Мусорная ДНК. Путешествие в темную материю генома

Кэри Несса

Глава 10. Почему родителям так нравится мусор

 

 

Одна из первых библейских историй, с которыми знакомятся дети, воспитываемые в иудео-христианской традиции, повествует о сотворении мира. В Книге Бытия рассказывается о том, как Бог творит землю, небо и все, что на них есть. В конце концов Он создает Адама и Еву. Далее освоение нашего мира становится задачей этой парочки и их потомков. Жизнь людей идет уже без всякого Божественного вмешательства (если не считать известного христианского сюжета, о котором идет речь в Новом Завете).

История об Адаме и Еве прочно впечаталась в человеческое сознание. Возможно, это причина (или отражение) укорененного в нас простого биологического представления. Оно сводится к следующему: чтобы произвести на свет ребенка, нужны мужчина и женщина. С биологической точки зрения невозможно создать дитя при помощи двух мужчин, двух женщин или одной-единственной женщины.

Это кажется биологической данностью. Усомниться в ней практически никогда и никому не приходит в голову. Ведь человек, подобно всем прочим живородящим млекопитающим, принадлежит к единственному классу животных, где никогда не происходит «непорочного» рождения. Для появления потомства яйцеклетку млекопитающего должен оплодотворить сперматозоид. Однако во всех прочих классах встречаются примеры самок, которые порождают живых отпрысков без всякого спаривания. И это не ограничивается низшими классами вроде насекомых. На такое способны некоторые виды рыб, амфибий, рептилий и даже птиц. А вот млекопитающие так делать не умеют. Это позволяет предположить, что такой запрет на однополое воспроизводство (девственное размножение, партеногенез) возник сравнительно недавно (по эволюционным меркам), вскоре после отделения друг от друга эволюционных ветвей млекопитающих и пресмыкающихся, то есть немногим более 300 миллионов лет назад.

Можно предположить, что такая неспособность млекопитающих к партеногенезу — скорее вопрос доставки генетического материала, чем следствие каких-то фундаментальных биологических причин. Вероятно, две яйцеклетки млекопитающих просто не могут слиться, а значит, не могут и образовать зиготу, которая затем даст начало всем остальным клеткам нового организма. Следовательно, млекопитающим нужен для размножения донор мужского пола, ибо только сперматозоид способен проникнуть в яйцеклетку и доставить по назначению свой груз ДНК. Ну да, яйцеклетки млекопитающих при обычных условиях действительно не могут сливаться друг с другом. Но это не очень-то удачное объяснение. Реальное объяснение куда интереснее. Его продемонстрировали в ходе серии изящных экспериментов в середине 1980-х годов. Модельной системой, как частенько бывает, служили мыши.

Экспериментаторы выделили оплодотворенные мышиные яйцеклетки и удалили ядро из каждой такой яйцеклетки. Затем они ввели в эти яйцеклетки ядра из других яйцеклеток или из сперматозоидов, после чего поместили их в матку мышиной самки-реципиента. Результаты схематически показаны на рис. 10.1.

Живые мыши в таких случаях появлялись на свет, если яйцеклетку одновременно снабжали ядром другой яйцеклетки и ядром сперматозоида. Если в яйцеклетку одновременно встраивали два ядра других яйцеклеток или два ядра сперматозоидов, эмбрионы некоторое время развивались, но очень скоро погибали. С генетической точки зрения это выглядело весьма непонятно. Ведь во всех трех системах «восстановленная» яйцеклетка содержала нужное количество ДНК. В смысле ДНК-последовательности нет особой разницы между ДНК сперматозоида и ДНК яйцеклетки. К тому же эксперименты специально проводили так, чтобы донорские яйцеклетка и сперматозоид давали реципиенту по одной X-хромосоме. Во всех трех случаях использовались одни и те же ДНК-последовательности. Однако живое потомство рождалось лишь в том случае, когда эти ДНК-последовательности одновременно предоставляли самец и самка1.

Рис. 10.1. Если в «пустую» яйцеклетку, утратившую собственное ядро, встроить ядро другой яйцеклетки и ядро сперматозоида, в результате появится на свет живая мышь. Если встроить в нее два ядра яйцеклеток или два ядра сперматозоидов, получившиеся эмбрионы не будут развиваться нормально. Однако во всех трех случаях мы имеем дело с одной и той же генетической информацией.

