Мусорная ДНК. Путешествие в темную материю генома

Кэри Несса

Глава 19. Иногда лекарства все-таки действуют

 

 

Миллиарды долларов каждый год расходуют фармацевтические компании на создание новых лекарств для борьбы с заболеваниями человека. Ученые надеются отыскать способы лечения пока неизлечимых болезней и помочь пациентам справиться с их тяжелыми недугами. А больных людей становится все больше, поскольку средний возраст жителей Земли неуклонно растет. Революционные открытия, позволившие глубже понять воздействие мусорной ДНК на генетическую экспрессию и развитие заболеваний, привели к возникновению массы новых фармкомпаний, жаждущих освоить эту сферу. Большинство этих новых исследований направлены на использование в качестве лекарств самих РНК, не кодирующих белки. Основная идея такова: мусорную РНК (длинную некодирующую, малую или еще одну их разновидность — антисмысловую РНК) будут давать больному для воздействия на генетическую экспрессию и для того, чтобы управлять течением болезни, а то и вовсе вылечить пациента.

Сейчас мы лечим болезни совсем не так. С давних пор большинство медикаментов представляет собой так называемые малые молекулы. Они синтезируются искусственно и сравнительно просты по структуре и форме. Примеры этих веществ, служащих основой широко распространенных лекарственных препаратов, приведены на рис. 19.1.

Рис. 19.1. Структурные формулы некоторых малых молекул, применяемых в медицине (под ними — названия лекарств, действующим началом которых они являются).

Не так давно ученые научились использовать белки в качестве лекарств. Вероятно, наиболее известный пример — инсулин, тот самый гормон, посредством которого диабетики регулируют уровень сахара в крови. Антитела — еще один тип белковых средств, оказавшихся весьма эффективными. Речь идет об искусственно измененных версиях молекул, которые наш организм производит для борьбы с инфекциями. Фармацевтические компании находят способы адаптировать их так, чтобы эти вещества соединялись с белками, проявляющими сверхэкспрессию, и нейтрализовали их действие. Самое популярное из таких антител позволяет весьма эффективно лечить ревматоидный артрит. Есть и другие, помогающие при лечении самых разных болезней и дефектов — от рака груди до слепоты1.

Малые молекулы и антитела имеют свои достоинства и недостатки. Синтез малых молекул обычно стоит недорого. Их легко вводить в организм: зачастую их нужно просто проглотить. Однако их недостаток в том, что они не задерживаются в организме очень уж надолго, и пациент вынужден принимать их регулярно. Антитела же могут оставаться в организме неделями или даже месяцами. Но их должен вводить профессионал, и они очень дороги в производстве.

Имеются у таких средств и другие недостатки. Антитела эффективны лишь для борьбы с молекулами, которые присутствуют в телесных жидкостях (скажем, в крови) или на поверхности клеток. Эти лекарства не могут проникать внутрь клеток, чтобы выполнять там свою работу. А вот малые молекулы определенной структуры в случае необходимости это умеют. Но с их помощью, похоже, можно контролировать лишь ограниченное число разновидностей белков.

Малые молекулы работают как ключ в замке. Если вы находитесь в своем доме, проще всего помешать другим войти, заперев дверь изнутри и оставив ключ в замочной скважине. А если вам захочется навеки закрыть всем доступ в дом, вы можете даже использовать слегка дефектный ключ, который навсегда застрянет в замке.

Такой подход срабатывает, поскольку ключ входит в замок весьма плотно. А вот для блокировки какого-нибудь старомодного засова ключ бесполезен. Ему там просто не во что войти. Он будет лишь скользить по поверхности. То же самое относится и к нашим клеткам. Внутри у них имеется множество белков, которые мы и рады бы контролировать, только вот не можем создать для них подходящие малые молекулы — из-за структуры этих белков. В них попросту нет удобных щелей или карманов, куда можно было бы аккуратно вставить молекулу лекарства. У них обширные плоские поверхности, на которых негде приютиться малой молекуле.

