Мусорная ДНК. Путешествие в темную материю генома

Кэри Несса

Глава 9. Раскрашивая темную материю

 

 

В биологии за вопросом «Что делает какой-то объект?» почти всегда следует другой: «Как он это делает?». Мы знаем, что такое длинные некодирующие РНК, и мы знаем по меньшей мере кое-какие их функции: эти РНК регулируют экспрессию генов. Отсюда вытекает логичный вопрос: каким образом они это проделывают?

Не ждите одного общего ответа. Человеческий геном производит многие тысячи длинных некодирующих РНК. Вряд ли все они действуют одинаково. Однако мы уже начали выявлять здесь некоторые единые темы.

Одна из наиболее важных тем имеет отношение к свойству, с которым мы уже сталкивались в главе 6, обсуждая центромеры и их роль в делении клеток. Вновь обратившись к рис. 6.3, вспомним, что ДНК наших клеток обернута вокруг групп, в каждой из которых содержится по 8 особых белков — гистонов. Мы рассматривали гистоны лишь как «упаковочные» белки, однако на самом деле они выполняют гораздо более сложные задачи. Наши клетки способны модифицировать гистоны или саму ДНК. Они осуществляют это, добавляя к ним небольшие химические группы. Эти химические прибавления не изменяют саму нуклеотидную последовательность гена. Ген по-прежнему будет кодировать ту же самую молекулу РНК и тот же самый белок (если речь идет о гене, кодирующем белок). Однако такие модификации меняют вероятность того, что данный ген будет экспрессироваться. Пристраиваемые группы сами служат участками, к которым прикрепляются другие белки. Эти модификации — первичные участки прикрепления, на основе которых постепенно выстраиваются большие белковые комплексы, которые в конечном счете и выключают (или включают) ген.

Такие изменения в ДНК и белках, на которые она влияет, называются эпигенетическими модификациями1. «Эпи-» происходит от греческого слова, означающего «на», «в», «в добавление к», «точно так же, как». Подобные модификации — своего рода добавление к генетической последовательности. Наиболее распространенная из них (все остальные распространены гораздо меньше) наблюдается на тех участках, где за нуклеотидным основанием Ц следует основание Г. Такая последовательность называется ЦГ-последовательностью. Клеточные ферменты способны добавить тут модифицирующую — здесь метильную — группу. Она пристраивается к основанию Ц. Метильная группа состоит всего из одного атома углерода и трех атомов водорода. Она имеет очень маленькие размеры. Прикрепить такую группку на основание Ц — то же самое, что прикрепить листок клевера на боковую часть цветка подсолнуха.

Если на данном участке ДНК много ЦГ-мотивов, он имеет много мест, к которым способна эпигенетически присоединяться метильная группа. Это привлекает белки, подавляющие экспрессию соответствующего гена. В экстремальных случаях, когда имеется множество ЦГ-мотивов, находящихся поблизости друг от друга, метилирование ДНК может оказывать чрезвычайно сильное и глубокое воздействие. В сущности, при этом ДНК меняет форму и соответствующий геи полностью выключается. Более того, он может отключаться не только в данной клетке, но и во всех дочерних, создаваемых ею в результате деления. В неделящихся клетках (скажем, нейронах мозга) такие схемы метилирования ДНК порой складываются еще в тот период, когда мы находимся в утробе матери. Многие из этих схем будут продолжать действовать и через сто лет, если нам удастся протянуть так долго.

Осознание того, что метилирование ДНК умеет практически на всю жизнь отключать гены конкретного человека, произвело много шума. Похоже, наконец-то ученые обзавелись механизмом, объяснявшим то, что десятилетиями мучило специалистов. Уже давно было известно, что генетика объясняет не все: существует масса ситуаций, когда два генетически идентичных объекта все же различны. Вот примеры. Когда гусеница окукливается и затем превращается в бабочку, она продолжает использовать тот же геном. Генетически тождественные друг другу мыши, выращенные в лаборатории при совершенно одинаковых условиях, имеют разный вес.