Мы почти уверены, что такое требование одновременного присутствия яйцеклетки и сперматозоида применимо не только к мышам. У человеческих особей встречается заболевание, именуемое пузырным заносом (хориоаденомой, доброкачественной гестационной трофобластической болезнью). Женщина, страдающая им, может казаться беременной, набирать вес, часто испытывать острую утреннюю тошноту. Однако сканирование тела выявляет у нее лишь аномально увеличенную плаценту, полную пузырей с жидкостью, а никакого эмбриона не обнаруживается. В среднем на каждые 1200 беременностей наблюдают один случай пузырного заноса, хотя в некоторых азиатских популяциях этим заболеванием страдает одна из 200 беременных. Возникшее образование спонтанно абортируется примерно через 4-5 месяцев после оплодотворения, хотя в странах с развитой пренатальной медициной врачи удаляют его раньше, чтобы предотвратить развитие потенциально опасных опухолей.

Генетический анализ такой аномалии дает массу ценной информации. Оказывается, в большинстве случаев пузырный занос возникает, когда сперматозоид попадает в яйцеклетку, в которой почему-то нет ядра. Все 23 хромосомы сперматозоида честно копируются, и количество хромосом, как и положено, становится равным 46. Примерно в одной пятой случаев пузырный занос происходит, когда два сперматозоида одновременно проникают в одну из необычных безъядерных яйцеклеток: при этом, опять-таки, в ней оказывается правильное количество хромосом. Как и в вышеизложенных экспериментах с мышами, пузырное образование содержит нужное число хромосом, однако их дает лишь один из родителей, что и приводит к серьезным нарушениям развития эмбриона.

Случаи пузырного заноса и опыты на мышах показали нечто весьма фундаментальное. Они продемонстрировали, что гаметы (яйцеклетка и сперматозоид) снабжают будущий организм еще какой-то информацией помимо генетического кода. Ведь наблюдаемые явления попросту невозможно объяснить, исходя лишь из количества ДНК или характера ДНК-последовательности. В сущности, это явление относится к области эпигенетики. Теперь нам известно, что на молекулярном уровне оно объясняется взаимодействием эпигенетической системы с мусорной ДНК.

 

Откуда берется ДНК

Ученые обнаружили: некоторые области ДНК несут в себе эпигенетические модификации, как бы сообщающие: «Я — от матери» или «Я — от отца». Это так называемый родительский эффект (parent-of-origin effect). В этих областях генома для нормального развития требуется, чтобы потомок унаследовал одну копию определенного гена (или генов) от матери и одну — от отца.

Такие эпигенетические модификации — не просто голубенькие или розовенькие украшения, показывающие, кто предоставил вам копию гена. Эти модификации контролируют экспрессию определенных генов таким образом, чтобы в каждой паре один включался (скажем, тот, что унаследован от отца), а другой (в данном случае — доставшийся от матери) выключался. Этот процесс называется импринтингом («впечатыванием»): в гены «впечатывается» информация об их происхождении (то есть от кого из родителей они унаследованы).

Обычно то, что клетка экспрессирует две копии гена, кодирующего белок, предоставляет ей своего рода страховку. Даже если одна из копий претерпит мутацию или окажется неправомерно подавленной посредством аномальных эпигенетических модификаций, у клетки все равно останется запасная, нормальная копия. Но если одна из таких копий отключилась из-за импринтинга, клетка становится более подверженной случайному отключению другой копии. Однако некоторые гены в клетке все-таки идут на такой риск, что означает: преимущества импринтинга должны перевешивать его недостатки.

Не случайно такая система возникла лишь у млекопитающих. Самки млекопитающих вносят необычайно большой вклад в развитие своего потомства. Они долго держат детеныша внутри своего тела, делясь с отпрыском питательными веществами через плаценту. Ну да, многие представительницы других классов тоже очень заботятся о своем потомстве. Птицы высиживают яйца, крокодилы хитроумно располагают кладку в гнезде, тщательно регулируя ее температуру. Однако ни у какого другого класса самка не кормит развивающийся эмбрион столь обильно и активно.

Уровень материнской заботливости сдерживается эволюционными причинами. Чтобы успешно передать гены детенышу, самка млекопитающего предпочла бы иметь несколько шансов на такую передачу. Вполне возможно, что ей могут встретиться на жизненном пути другие партнеры, более подходящие (в эволюционном смысле), чем тот, чье потомство она сейчас несет в себе. Поэтому, хотя она многое вкладывает в каждую беременность, самка обладает способностью спариваться неоднократно, что вполне логично. При этом она получит явные эволюционные преимущества, если постарается сделать так, чтобы развивающийся эмбрион (или эмбрионы) получал от нее достаточно питательных веществ. Благодаря этому он будет иметь более высокие шансы на выживание и последующее размножение. Однако не стоит отвлекать на эмбрион такое количество питательных веществ, чтобы их не хватало матери. Во всяком случае, она не должна в результате погибать или утрачивать способность давать потомство.