Можно попытаться создать более крупные молекулы, способные покрыть всю такую поверхность. Проблема в том, что как только молекулы лекарства превысят определенный размер, они перестанут хорошо циркулировать в организме и вообще не смогут попасть в клетки, чтобы сделать свое дело.

Есть и еще одна проблема. Да, достаточно трудно создать лекарство, молекулы которого сумеют попасть в клетку, соединиться с определенным белком и остановить его работу. Однако неизмеримо труднее создать лекарство, молекулы которого сумеют попасть в клетку, соединиться с определенным белком и затем вынудить его работать интенсивнее, или быстрее, или лучше. Практически невозможно разработать лекарство традиционного типа, которое усиливало бы экспрессию одного определенного белка или включало бы лишь один-единственный ген.

 

Может ли нас спасти мусорная ДНК?

Вот почему поиск новых подходов к медикаментозному лечению вызывает такой большой интерес. Вот почему так важно все больше узнавать о мусорной ДНК. Используя длинные некодирующие РНК или малые РНК, теоретически возможно избирательно воздействовать на биологические пути, на которые нельзя повлиять с помощью традиционных препаратов, где основой служат малые молекулы или антитела. И неважно, что мишени воздействия таятся внутри клеток и имеют обширные плоские поверхности. Неважно, что нам понадобится — усиливать экспрессию или менять особенности функционирования белка или гена. Можно применить этот новый подход для работы с любым типом клеточных мишеней.

Теоретически.

В том-то и дело. Теоретически. Идеи встречаются часто, а вот их успешное воплощение — куда реже. Так что имеет смысл хорошенько разобраться в реальном положении вещей, прежде чем все мы начнем вкладывать свои сбережения в какую-нибудь новомодную биотехнологическую компанию, орудующую в этой сфере. Уже сейчас здесь происходит очень много всего2, поэтому сосредоточимся на некоторых наиболее выдающихся примерах.

Печень вырабатывает белок, отвечающий за распространение по организму ряда других молекул. Во всем мире живет около 50 тысяч человек, унаследовавших мутацию гена, кодирующего этот белок. Собственно, встречается масса разновидностей такой мутации, но все они, судя по всему, дают схожий эффект — изменяют особенности функционирования белка, да так, что он начинает служить переносчиком не тех молекул,3.

Когда такое происходит, в тканях постепенно скапливаются отложения, состоящие из смеси нормального и мутантного белка. Больные страдают от целого ряда симптомов — в зависимости от того, какие ткани затронуты. Примерно в 80% известных случаев сильнее всего затронуто сердце, что приводит к потенциально летальным сердечным дефектам. В остальных 20% случаев отложения часто скапливаются в нервах и спинном мозге. Это может приводить к нарушению функционирования самых разных органов — в частности, к возникновению аномальных и болезненных реакций на слабые раздражители.

Компания Alnylam создала на основе малой РНК, прикрепленной к молекулам из группы сахаров, средство, которое можно вводить пациентам при помощи инъекций. Малая РНК связывается с нетранслируемой областью на конце информационной РНК, кодирующей белок, который мутирует при данном заболевании. Это обрекает данную информационную РНК на уничтожение.

В 2013 году компания обнародовала сведения о второй стадии клинических испытаний своего препарата. После введения средства у пациентов наблюдалось резкое падение уровня циркуляции мутантной и нормальной версий белка, причем этот пониженный уровень долгое время оставался неизменным4. Обнадеживает. Но пока нельзя считать, что новое средство исцеляет от данной болезни. Есть предположения, что такое резкое снижение уровня циркуляции белка приведет к тому, что отложения в тканях будут накапливаться медленнее, что должно привести по крайней мере к замедлению развития заболевания. Но мы пока не знаем, так ли это на самом деле. Требуются более масштабные испытания, в ходе которых будут отслеживаться реальные симптомы и реальное развитие болезни. Только если окажется, что новое лекарство влияет и на то, и на другое, препарат можно будет считать эффективным.

