Одна из наиболее примечательных особенностей эпигенетики заключена в том факте, что эта отрасль науки в некотором роде вполне доступна и неспециалистам. Конечно, не у всех из нас есть доступ к самому современному экспериментальному оборудованию, и потому не каждый сумеет с точностью определить, какие изменения хроматина лежат в основе тех или иных эпигенетических явлений. Но любой из нас в состоянии наблюдать окружающий мир и делать прогнозы на основании собственных наблюдений. Все, что нам для этого требуется, это оглядеться вокруг и определить, отвечает ли какой-либо феномен двум важнейшим критериям эпигенетики. Благодаря этому мы получим возможность увидеть весь мир, включая и человека, в совершенно новом свете. Эти два критерия — те самые, к которым мы то и дело возвращались на протяжении всей нашей книги. Любое явление испытывает на себе влияние эпигенетических изменений в ДНК и соответствующих белках в том случае, если удовлетворяются одно или оба из следующих условий.

1. Два организма генетически идентичны, но фенотипически различны.

2. Организм продолжает находиться под влиянием некого события, хотя оно произошло много лет тому назад.

Разумеется, нам ни в коем случае не следует игнорировать и фильтры здравого смысла. Если кто-то потерял ногу в результате несчастного случая, то тот факт, что и через двадцать лет этот человек по-прежнему остается без ноги, отнюдь не означает, что виной тому некие эпигенетические механизмы. С другой стороны, этот человек может продолжать испытывать ощущение, будто у него обе ноги. Такой синдром фантомной конечности вполне может быть вызван запрограммированными схемами экспрессии генов в центральной нервной системе, которые частично поддерживаются эпигенетическими модификациями.

Иногда мы оказываемся настолько очарованы технологиями, применяемыми в современной биологии, что попросту забываем, как много нового можем узнать, если всего лишь более внимательно будем присматриваться к тому, что нас окружает. Например, нам далеко не всегда требуется сложное лабораторное оборудование, чтобы определить, являются ли два фенотипически разных организма генетически идентичными. Личинки становятся мухами, а гусеницы превращаются в бабочек. Отдельная личинка и взрослая муха, в которую она со временем разовьется, должны обладать одним и тем же генетическим кодом. В процессе метаморфоза личинка отнюдь не обзаводится новым геномом. Значит, личинка и муха используют один и тот же геном, но, совершенно разными способами. Гусеница бабочки-репейницы очень невзрачная на вид, и все ее тело усеяно длинными волосками. Как и у личинки, крыльев у нее нет. Бабочка-репейница—удивительно красивое создание с громадными крыльями, окрашенными в черный и ярко-оранжевый цвета, и без волосков на тельце. И в этом случае отдельная гусеница и бабочка, в которую она превратилась, должны иметь одну и ту же программу ДНК. Однако две пьесы, поставленные по одному сценарию, разительно отличаются друг от друга. Мы вправе предположить, что причиной тому служат эпигенетические явления.

В Европе и Северной Америке обитает горностай вида Mustela ermine. Летом мех этого сильного и ловкого маленького хищника семейства куньих на спинке нежно-коричневый, а на грудке — сливочно-белый. С наступлением холодов его шубка становится абсолютно белой и остается такой, за исключением по-прежнему черного кончика хвоста, на протяжении всей зимы. С приходом весны наряд горностая опять приобретает летние цвета. Мы знаем, что причины этого в гормональных явлениях, вызывающих сезонные изменения окраса меха. Вполне разумно предположить, что эти явления влияют на экспрессию соответствующих генов, определяющих цвет меха, способами, среди которых присутствуют и эпигенетические модификации хроматина.

У млекопитающих обычно существует понятная генетическая причина того, почему самцы являются самцами, а самки — самками.

Функциональная хромосома Y приводит к мужскому фенотипу. У многих видов земноводных, в том числе у крокодилов и аллигаторов, оба пола генетически идентичны. По хромосомам пол крокодила определить невозможно. Будущий пол крокодила и аллигатора зависит от температуры на критических этапах развития яиц — одна и та же генетическая калька используется для появления и самцов, и самок. Мы знаем, что в этом процессе участвует гормональная сигнальная система. Пока не проводились достаточно тщательные исследования вопроса, играют ли эпигенетические модификации свою роль в установлении или стабилизации определяющих пол схем экспрессии генов, но такая возможность представляется вполне вероятной.