А вот с самцом история несколько иная. Если его потомок вытянет из матери столько соков, что она больше не сможет размножаться, самцу на это будет, в общем, наплевать. В эволюционном смысле он хочет от наследника лишь одного: чтобы он питался как можно лучше и был как можно сильнее. Тогда у него будут наивысшие шансы на успешное достижение половой зрелости и передачу генов собственным потомкам. Самец, скорее всего, будет спариваться и с другими самками: лишь сравнительно небольшое число видов млекопитающих образует пару на всю жизнь.

Самки млекопитающих не в состоянии решать, какую долю питательных веществ передавать эмбриону, обитающему в утробе. Это вам не птицы — те-то могут раньше времени бросить гнездо. Поэтому эволюция добилась эпигенетического перемирия в этой гонке питательных вооружений. Возник механизм импринтинга, позволяющий сбалансировать конкурирующие требования мужского и женского вклада в геном. У небольшого количества генов эпигенетические модификации ДНК, наследуемой от отца, задают характер генетической экспрессии, способствующий росту эмбриона. Но у тех же генов иной характер генетической экспрессии, задаваемый эпигенетическими модификациями ДНК, наследуемой от матери, оказывает на эмбрион противоположное действие.

В ходе развития эмбриона определенные отцовские гены часто способствуют экспрессии большой и эффективной плаценты, ведь именно этот орган питает эмбрионы. Вот почему при пузырном заносе, когда весь генетический материал поступает от отца, развивается аномальная и очень крупная плацента.

 

Отключение посредством включения

Среди генов, кодирующих белки, импринтингу подвергаются немногие. У мышей таких генов около 1402. Они образуют кластеры из 2-12 генов. Многие из этих кластеров довольно похожи на аналогичные кластеры, существующие в человеческом геноме3. Кстати, у сумчатых количество генов, подвергающихся импринтингу, гораздо ниже, ведь эти животные кормят свое потомство в утробе относительно недолго4.

Определяющий компонент каждого такого кластера — область мусорной ДНК, которая управляет экспрессией генов, кодирующих белки. Этот определяющий компонент называется областью, контролирующей импринтинг (ОКИ, imprinting control element, ICE). Представьте, что вам надо осветить комнату при помощи двенадцати лампочек. Если вы хотите менять уровень освещенности, можно использовать лампочки с разной светимостью и отдельные выключатели для каждой. Но это довольно трудоемкий способ контролирования общего уровня освещенности. Лучше организовать всю эту дюжину лампочек в единую цепь и управлять ими одновременно — с помощью обычного выключателя или реостата (если вам хочется большей плавности).

ОКИ действует как общий реостат, однако тут есть небольшое отличие от нашей электрической аналогии. ОКИ играет важную роль благодаря тому, что она способствует экспрессии длинной некодирующей РНК. Эта РНК способна подавлять экспрессию генов окружающего кластера. По сути, импринтинг зависит от двух типов мусорной ДНК: геномных областей, контролирующих импринтинг, и тех длинных некодирующих РНК, на которые ОКИ оказывают контролирующее действие. Если в определенном кластере включается длинная некодирующая РНК, она подавляет экспрессию входящих в этот кластер генов, кодирующих белки. С другой стороны, если длинная некодирующая РНК, управляемая ОКИ, подавляется, то гены кластера, кодирующие белки, могут активироваться.

Импринтинг в высочайшей степени зависит от мусорной ДНК и ее общения с эпигенетической системой. Область, контролирующую импринтинг, можно эпигенетически модифицировать. Экспрессия длинной некодирующей РНК зависит от того, метилирована ли ДНК в области, контролирующей импринтинг. Если метилирована, то это препятствует экспрессии данной некодирующей РНК. Если же ОКИ избежала метилирования, эта длинная некодирующая РНК все же будет экспрессироваться. В сущности, тут идут взаимозависимые процессы. Если длинная некодирующая РНК экспрессируется, то гены, расположенные в кластере на той же хромосоме, будут подавляться. Если же длинная некодирующая РНК не экспрессируется, гены, расположенные в кластере на той же хромосоме, будут включаться. Длинная некодирующая РНК в зонах, подвергшихся импринтингу, иногда может иметь невероятную длину, доходящую до 1 миллиона нуклеотидных оснований: ошеломляющая цифра5.