Мы с вами, дорогие читатели, являем собой подлинные шедевры эпигенетики. 50-70 триллионов клеток человеческого организма почти все содержат, по большому счету, один и тот же генетический код. И выделяющие соль клетки наших потовых желез, и кожные клетки наших век, и клетки, которые вырабатывают амортизирующую хрящевую ткань в наших коленях, — все они содержат одну и ту же ДНК. Они просто по-разному используют информацию, содержащуюся в ее генах: тут многое зависит от конкретной ткани. Скажем, нейроны головного мозга экспрессируют рецепторы нейротрансмиттеров, но отключают гены, отвечающие за выработку гемоглобина — пигмента, в котором наши красные кровяные тельца переносят кислород.

Все это — примеры ситуаций, которые мы не первое десятилетие именуем эпигенетическими явлениями. Да-да, тот же самый термин, что и для модификаций. И не зря. Речь идет о ситуациях, когда происходит что-то «в добавление к» генетическому коду.

Открытие процесса метилирования ДНК наконец дало нам механизм эпигенетических явлений. В нейроне гены, отвечающие за выработку гемоглобина, подвергаются массированному метилированию и отключаются. Они остаются в отключенном состоянии на протяжении всей жизни человека. Однако в клетках, порождающих красные кровяные тельца, эти гены не метилируются, и гемоглобин преспокойно синтезируется. Зато в этих клетках при помощи эпигенетического механизма отключаются гены, кодирующие рецепторы нейротрансмиттеров.

Метилирование ДНК — процесс, приводящий к довольно стойким изменениям. Удалить модифицирующие группы на удивление трудно. Это хорошо — если вашим клеткам нужно на протяжении долгих периодов поддерживать определенные гены в отключенном состоянии. Однако зачастую наши клетки вынуждены откликаться на кратковременные изменения в своем окружении: скажем, если мы пьем алкогольные напитки или вымотались после собеседования при устройстве на работу. Тогда организм обращается к другой системе. Клетки добавляют модификации к гистонам, расположенным рядом с генами. Этот процесс тоже может отключать гены, однако такие модификации сравнительно легко удалить, а значит, при необходимости клетка сумеет быстро включить гены вновь. Гистонные модификации также могут применяться для модулирования экспрессии гена: его можно включить слегка, посильнее, очень сильно, на всю катушку. Метилирование ДНК в этом смысле подобно выключателю, а модификации гистонов — регулятору громкости.

Гистонные модификации могут выступать как механизм тонкой настройки генетической экспрессии благодаря тому, что таких модификаций множество. Если ДНК сравнить с черно-белым изображением (возможно, разбавленным некоторыми оттенками серого в зависимости от уровня метилирования), то гистонные модификации — это яркая цветная картинка. В гистонах есть множество аминокислот, способных подвергаться модификации. К этим многообразным аминокислотам могут пристраиваться по меньшей мере 60 различных химических групп. Это выводит нас на невероятный уровень сложности, поскольку для каждого гена (или для одного и того же гена в разных типах клеток) существуют тысячи возможных комбинаций гистонных модификаций. Клетка интерпретирует их по-разному, поскольку эти модификации будут привлекать различные комплексы белков, контролирующие генетическую экспрессию и картину ее распределения. Одни комбинации будут усиливать экспрессию генов, другие — ослаблять ее.

 

Отыскать местечко в геноме

Но ученых годами терзала одна загадка. Ферменты, пристраивающие модификации к гистонам, не различают особенностей ДНК-последовательности. Они не связываются с ДНК и не умеют отличать одну ДНК-последовательность от другой. Однако выяснилось, что в присутствии определенного стимула (для разных ферментов он может быть разным) ферменты с высокой точностью модифицируют определенные гистоны. Они добавляют модифицирующие группы к гистонам, расположенным на нужных генах (или удаляют из них модифицирующие группы), игнорируя близлежащие гистоны, связанные с генами, которые их не интересуют.