Понимание механизмов установления половой принадлежности у крокодилов и их родственников уже в самом ближайшем будущем может стать очень важным требованием для сохранения этих видов. Глобальные перепады температур, вызванные изменениями климата, могут иметь самые неблагоприятные последствия для земноводных, если доля одного или другого пола в их популяциях резко сократится. Некоторые авторы даже высказывают такую точку зрения, что подобный феномен, возможно, привел к вымиранию динозавров.

Изложенные выше мысли представляют собой вполне конкретные и легко проверяемые гипотезы. Мы можем выдвинуть огромное множество и других предположений, просто внимательнее наблюдая окружающий нас мир. Довольно рискованно делать какие-либо масштабные заявления по поводу того, каких открытий и откровений можно ждать от новых исследований в области эпигенетики. Это еще очень молодая наука, стремящаяся развиваться в самых разных и подчас неожиданных направлениях. Но давайте все же возьмем на себя смелость сделать некоторые предположения о том, что может произойти в этой области в обозримом будущем.

Начнем с самого очевидного. До 2016 года, по меньшей мере, одна Нобелевская премия по физиологии и медицине будет присуждена кому-либо из ведущих специалистов в эпигенетике. Вопрос только в том, кому именно, поскольку достойных кандидатов и сейчас более чем достаточно.

Многие эпигенетики искренне недоумевают, почему эту премию до сих пор не получила Мэри Лайон за свою удивительно пророческую работу, посвященную инактивации хромосомы X. Хотя в ее ключевых докладах, заложивших концептуальную основу инактивации хромосомы X, и не было приведено много новых экспериментальных данных, но то же самое можно сказать и в отношении основополагающей работы Джеймса Уотсона и Френсиса Крика о строении ДНК. Велико искушение порассуждать на тему того, что для получения Нобелевской премии необходимо, кроме научных достижений, обладать еще и соответствующей половой принадлежностью, однако такая точка зрения отчасти основывается на мифе, выросшем вокруг имени Розалинд Франклин. Работая в области рентгеновской кристаллографии, она получила данные, сыгравшими важную роль в разработке модели ДНК Уотсона—Крика. Когда в 1962 году Нобелевская премия была присуждена Уотсону и Крику, ее также получил руководитель лаборатории Розалинд Франклин, профессор Морис Уилкинс из лондонского Королевского колледжа. Однако сама Розалинд Франклин не была удостоена премии не потому, что была женщиной. Она не смогла получить ее, потому что, как это ни прискорбно, скончалась от рака яичников в возрасте 37 лет, а Нобелевская премия никогда не присуждается посмертно.

На страницах этой книги мы уже встречались с ученым по имени Брюс Каттенач. Кроме работы об эффектах исходного родителя, он также провел несколько новых экспериментов на ранних стадиях изучения молекулярных механизмов, лежащих в основе подавления хромосомы X. По этой причине большинство исследователей считают его, наряду с Мэри Лайон, достойным кандидатом на получение Нобелевской премии. Мэри Лайон и Брюс Каттенач большую часть своих исследований проводили в 1960-е годы и теперь давно уже на пенсии. Однако Роберт Эдвардс, пионер в экспериментах по оплодотворению в лабораторных условиях, получил Нобелевскую премию в 2010 году в возрасте 85 лет, так что у профессоров Лайон и Каттенача еще есть время и надежда.

Работа Джона Гердона и Шиньи Яманаки, посвященная перепрограммированию клеток, перевернула наши представления о том, как контролируются судьбы клеток, и потому оба они вправе в самое ближайшее время заказывать билеты в Стокгольм. Несколько менее очевидную, но вместе с тем в высшей степени привлекательную команду составили бы Азим Сурани и Эмма Уайтло. Их совместная работа не только ярко продемонстрировала, как обычно перезагружается геном при половом воспроизведении, но и показала, как порой этой процесс может нарушаться и приводить к наследованию приобретенных характеристик. Дэвид Эллис принадлежит к ведущим специалистам в изучении эпигенетических модификаций гистонов, и его кандидатура также выглядит весьма привлекательной, возможно, в партнерстве со светилами в области метилирования ДНК, такими как, в первую очередь, Эдриан Берд и Питер Джонс.