К сожалению, мы пока довольно поверхностно разбираемся в конкретных механизмах, используемых длинной некодирующей РНК для подавления экспрессии близлежащего кластера генов. Здесь тоже наверняка не обошлось без эпигенетической системы, которая помогла внести репрессивные эпигенетические модификации в гены, кодирующие белки. Если в развивающемся эмбрионе подавляются ключевые эпигенетические гены (скажем, главный репрессор, с которым мы познакомились в главе 9), некоторые из генов, подвергшихся импринтингу, экспрессируются, хотя при обычных условиях они бы оставались в выключенном состоянии6. И это верно не только для главного репрессора. Выключение других эпигенетических генов, порождающих репрессивные гистонные модификации, оказывает похожее воздействие7,8. Это лишний раз показывает, какую важную роль играет эпигенетическая система в выполнении инструкций, содержащихся в длинной некодирующей РНК. Вероятно, такие процессы происходят благодаря тому, что длинная некодирующая РНК привлекает соответствующие ферменты к кластеру, подвергшемуся импринтингу, тем самым таргетируя гистонные модификации генов, кодирующих белки.

Эпигенетические модификации есть и в самой ОКИ. Как и следовало ожидать, при метилировании ДНК в области, контролирующей импринтинг, именно гистонные модификации непосредственно влияют на отключение генов. Если же ОКИ не метилирована, то эти гистонные модификации влияют на включение генов. Характер распределения эпигенетических модификаций в ОКИ — один и тот же и во всей ДНК, и в ее гистонах9.

В ходе импринтинга определяющим фактором является то, метилирована ли мусорная ДНК, образующая эту область. Высказываются предположения, что сам процесс метилирования областей, контролирующих импринтинг, возник, когда подавление близлежащих паразитических элементов (мы описывали такие элементы в главе 4) стало распространяться и на соседние зоны. Возможно, это создало преимущество с точки зрения приспособленности, поэтому в ходе естественного отбора такая особенность передалась и последующим поколениям10. Но вот один интригующий факт. У самых примитивных млекопитающих — яйцекладущих существ вроде утконоса и ехидны — необычно мало паразитических элементов близ тех регионов генома, где мы могли бы ожидать найти области, контролирующие импринтинг у более высокоразвитых млекопитающих11.

 

Как провести импринтинг заново

Но каким же образом характер метилирования закрепляется в ОКИ современных млекопитающих и передается из поколения в поколение? Ведь он не зависит от различий в ДНК-последовательностях между геномами, унаследованными от матери и отца. Как же он укореняется в геноме? Допустим, женщина унаследует зоны, подвергшиеся импринтингу, от своего отца. В них ОКИ особым образом метилированы/не метилированы: характер метилирования подтверждает, что она унаследовала этот участок генома от своего папаши. Но если она передаст ту же импринтированную зону своему отпрыску, все следы отцовского импринтинга неизбежно сотрутся. На смену им придет характер метилирования, показывающий, что он унаследован от матери.

На первый взгляд кажется, что тут полно внутренних противоречий. Возможно, в этой путанице легче разобраться, если вновь обратиться к миру мюзиклов. Речь пойдет уже не об Оскаре Хаммерстайне, а о Хэле Дэвиде — поэте-песеннике, который долгое время сотрудничал с композитором Бертом Бакараком. Именно они сочинили песенки для киномюзикла 1973 года «Потерянный горизонт». Одна из них стала весьма известной. В ней есть полезная для нас идея: «Мир — круг без начала и конца». Процессы развития гораздо легче представить себе именно как такие бесконечные круги, а не как прямые линии. Такой цикл «надень—сними—надень», свойственный возникновению ОКИ, подвергающейся импринтингу, схематически показан на рис. 10.2. Мы видим, что яйцеклетки всегда передают потомству материнскую картину метилирования ОКИ. Такой же процесс позволяет сперматозоиду всегда передавать потомству отцовскую картину метилирования.

Рис. 10.2. Циклы метилирования и деметилирования обеспечивают процесс передачи потомству хромосом, которые содержат нужные модификации, указывающие на то, от какого родителя передан материал.