Современные исследования вроде бы показывают, что одна из функций длинных некодирующих РНК — выступать в роли своего рода молекулярного клейкого вещества, привлекающего гистономодифицирующие ферменты в окрестности выбранных генов. Одно из указаний на это получено при изучении функций определенных длинных некодирующих РНК в эмбриональных клетках человека (мы говорили об этих клетках в главе 8). Ученые показали, что примерно треть исследованных длинных некодирующих РНК соединяется с белковыми комплексами, в состав которых входят и гистономодифицирующие ферменты. Чтобы выяснить, имеет ли какие-то функциональные последствия такое связывание длинных некодирующих РНК с белками, исследователи подавляли экспрессию гистономодифицирующего фермента, который входит в состав комплекса. Почти в половине случаев изучаемые воздействия на клетку и на экспрессию генов оказывались такими же, как если бы экспериментаторы подавляли самую длинную некодирующую РНК. Это позволило предположить, что длинная некодирующая РНК и ферменты, модифицирующие гистоны, действительно ведут в клетке совместную деятельность2.

Многие исследователи взаимодействия между длинными некодирующими РНК и эпигенетическими системами обращают главное внимание на определенный эпигенетический фермент. Он производит особую гистонную модификацию, которую с высокой вероятностью связывают с отключением генов. Будем называть этот фермент главным репрессором. Оказалось, он взаимодействует со множеством различных длинных некодирующих РНК.

Длинная некодирующая РНК этого гена нацеливается на главный репрессор этого гена, а он затем создает на гистонах репрессивные модификации, тем самым заглушая экспрессию генов. Эти репрессивные модификации привлекают к себе другие белки, которые связываются с данным геном и подавляют его еще сильнее.

Такой контроль, осуществляемый главным эпигенетическим ферментом-репрессором, часто используется для управления генами, которые кодируют другие эпигенетические ферменты. Нередко такие гены оказывают противоположное воздействие на главный репрессор, то есть они склонны не отключать, а включать гены. Суммарный эффект таков: главный репрессор оказывает сильное влияние на общий характер генетической экспрессии3. Он подавляет гены не только напрямую, но и при косвенном воздействии — препятствуя экспрессии эпигенетических ферментов, которые обычно отключают другие гены. Получается двойной эпигенетический удар.

Как правило, это совершенно нормальная составляющая процессов контроля генетической экспрессии в наших клетках. Система делает в точности то, что должна делать: обеспечивает синхронную работу всех сложных клеточных механизмов. Но если в этом комплексном взаимодействии между некодирующими РНК и эпигенетической аппаратурой что-то пойдет не так, могут возникнуть проблемы.

К сожалению, именно это, по-видимому, происходит при некоторых формах рака. При определенных разновидностях онкологических заболеваний главный репрессор претерпевает сверхэкспрессию (скажем, при различных видах рака простаты4 и рака груди5). Такая сверхэкспрессия считается негативным прогностическим фактором для больных. При некоторых видах рака крови главный репрессор мутирует, что делает его аномально активным6. Похоже, в каждом из таких случаев подавляется «не тот» ген. Отсюда дисбаланс: белки, побуждающие клетку размножаться, «обгоняют» те белки, которые обычно действуют как тормоз. Так клетку подталкивают к раковому состоянию. А препараты, ингибирующие активность главного репрессора, пока еще находятся на ранних стадиях клинических испытаний7.

Главный репрессор действует как часть большого комплекса белков. Исследователи показали, что самые разные длинные некодирующие РНК так или иначе связаны с функционированием этого комплекса. Возможно, существует целый ряд способов достижения репрессивных модификаций — в зависимости от типа клетки и от ее поведения. В главе 8 мы познакомились с длинной некодирующей РНК, чья сверхэкспрессия способствует развитию рака простаты. Удалось показать, что она связывается с главным репрессором и направляет его на определенные гены, в том числе и на те, которые в нормальных условиях сдерживают размножение клеток8. Эта находка подтверждает гипотезу, согласно которой существует тонкий баланс между длинными некодирующими РНК и эпигенетическими модификаторами, а нарушение такого равновесия может оказаться опасным для клетки или для организма в целом. Подкрепляют эту гипотезу и схожие данные о связывании длинной некодирующей РНК, участвующей в процессах возникновения деформаций скелета и развитии целого ряда форм рака (мы обсуждали эту РНК в той же главе). Данная РНК связывается с комплексом, содержащим главный репрессор, а одновременно — с другим эпигенетическим ферментом, способным вызывать дополнительную репрессивную модификацию9.