Питер Джонс стал первопроходцем в развитии эпигенетических способов лечения, а это еще одна стремительно растущая отрасль эпигенетики. В первых рядах эпигенетической терапии решительно маршируют ингибиторы гистондеацетилаз и метилтрансфераз ДНК. Огромное число клинических испытаний этих соединений до последнего времени было направлено на поиски борьбы с раком, но теперь ситуация начинает меняться. В настоящий момент уже начались клинические испытания ингибитора гистондеацетилаз класса сиртуинов для лечения болезни Хантингтона, тяжелого наследственного нейродегенеративного расстройства. Огромное внимание сейчас сосредоточено на разработке лекарственных препаратов, способных подавлять узкоспециализированные эпигенетические ферменты, что позволит препятствовать развитию не только рака, но и неонкологических заболеваний. К таким ферментам относятся те, которые меняют всего лишь одну модификацию на одной конкретной позиции аминокислоты в гистоновых белках. В эти разработки по всему миру вкладываются сотни миллионов долларов как новыми компаниями, занимающимися биотехнологиями, так и фармацевтическими гигантами. В ближайшие пять лет мы наверняка станем свидетелями того, как созданные в результате этих исследований новые лекарственные средства для борьбы с раком, пройдут клинические испытания, а в течение десятилетия появятся препараты для лечения и других, менее угрожающих жизни заболеваний.

Наше расширяющееся понимание эпигенетики и особенно трансгенерационной наследственности не только способствует появлению новых возможностей, но и порождает определенные проблемы в разработке новых лекарственных средств. Если мы создадим новые лекарства, способные вмешиваться в эпигенетические процессы, то не повлияют ли эти препараты также и на перепрограммирование, которое обычно происходит при производстве половых клеток? Теоретически это может привести к физиологическим изменениям, которые затронут не только проходящего лечение человека, но также и его детей и внуков. Возможно, наши опасения не должны ограничиваться только химическими соединениями, воздействующими на конкретные эпигенетические ферменты. Как мы узнали из главы 8, загрязняющий агент под названием винклозолин оказывает свое губительное воздействие на многие поколения грызунов. Если властные структуры, регулирующие лицензирование новых лекарственных препаратов, будут настаивать на проведении их трансгенерационных исследований, то процесс создания новых лекарств существенно усложнится, а расходы на его осуществление возрастут многократно.

На первый взгляд такое развитие событий может показаться вполне разумным, ведь все мы, в конце концов, хотим, чтобы лекарства были максимально безопасными. Но что тем временем будет происходить со всеми больными, отчаянно нуждающимися в новых препаратах, которые могли бы спасти их от смертельных заболеваний, или с теми пациентами, которым требуются новые, более совершенные лекарства, способные освободить их от мук и беспомощности и обеспечить долгую и полноценную жизнь? Чем больше времени требуется лекарствам, чтобы проделать путь из лабораторий в аптеки, тем дольше страдают нуждающиеся в них больные. Будет очень интересно наблюдать, как через ближайшие десять-пятнадцать лет смогут решить этот непростой вопрос все заинтересованные стороны — фармацевтические компании, регулирующие органы и представители больных.

Трансгенерационные эффекты эпигенетических изменений способны в ближайшее десятилетие оказать огромное влияние на здоровье человека, и причиной тому могут быть не только лекарства или загрязняющие агенты, но также продукты и питание. Свое путешествие по эпигенетическим ландшафтам мы начинали с краткого описания Голландской голодной зимы. Последствия ее сказались не только на тех, кто пережил эту пору, но и на их потомках. Сейчас же мир находится в тисках глобальной эпидемии ожирения. Даже если обществу и удастся поставить в будущем эту проблему под свой контроль (а в западном полушарии каких-либо существенных предпосылок для этого не наблюдается), в настоящий момент мы уже рискуем оставить своим детям и внукам очень неблагоприятное эпигенетическое наследство.