Разумеется, эта схема порождает свои вопросы. Каким образом развивающиеся яйцеклетки и сперматозоиды идентифицируют области, контролирующие импринтинг? И откуда они знают, какие области надо метилировать, а какие — нет? Сейчас этими проблемами активно занимаются ученые. Возможно, для каждой ОКИ процесс проходит по-своему. Возможно, в мужских и женских половых клетках он также протекает по-разному. Честно говоря, многое здесь пока остается тайной. Однако мы все-таки сумели кое-что прояснить. Мы знаем, что в материнской зародышевой (генеративной) линии, то есть в клетках, порождающих яйцеклетки, важнейшую роль в этом процессе играют ферменты, способные пристраивать метильные группы к неметилированным ЦГ-мотивам ДНК,12. После этого сложившийся характер метилирования активно поддерживается ферментом, чья функция как раз и состоит в сохранении существующей картины метилирования,13. Вероятно, другие белки также вовлечены в формирование и поддержание нужных картин метилирования. Некоторые из них, возможно, селективно экспрессируются в развивающихся половых клетках.

Как же ферменты половых клеток ухитряются распознавать области, контролирующие импринтинг, среди прочей геномной ДНК? Опять-таки, здесь наши знания неполны. Впрочем, предполагается, что тут могут играть роль некоторые повторяющиеся последовательности в этих особых зонах мусорной ДНК14. У разных видов эти конкретные последовательности могут существенно отличаться по составу. Но они могут выглядеть куда более схоже, если рассмотреть их трехмерную структуру. Возможно, клетка умеет как-то распознавать их не по составу последовательности, а по форме15. Это чем-то напоминает результаты исследований длинных некодирующнх РНК из главы 8.

Хотя ученые пока не ответили на массу вопросов, касающихся импринтинга, они убеждены: именно из-за этого процесса в создание потомства вносят вклад оба пола. В 2007 году сложный комплекс экспериментов по спариванию генетически модифицированных мышей показал, что все-таки можно получать жизнеспособных мышей, встраивая два ядра яйцеклеток в одну оплодотворенную яйцеклетку. Это удалось сделать, искусственно изменив характер импринтинга в двух зонах мышиного генома. В одном из яйцеклеточных ядер создали картину метилирования, похожую на нормальную отцовскую, а не на материнскую. Так экспериментаторы обманули механизмы развития, заставив их поверить, будто генетический материал происходит от самца, а не от самки. Опыты продемонстрировали особенно значимую роль, которую играют эти две зоны, подвергшиеся импринтингу, в процессах контролирования развития организма. Кроме того, опыты показали и то, что единственное реальное препятствие на пути «двуматеринского» размножения — картина метилирования ДНК в ключевых генах. Эксперименты стали опровержением предыдущей гипотезы, согласно которой для размножения требуется сперматозоид, поскольку он сам по себе несет необходимые «сопутствующие факторы», такие, как определенные белки или молекулы РНК, необходимые для того, чтобы должным образом запустить развитие эмбриона16.

Вернемся к рис. 10.2. Легко видеть, что характер импринтинга может меняться в ходе развития организма. Похоже, такой контроль экспрессии генов, задаваемый при помощи импринтинга, особенно важен именно в процессе развития. Так, у мышей большинство из примерно 140 импринтируемых генов демонстрируют импринтинг лишь в плаценте. Во взрослых тканях либо экспрессируются обе копии каждого из таких генов, либо не экспрессируется ни одна из копий. Вот еще одно подтверждение того, что именно контроль роста на ранних стадиях развития, вероятно, стал главной причиной возникновения импринтинга у некоторых представителей царства животных. По-видимому, тут сыграл роль «географический» фактор. В кластерах импринтинга ближайшие к ОКИ гены могут сохранять импринтинг во всех тканях. Однако гены, находящиеся дальше от этого «контрольного центра», проявляют импринтинг лишь в плаценте. Похоже, некоторые типы клеток мозга особенно склонны к сохранению импринтинга, хотя в большинстве случаев среди ученых нет единого мнения о том, почему это приносит эволюционные преимущества. Выдвигались предположения, что длинные некодирующие РНК, вырабатываемые в ОКИ, способствуют ДНК-метилированию ближайших генов, однако при этом привлекают гистонные модификации к более отдаленным генам кластера17. Поскольку гистонные модификации легче изменять, чем картину метилирования ДНК, такие изменения могут служить механизмом освобождения более отдаленных генов от импринтинга (по мере взросления тканей).