В этом объяснении как бы подразумевается, что длинная некодирующая РНК транскрибируется на гене, чьи гистоны атакуются главным репрессором или другими эпигенетическими ферментами (или же она транскрибируется рядом с этим геном). Трудно выяснить, как обстоит дело в реальности. Существующие данные вроде бы подтверждают: так и есть. Главный репрессор может связываться со всевозможными молекулами длинных некодирующих РНК. Комплекс, содержащий главный репрессор, способен распознавать те или иные типы гистонных модификаций — в зависимости от компонентов самого комплекса. Эти компоненты могут оказаться различными в разных клетках. «Сканируя» близлежащие гистоны, такие комплексы могут распознавать многообразные картины модификаций и усиливать их, добавляя к ним главные репрессивные модификации. А если данная область сильно насыщена модификациями, которые приводят к генетической экспрессии, этот комплекс может ингибироваться, и главный репрессор оставит гистоны в покое. Вот вам еще один пример того, что линейное мышление не всегда годится для рассуждений о том, что первично. Картина модификаций часто поддерживается или создается лишь как следствие комбинаций гистонных модификаций, уже имеющихся в геноме10,11.

Похоже, то же самое верно и для противоположного эффекта — когда активные участки остаются активными. Сообщалось о длинных некодирующих РНК, экспрессируемых на участках, где гены, кодирующие белки, находятся во включенном состоянии. Эти длинные некодирующие РНК остаются прикрепленными к тому геномному региону, где они вырабатываются. Тем самым они, вероятно, образуют своего рода третью нить в дополнение к двойной спирали ДНК. Эти длинные некодирующие РНК связываются с ферментами, которые нацепляют на ДНК метильные модификации. При этом такие РНК останавливают работу этих ферментов. А значит, гены данной области по-прежнему остаются в активном состоянии12.

 

Если вы неактивны, вы остаетесь неактивны

Xist-РНК, играющая, как мы уже знаем, главную роль в подавлении экспрессии одной из X-хромосом женской клетки, оказалась одной из первых длинных некодирующих РНК, о которых стало известно, что они обладают какой-то функцией. Неудивительно, что именно ее взаимодействие с эпигенетической системой удалось показать наиболее отчетливо. По мере того, как Xist-РНК распространяется вдоль X-хромосомы, она привлекает другие белки. Многие из них — эпигенетические ферменты, которые добавляют химические модификации либо к ДНК, либо к гистону. В число этих ферментов входит главный репрессор гистонов, а также ферменты, которые пристраивают метильные группы к ДНК13. Они порождают эпигенетические модификации, усиливающие подавление генов и в конечном счете приводящие к гиперкомпактизации X-хромосомы и образованию тельца Барра (мы встречались с ним в главе 7).

Может показаться странным, что эпигенетические модификации после клеточного деления всегда вновь появляются на нужной X-хромосоме. Приведем один довольно наглядный пример не из мира клеток. Допустим, у вас есть две бейсбольные биты. Одну из них вы покрыли магнитной краской (будем считать, что такая краска — аналог Xist-РНК). После того, как краска высохла, вы бросили обе биты в трубку с маленькими железными дисками. Одна сторона каждого диска покрыта мельчайшими крючочками, как часть застежки-липучки. Эти диски будут изображать эпигенетические белки, которые связываются с участком хромосомы, покрытым Xist-РНК. Такие диски будут прилипать к бите с магнитным слоем, а не к другой. Затем вы извлечете эти биты (вместе с дисками, прилипшими к одной из них) и бросите их в трубку с красивыми цветочками из ткани, к каждому из которых прикреплена часть застежки-липучки, но уже с петельками, а не с крючочками. Это аналог модификаций. Разумеется, цветки будут прилипать лишь к бите, которую вы покрыли магнитным слоем, несмотря на то, что сами цветки не способны ни к чему примагничиваться.