Питание в целом является той областью, где можно с достаточной уверенностью предсказать ведущую роль эпигенетики, которую она непременно начнет играть в следующее десятилетие. Вот всего лишь некоторые примеры того, что нам достоверно известно в настоящий момент.

Фолиевая кислота является одной из добавок, которые рекомендуется принимать беременным женщинам. Понимание необходимости увеличения запасов в организме фолиевой кислоты на самых ранних этапах беременности стало настоящим триумфом здравоохранения, поскольку ее прием резко сокращает случаи развития расщелины позвоночника у новорожденных. Фолиевая кислота требуется для производства химического соединения под названием SAM (полностью оно называется s-аденозилметионин). SAM представляет собой молекулу, которая отдает метиловую группу, когда метилтрансферазы ДНК модифицируют ДНК. Если в рационе новорожденных крысят уровни содержания фолиевой кислоты низкие, у них развивается аномальная регуляция импринтинговых областей генома. Сейчас мы находимся только в самом начале понимания того, насколько положительно может повлиять фолиевая кислота на эпигенетические механизмы.

Ингибиторы гистондеацетилазы в нашем рационе также способны сыграть важную роль в профилактике рака и, возможно, других заболеваний. Пока мы располагаем в основном теоретической информацией по этому вопросу. Маслянокислый натрий в сыре, сульфорафан в спаржевой капусте и диаллиловый дисульфид в чесноке — все это слабые ингибиторы гистондеацетилаз. Исследователи выдвигают предположение, что высвобождение этих соединений из продуктов питания в процессе их переваривания помогает регулировать экспрессию генов и способствует размножению клеток в пищеварительном канале. Теоретически, это может снижать риск развития канцерогенных изменений в толстой кишке. Бактерии в нашем кишечнике также естественным образом продуцируют масляную кислоту из частичек пищи, особенно из растительных продуктов, что само по себе является достаточным основанием для того, что кушать как можно больше зелени.

Весьма любопытные статистические исследования были проведены в Исландии на тему того, как рацион может оказывать эпигенетическое влияние на заболевание. Они касались редкого генетического расстройства под названием наследственная цистатин-С амилоидная ангиопатия, вызывающего преждевременную смерть в результате инсульта. Для пациентов, страдавших этим заболеванием, была характерна определенная мутация ключевого гена. Благодаря относительной изолированности проживания семей, членами которых были больные, и высокой культуре ведения в Исландии учетных записей, ученым удалось проследить подверженность этому заболеванию различных поколений одних и тех же семей. Полученные ими результаты оказались в высшей степени удивительными. Приблизительно до 1820 года люди с такой мутацией жили в среднем до 60 лет. Между 1820 и 1900 годами продолжительность жизни страдающих этим заболеванием людей резко упала примерно до 30 лет и с тех пор остается на этом уровне. Исследователи в опубликованном ими докладе выдвинули гипотезу, что изменения окружающей среды, начавшиеся в 1820 году и продолжившиеся с того времени, изменили способы, которыми клетки реагировали на вызываемые мутацией эффекты и контролировали их.

На конференции, состоявшейся в Кембридже в 2010 году, эта группа исследователей сообщила, что одним из главных факторов изменения окружающей среды в Исландии с 1820 года и по настоящий день стала замена традиционного для населения страны рациона на режим питания, принятый в континентальной Европе. Привычная прежде для исландцев диета в основном состояла из сушеной рыбы и ферментированного масла. Последнее очень богато масляной кислотой, являющейся слабым ингибитором гистондеацетилазы. Ингибиторы гистондеацетилазы могут менять функции мышечных волокон в кровеносных сосудах, что очень характерно для того типа инсульта, от которого гибнут люди с этой мутацией. Пока нет формальных доказательств, что именно сокращение приема с пищей ингибиторов гистондеацетилазы стало причиной смертности в более раннем возрасте представителей исследуемых групп, однако эта гипотеза выглядит достаточно правдоподобной.