Итак, импринтинг действительно происходит, и мы уже начали проникать по крайней мере в некоторые его механизмы. Вспомним гипотезу, согласно которой импринтинг появился для того, чтобы уравновесить конкурирующие эволюционные стремления матери и плода (плода — а значит, косвенным образом, и отца). В свете этой гипотезы неудивительно, что большинство генов, кодирующих белки и контролируемых при помощи импринтинга, вовлечены в рост эмбриона, в процессы грудного вскармливания, а также в метаболические процессы18. Не приходится удивляться и тому, что при нарушениях импринтинга самые распространенные симптомы — дефекты роста и развития.

 

Когда импринтинг идет не так

Исследования расстройств, связанных с импринтингом, по-настоящему начались в 1980-е годы, когда впервые стала возможной идентификация генов, связываемых с наследственными заболеваниями. Для этого, в частности, отыскивали семьи, где хотя бы один человек страдал от данной болезни, и затем проводили в этих семьях анализ, пытаясь приблизительно выявить область хромосомы, ставшую причиной заболевания. Сегодня мы можем проделывать это довольно легко, ведь у нас есть полная расшифровка нуклеотидной последовательности нормального человеческого генома и доступ к весьма дешевым технологиям секвенирования. Однако тогда, в 1980-е, найти мутацию, вызывающую болезнь, было не так-то просто — все равно, что отыскать определенную перегоревшую лампочку, когда известно лишь, что она перегорела в каком-то американском доме. Для выявления мутаций, причин той или иной болезни, требовались годы упорного труда больших коллективов ученых.

Целый ряд таких научных групп занимался синдромом Прадера-Вилли. Младенцы, родившиеся с этим синдромом, слишком мало весят при появлении на свет, а кроме того, у них нарушен сосательный рефлекс. Лишь после отлучения от груди у них начинает нормально развиваться тонус мышц, а до этого младенческое тельце довольно вялое. По мере взросления у таких детей просыпается ненасытный аппетит. В результате у них рано возникают экстремальные формы ожирения. Кроме того, они страдают от умственной отсталости, пусть и проявляемой в мягкой форме19.

Совершенно другая группа ученых занималась исследованием заболевания с совсем иными симптомами. Речь идет о синдроме Ангельмана. У детей с этим синдромом маленькая, недоразвитая голова, они с трудом обучаются, а кроме того, очень поздно переходят на твердую пищу. Такие дети склонны к беспричинным взрывам смеха. К счастью, отвратительно-бестактное описание этих пациентов как «счастливых манекенов» употребляется сейчас все реже20.

Представьте, что вы прокладываете железную дорогу через весь континент. Одна бригада рабочих начинает с востока и продвигается на запад, а другая идет ей навстречу. Вначале бригады находятся на совершенно различных территориях, однако постепенно сближаются. В конце концов (если все идет как надо), они встречаются в некоей точке, пожимают друг другу руки, выпивают в честь окончания работы. Что-то подобное случилось и с группами, исследовавшими синдромы Прадера-Вилли и Ангельмана. Только вот ученые, в отличие от железнодорожных рабочих из нашего примера, вовсе не ожидали, что встретятся. Они считали, что строят независимые железные дороги в совершенно разные города. И все-таки они очутились в одном и том же месте.

По мере того, как набирало обороты картирование хромосомных зон, ответственных за синдромы Прадера-Вилли и Ангельмана, становилось все яснее, что на эти два заболевания влияет одна и та же область генома. Поначалу выдвигалось наиболее очевидное предположение: причина этих заболеваний — два разных гена, расположенных очень близко друг от друга. Однако в конце концов выяснилось, что оба этих заболевания вызывает дефект на одном и том же строго определенном участке генома.

Оба недуга имеют одну и ту же генетическую подоплеку — утрату небольшого участка хромосомы 15. Родители больных детей не страдали от этих заболеваний. Когда ученые исследовали хромосомы родителей, выяснилось, что эти хромосомы у них не повреждены. Утрата важнейшего участка хромосомы 15 происходила в процессе формирования яйцеклеток или сперматозоидов.

Казалось очень странным, что удаление небольшой части хромосомы способно вызывать два таких разных заболевания. Загадка стала проясняться, когда ученые показали: важно даже не само отсутствие этого маленького участка хромосомы 15. Важно то, почему он отсутствует. Как выяснилось, 70% изученных детей с синдромом Прадера-Вилли унаследовали аномальную хромосому 15 от мутантных клеток сперматозоидов. А 70% детей с синдромом Ангельмана унаследовали аномальную хромосому от мутантных яйцеклеток. Чуть позже исследователи установили, что 25% изученных детей с синдромом Прадера-Вилли обладали двумя совершенно нетронутыми хромосомами 15, в которых не наблюдалось никакой нехватки генетического материала. Дело в том, что эти пациенты наследовали обе копии хромосомы 15 от матери, а не по одной копии от каждого из родителей. Меньшая доля страдающих синдромом Ангельмана имела по две нормальные копии хромосомы 15, причем обе копии наследовались от отца.