Можно продолжить этот несколько чудноватый мысленный эксперимент. Даже если вы снимете цветки с биты и затем бросите ее в еще одну трубку, содержащую цветки с липучками-петельками, она снова покроется этими цветками. Можете даже ободрать с нее все диски, но если вы затем снова окунете магнитную биту сначала в первую, а затем во вторую трубку, такая бита все равно покроется цветками.

Собственно, сделать так, чтобы эта бита не покрылась цветками после погружения в две трубки, можно единственным способом — счистить с нее магнитную краску. По сути, именно это и происходит, когда женский организм вырабатывает яйцеклетки. Все инактивирующие метки удаляются с X-хромосом и из всех дочерних клеток. Иными словами, все яйцеклетки становятся «чистыми» — в том смысле, что они не передают инактивацию своему потомству. «Магнитную краску» придется заново нанести на одну из X-хромосом в ходе ранней стадии развития эмбриона.

 

Как заставить древних чужаков хранить молчание

Длинные некодирующие РНК явно взаимодействуют с эпигенетическими белками и помогают организму регулировать их функционирование. Впрочем, не стоит думать, будто это единственный путь, каким генетический мусор общается с эпигенетической системой. Вовсе нет. Мы уже видели в главе 4, что человеческий геном давно захвачен огромным количеством повторяющихся ДНК-последовательностей. Мы уже знаем, как важно поддерживать их в отключенном состоянии. Некоторые исследователи предполагают даже, что эпигенетический контроль экспрессии генов мог изначально возникнуть именно для того, чтобы держать в узде определенные мусорные области14. По их мнению, эпигенетическая система лишь позже вошла на новую для себя территорию регуляции нормальных эндогенных генов.

Впечатляющий пример взаимодействия между мусорной ДНК, эпигенетической системой, внешностью и поведением млекопитающего демонстрирует одна из генетических линий мышей — вполне жизнеспособная линия, полученная при скрещивании с желтыми агути. Все мыши этой линии генетически идентичны, но по виду весьма сильно отличаются друг от друга. Одни — толстые и желтые, другие — худые и бурые, а некоторые — нечто среднее. Такие различия во внешности вызваны различным протеканием процессов эпигенетической регуляции мусорной области ДНК. У этих мышей повторяющийся элемент ДНК-последовательности встроен в геном, где предшествует определенному гену. Этот элемент может случайным образом подвергаться метилированию, причем в различной степени. Чем сильнее метилирование, тем больше подавляется активность повторяющегося элемента ДНК-последовательности. А это, в свою очередь, влияет на близлежащий ген16. Именно уровни экспрессии этого гена в конечном счете и определяют, насколько толстой и насколько желтой будет мышь. Это упрощенно показано на рис. 9.1.

 

Эпигенетика

 и экспансия

Общение между эпигенетической системой и мусорной ДНК также одна из причин влияния некоторых генетических мутаций на организм. Классический пример — синдром ломкой X-хромосомы, описанный в главах 1 и 2. Мутация, вызывающая это заболевание, сводится к увеличению количества повторов триплета ЦЦГ (к экспансии этого триплета). Иногда в результате появляются тысячи его копий. Повторяющийся элемент содержит основание Ц, за которым следует основание Г: перед нами та самая последовательность ЦГ, о которой мы говорили выше как о мишени для метилирования ДНК. Когда количество повторов этой мусорной последовательности становится чрезвычайно большим, она теряет устойчивость к воздействию белков и ферментов, добавляющих метильную группу в ЦЦГ-мотив. В итоге клетка уже не может экспрессировать белок ломкой X-хромосомы. Следствие такого взаимодействия между мусорной ДНК и эпигенетической системой — целая человеческая жизнь, отягощенная трудностями в обучении и социальном общении.

Рис. 9.1. Вверху: вставка усиливает экспрессию гена агути, что приводит к появлению толстой желтой мыши. Внизу: вставку модифицировали путем метилирования ДНК. Теперь вставка уже не влияет на экспрессию гена агути. Результат — худая бурая мышь.