Фундаментальная эпигенетика является той научной дисциплиной, в которой наиболее сложно делать какие-либо прогнозы. Наверняка, пожалуй, можно утверждать лишь то, что эпигенетические механизмы будут продолжать неожиданно проявлять себя в самых непредсказуемых областях науки. Достойным примером этому может служить сделанное недавно открытие в области природы циркадных ритмов — естественных околосуточных циклических колебаний физиологических и биохимических процессов, свойственных подавляющему большинству живых существ. Было доказано, что гистоновая ацетилтрансфераза является ключевым белком, участвующим в установлении этого ритма, а сам ритм регулируется по меньшей мере еще одним другим эпигенетическим ферментом.

Вполне вероятно и то, что нам предстоит узнать, что некоторые эпигенетические ферменты способны влиять на клетки самыми разными способами. Предположить это заставляет то, что довольно многие из этих ферментов не только модифицирует хроматин. Они также способны модифицировать и другие белки в клетке, а это значит, что эти ферменты могут действовать одновременно сразу в нескольких направлениях. Более того, ученые уже выдвигают предположения, что некоторые из модифицирующих гистоны генов на самом деле возникли до того, как в клетках оказались гистоны. Это заставляет думать, что эти ферменты изначально обладали иными функциями и в ходе эволюционного развития были насильно преобразованы в контроллеры экспрессии генов. Таким образом, мы не должны слишком удивляться, когда и если обнаружим, что некоторые ферменты выполняют в наших клетках более чем одну функцию.

Некоторые из наиболее фундаментальных вопросов, касающихся молекулярной механики эпигенетики, по-прежнему остаются для нас загадочными. Наши знания о том, как именно конкретные модификации устанавливаются на определенных позициях в геноме, очень фрагментарны. Мы только начинаем понимать, какую роль в этом процессе играют некодирующие РНК, однако в наших представлениях об этом все еще слишком много белых пятен. Мы также далеко не до конца отдаем себе отчет в том, как гистоновые модификации передаются от материнской клетки дочерним клеткам. Есть абсолютная уверенность в том, что такая передача имеет место, так как она является частью молекулярной памяти клеток, позволяющей им продолжать следовать своей судьбе, но мы не знаем, как именно это происходит. Когда ДНК копируется, гистоновые белки сдвигаются на одну сторону. На новой копии ДНК может оказаться относительно мало модифицированных гистонов. Вместо этого она может быть окружена девственными гистонами, практически лишенными каких-либо модификаций. Это состояние корректоруется очень быстро, но мы совершенно не понимаем, как именно это происходит, даже несмотря на то, что этот вопрос является одной из самых фундаментальных проблем всей эпигенетики.

Вполне возможно, что нам не удастся найти ответ на этот вопрос до тех пор, пока мы не вооружимся технологиями и мышлением, выходящими за рамки традиционных двух измерений и позволяющими проникнуть в новый, трехмерный мир. Мы слишком привыкли думать о геноме в линейных терминах, представляя его состоящей из оснований цепочкой, которая может быть прочитана только последовательно и без затей. Реальность же в том, что разные области генома согнуты и свернуты, и, контактируя между собой, они создают новые комбинации и регуляторные подгруппы. Мы представляем себе наш генетический материал неким обычным сценарием, однако на самом деле он больше похож на сложенные гармошкой страницы журнала «Мэд», когда, складывая их определенным образом под разными углами, мы каждый раз получаем новую картинку. Понимание этого процесса может стать принципиально важным условием реального проникновения в тайны того, как взаимодействуют эпигенетические модификации и сочетания генов, создавая в результате этого процесса такое чудо как червь, или дуб, или крокодил.

Или человек.

Итак, вот резюме того, что нам следует ждать от эпигенетических исследований в следующее десятилетие. У людей появятся новые надежды, многие из которых будут неоправданными, излишне многообещающими, заводящими в тупики, вынуждающими делать неверные повороты и двигаться в ложных направлениях, а иногда и заставляющими идти на подлог. Наука — человеческое изобретение, и временами ей тоже свойственно ошибаться, однако к концу следующего десятилетия мы обязательно получим гораздо больше ответов на самые животрепещущие вопросы биологии. Сейчас мы не можем предположить, какими будут эти ответы, а во многих случаях мы даже не имеем представления, на какие вопросы они будут даны, но в одном мы можем быть уверены абсолютно.

Эпигенетическая революция продолжается.