Такие картины наследования обретают смысл, только если привлечь концепцию импринтинга (см. рис. 10.3). Во всех аномальных ситуациях в клетках пациента отсутствует контролирующая импринтинг зона, которую ему следовало получить от одного из родителей. Результат — аномальные уровни экспрессии генов, которые в обычных условиях находились бы под жестким «родительским контролем». Это приводит к патологиям, в том числе к недостаточному или чрезмерному развитию органов и тканей.

Исследователи сумели еще больше сузить круг проблем, которые могли бы приводить к этим заболеваниям. Для этого они проанализировали гены, управляемые зонами, контролирующими импринтинг. Выяснилось, что среди обследованных пациентов, страдающих синдромом Ангельмана, примерно 10% унаследовали всю нужную ДНК от каждого из родителей. Однако у них имеется мутация в ДНК, унаследованной от матери. Она происходит не в ОКИ, а в гене, управляемом ОКИ. Это ген, кодирующий белок. Обычно данный ген экспрессируется лишь на хромосоме, наследуемой от матери. На хромосоме, наследуемой от отца, этот ген глушится импринтингом. Если ген, полученный от матери, не в состоянии вырабатывать белок из-за мутации, это означает, что такая клетка вообще не может синтезировать данный белок, что и приводит к патологии.

С синдромом Прадера-Вилли еще более необычная ситуация. Удалось выявить небольшое количество пациентов, у которых отсутствует лишь один из генов, находящихся на этом важнейшем участке хромосомы 15. Этот ген не кодирует белок, однако он кодирует целый набор некодирующих РНК. Все эти РНК обладают сходными функциями21,22,23: они вовлечены в процессы регуляции еще одного класса РНК, не кодирующих белки. Похоже, отсутствие одного-единственного гена, не кодирующего белок, имеет определяющее значения для развития большинства симптомов, характерных для синдрома Прадера-Вилли.

Рис. 10.3. Обычно мы наследуем одну копию хромосомы 15 по материнской линии, а одну — по отцовской. Если обе копии наследуются по материнской линии, у ребенка возникает синдром Прадера-Вилли. То же самое происходит, если копия хромосомы 15, наследуемая от отца, утратила импринтированный участок, несущий в себе отцовскую картину эпигенетических модификаций. В сущности, к синдрому Прадера-Вилли приводит нехватка отцовски-специфической информации. Синдром Ангельмана обусловлен дефектом того же самого участка хромосомы 15, но в данном случае заболевание вызвано нехваткой матерински-специфической информации.

Из всего этого можно сделать далеко идущие выводы. Итак, одна из зон мусорной ДНК (область, контролирующая импринтинг) управляет экспрессией фрагмента мусорной ДНК, который, в свою очередь, кодирует длинную некодирующую РНК. Эта длинная некодирующая РНК, в свою очередь, оказывает определяющее воздействие на регуляцию экспрессии гена, который кодирует целый набор некодирующих РНК. А роль этих некодирующих РНК — в том, чтобы осуществлять регуляцию других РНК, не кодирующих белки. Зная обо всем этом, как-то трудно утверждать, будто мусорная ДНК не обладает никакой функцией.

Синдром Прадера-Вилли и синдром Ангельмана — не единственные заболевания человека, при которых дефекты импринтинга приводят к аномалиям в росте и развитии, а также к ряду других сопутствующих проблем — например, сложностям при обучении. Еще одна взаимосвязанная пара болезней — синдром Сильвера-Рассела24 (проявляется как карликовость) и синдром Беквита-Видемана25 (проявляется как гигантизм). Для некоторых пациентов причиной болезни (той или другой) становятся «родительские» неполадки на одном и том же участке хромосомы 11. Этот импринтинговый локус устроен особенно сложно. Здесь задействовано множество генов и больше одной ОКИ.

Схожие взаимосвязи можно выявить и на других хромосомах. Дети, наследующие обе копии хромосомы 14 от матери, страдают задержкой роста в пренатальный и постнатальный период, однако позже у них развивается ожирение26. Но если обе копии хромосомы 14 ребенок получает от отца, развивается ненормально большая плацента, и дитя появляется на свет с самыми разными проблемами, в том числе с дефектами брюшной стенки27,28.

