер с коллегами «посадил» мышей на очень высококалорийную диету и на протяжении шести месяцев давал им ресвератрол. По истечении полугода ученые исследовали состояние здоровья подвергнутых эксперименту мышей. Все мыши, придерживавшиеся высококалорийной диеты, оказались толстыми, независимо от того, давали им ресвератрол или нет. Но те мыши, которые получали ресвератрол, отличались более крепким здоровьем, чем их лишенные ресвератрола сородичи. Их печень была не настолько ожиревшей, они более уверенно демонстрировали двигательные навыки и проявляли меньше симптомов диабета. К моменту достижения возраста 114 недель у мышей, получавших ресвератрол, уровень смертности был на 31 процент ниже, чем у тех мышей, которые содержались на той же диете, но не получали ресвератрол.

Без лишних слов понятно, почему эта статья привлекла к себе повышенное внимание. Если бы можно было достичь тех же результатов и у людей, то ресвератрол стал бы пропуском в жизнь без ожирения. Ешьте, сколько хотите, толстейте, насколько пожелаете, и живите долгую, здоровую и полноценную жизнь. Можно не оставлять на тарелочке третью часть каждого блюда и не беспокоиться о потере мышечного тонуса и либидо.

Как же ресвератролу удавалось добиться этого? В предыдущей статье той же группы ученых отмечалось, что ресвератрол активирует белок сиртуина, в данном случае Sirt1. Считается, что Sirt1 очень важен для контроля сахарного и жирового обмена.

Профессор Синклер создал компанию под названием «Сиртрис Фармасьютикалс», которая продолжила работу над созданием новых соединений, в основе которых лежала структура ресвератрола. В 2008 году корпорация «Глаксо-Смит-Кляйн» заплатила 720 миллионов долларов за «Сиртрис Фармасьютикалс», чтобы получить доступ к ее теоретическим и практическим разработкам соединений для лечения сопутствующих старению заболеваний.

Многими экспертами стоимость этой сделки была признана завышенной, и это была не единственная связанная с ней проблема. В 2009 году группа ученых из конкурирующей фармацевтической компании «Амген» опубликовала свой доклад. Они утверждали, что ресвератрол не активирует Sirt1, а обнадеживающие результаты первоначальных экспериментов были вызваны техническими проблемами. Вскоре после этого исследователи из компании «Пфайзер», еще одного фармацевтического гиганта, опубликовали статью, в которой поддержали мнение ученых «Амгена».

На самом деле для крупных фармацевтических компаний очень нехарактерно публиковать работы, в которых всего лишь опровергаются открытия, сделанные другими компаниями. Поступки такого рода не приносят никакой выгоды. В конечном итоге о деятельности фармацевтических компаний судят по лекарственным препаратам, которыми тем удалось насытить рынок, поэтому критика конкурента на ранних этапах программы по разработке лекарственных средств не дает никаких коммерческих преимуществ. Тот факт, что «Амген» и «Пфайзер» выступили с публичным обнародованием своих мнений, лишний раз свидетельствует о том, насколько полемичной стала история с ресвератролом.

Имеет ли значение, как действует ресвератрол? Не более ли важен тот факт, что он демонстрирует действительно поразительные результаты? Если вы пытаетесь разработать новое лекарство для лечения заболеваний человека, ответы на поставленные выше вопросы, к сожалению, имеют огромное значение. Регулирующие органы, выдающие лицензию на производство нового препарата, более благосклонны в своих суждениях, если представляют себе, как действуют эти средства. Отчасти это обусловлено тем, что в этом случае значительно облегчается процесс отслеживания побочных эффектов, поскольку заранее известно, чего от этих препаратов можно ожидать. Однако другой стороной медали является то, что сам по себе ресвератрол, возможно, не является идеальным веществом, которое можно было бы использовать в качестве лекарственного средства.

Эта проблема часто свойственна таким продуктам естественного происхождения как ресвератрол, которые получают из растений. В природные химические соединения приходится вносить определенные изменения, существенные или незначительные, чтобы они лучше циркулировали по организму и не оказывали нежелательных побочных действий. Например, артемизинин является химическим соединением, которое получают их китайской полыни и используют для лечения малярии. Сам по себе артемизинин плохо воспринимается человеческим организмом, поэтому исследователям пришлось разработать соединения, с вариантами химической струкгуры исходного натурального продукта. В такой форме вещества убивают малярийных паразитов, но они также и значительно лучше, чем артемизинин, воспринимаются нашим организмом.

Но если мы не знаем точно, как именно работает то или иное соединение, то нам будет очень сложно разработать и испытать новые препараты, поскольку нам не известно, как проверить, продолжают ли они воздействовать на нужный белок.

«Глаксо-Смит-Кляйн» продолжает свои программы исследования сиртуина, но, беспокоясь о репутации компании, они прекратили клинические испытания особой формулы ресвератрола для лечения такого заболевания как множественная миелома из-за побочного эффекта почечной токсичности.

Прогресс в исследованиях активаторов сиртуиновой гистондеацетилазы представляет огромный интерес для всех крупных игроков фармацевтического рынка. Мы еще не знаем наверняка, продолжат ли эти эпигенетические модификаторы оставаться на повестке дня или по ним прозвонит погребальный колокол, знаменуя, что они не соответствуют выполнению поставленной перед ними специфической задачи увеличения продолжительности жизни и борьбы с возрастными заболеваниями. Так что пока нам остается придерживаться старого проверенного рецепта: больше есть овощей и фруктов, активнее заниматься физическими упражнениями и стараться избегать жесткого «верхнего освещения» — пользы оно никому еще не принесло.