У большинства этих заболеваний есть столь же редкие разновидности, возникающие из-за эпигенетических погрешностей. Небольшое количество пациентов наследует правильную ДНК от нужного родителя. Эта ДНК не является мутантной. И тем не менее у пациентов возникает импринтинговое заболевание. В этих редких ситуациях обычно нарушаются процессы закрепления и поддержания импринтинга в зиготе и на ранних стадиях развития, что может приводить к неправильному метилированию (или неправильному неметилированию) ОКИ. В результате эта ОКИ отключается или включается тогда, когда не должна этого делать. Вот еще одно подтверждение того, какую важную роль играет общение между мусорной ДНК и эпигенетической аппаратурой.

 

Влияние катастрофического события

В 1978 году родилась девочка по имени Луиза Браун. Увидев ее, вы бы решили, что это самый обыкновенный ребенок. Несомненно, родители считали ее самым необыкновенным ребенком в мире. Да и какие родители не думают так о своих детях? Однако в данном случае супруги Браун были правы. О рождении их дочери возвещали первые полосы газет всего мира. Дело в том, что она стала первым «ребенком из пробирки».

Яйцеклетку ее матери оплодотворил сперматозоид ее отца не в обычных условиях, а в лабораторной чашке. Затем эту яйцеклетку вновь поместили в утробу матери. Такой процедурой воспользовались из-за того, что фаллопиевы трубы миссис Браун оказались заблокированными, и она не могла зачать дитя естественным путем. Успешное появление на свет Луизы Браун открыло новую эру в лечении бесплодия. По оценкам специалистов, с тех пор более 5 миллионов детей родились благодаря вспомогательным репродуктивным технологиям29.

Некоторые заявляли, что применение вспомогательных репродуктивных технологий может повысить распространенность импринтинговых заболеваний, особенно синдромов Беквита-Видемана, Сильвера-Рассела и Ангельмана. Такая озабоченность возникла из-за того, что эмбрионы при этом выращиваются в лаборатории как раз в тот определяющий период, когда складывается картина импринтинга. Как ни странно, мы до сих пор не знаем, действительно ли это такая большая проблема. Позвольте, ведь эти 5 миллионов детей — отличная база для анализа? Однако не следует забывать, что болезни, связанные с импринтингом, встречаются редко: при обычных родах — в одном из нескольких тысяч или даже десятков тысяч случаев. При анализе столь редких событий статистические данные легко интерпретировать неверно.

Помните «Конкорд», одну из всего-навсего двух моделей сверхзвуковых самолетов, когда-либо обслуживавших коммерческие рейсы? Не одно десятилетие «Конкорд» считался самым безопасным самолетом в мире, поскольку с ним никогда не случалось авиакатастроф со смертельным исходом. Но после трагического инцидента в парижском аэропорту «Шарль де Голль» в 2000 году, когда погибло 109 пассажиров и членов экипажа, он стал, статистически выражаясь, одним из самых небезопасных самолетов в мире. Разумеется, это произошло лишь из-за того, что «Конкорд» совершал полеты гораздо реже, чем большинство авиалайнеров, и количество перевозимых пассажиров также оказывалось малым (внутренняя часть этого самолета отличалась неожиданно миниатюрными размерами). А следовательно, одно-единственное событие смогло оказать колоссальное влияние на статистические данные, подсчитываемые слишком прямолинейно, без учета многих обстоятельств.

То же самое и с импринтинговыми заболеваниями. Если в обычных условиях вы ожидаете увидеть 50 случаев болезни на каждые 6 миллионов родившихся младенцев, как вы интерпретируете 55 случаев среди рожденных при посредстве вспомогательных репродуктивных технологий? Привело ли к этому десятипроцентному росту заболеваемости дополнительное медицинское вмешательство? А может, это просто статистический шум? Следует также иметь в виду, что бесплодие само по себе способно вызывать некоторое усиление импринтинговых проблем, и применение вспомогательных репродуктивных технологий лишь их выявляет. Вполне возможно, что для сперматозоидов или яйцеклеток людей с пониженной фертильностью выше вероятность импринтинговых дефектов. Однако не исключено, что такие дефекты удалось выявить только из-за того, что эти люди смогли обзавестись потомством благодаря современным медицинским технологиям. В прошлом они бы вообще не смогли иметь детей, так что мы и не увидели бы воздействий, которые оказывает на потомство этот дефект импринтинга30. Вот вам одна из запутанных ситуаций в биологии, когда восприятие видимой нами картины может искажаться из-за явлений, не попадающих в поле нашего зрения.