Еще одна компания, Mirna Therapeutics, создала малую РНК, которая подражает действию другой, играющей важную роль в онкологических процессах. Эндогенная малая РНК, естественным путем вырабатываемая в организме, подавляет развитие злокачественных опухолей. Ее функция состоит в том, чтобы сдерживать размножение клеток. Она добивается этого, ослабляя экспрессию по меньшей мере 20 других генов, пытающихся заставить клетку делиться. Экспрессия этой малой РНК часто ослаблена у больных раком (или вообще сведена к нулю), что снимает тормоза с процессов клеточного деления. Исследователи надеются, что при введении аналога этой РНК в клетки больных удастся восстановить нормальную картину генетической регуляции, и раковые клетки перестанут размножаться так стремительно.

Компания испытала свою РНК на больных раком печени. Пока проводятся лишь испытания, цель которых — показать, какие дозы лекарства пациент способен перенести. Пройдет еще некоторое время, прежде чем мы узнаем, принесет ли эта методика положительные клинические результаты5.

В препаратах, разрабатываемых компаниями Alnylam и Mirna Therapeutics, кроется одна хитроумная идея. Среди проблем, с которыми прежде сталкивались фармацевтические фирмы, пытаясь разработать лекарства на основе нуклеиновых кислот, едва ли не самой большой проблемой считалась детоксикационная способность самого организма. Впрочем, с традиционными лекарствами часто та же история. Упрощенно говоря, когда в организм попадает новое вещество любого типа, весьма вероятно, что оно отправится в печень. Одна из главных задач этого чрезвычайно энергичного органа — проводить детоксикацию всего, чей вид ему не нравится. На протяжении всей нашей эволюционной истории этот процесс нам очень помогал, защищая нас от токсинов, которые могут содержаться в пище. Однако проблема в том, что печень не обладает инструментами, позволяющими ей отличать яды, которых мы хотели бы избежать, от лекарств, которые мы пытаемся использовать. Печень просто затащит их в себя и попытается уничтожить — вне зависимости от того, с ядом или с лекарством она имеет дело.

Alnylam и Mirna Therapeutics, если использовать старинное изречение, обратили неизбежность в доблесть. Alnylam таргетирует экспрессию белка, который вырабатывается в печени. Mirna Therapeutics разрабатывает средства для лечения рака печени. В том и в другом случае молекулы лекарств будут захватываться как раз тем органом, в который их и хотят ввести. Компании подбирают особенности структуры и упаковки этих молекул так, чтобы после попадания в печень молекулы просуществовали достаточно долго и успели выполнить свою работу. Для ряда других заболеваний также предлагались методики лечения, связанные с малыми РНК. Предварительные эксперименты, которые проводятся на выращиваемых в лаборатории клетках или на животных, часто демонстрируют обнадеживающие результаты. Но для заболеваний, при которых нуклеиновые кислоты должны избегать печени и сразу захватываться мозгом (например, при боковом амиотрофическом склерозе6), пока не совсем понятно, сумеет ли медицина успешно применить такую технологию на практике.

В главе 17 мы видели, как померкли надежды на успешное внедрение многообещающего метода лечения мышечной дистрофии Дюшенна после того, как неожиданно окончились неудачей клинические испытания, проводившиеся на пациентах, чья болезнь достигла поздней стадии. При разработке этого подхода использовали особую разновидность мусорной ДНК — антисмысловую.

Мусорные антисмысловые РНК, вероятно, распространены в нашем геноме очень широко, и причина здесь — в двунитевом строении ДНК. Мы уже затрагивали этот вопрос в главе 7, где обсуждали Xist и его антисмыслового двойника — Tsix. (Мы использовали аналогию со словом ТОРГ, которое можно прочесть задом наперед, получив слово ГРОТ.) Все зависит от того, как ферменты, делающие РНК-копии на основе ДНК, будут вести считывание: будут они считывать определенную нить слева направо или противоположную ей нить справа налево.

Однако большинство слов нельзя читать в обоих направлениях, оба раза получая что-то осмысленное. К примеру, слово БИОЛОГИЯ, прочитанное задом наперед, дает бессмысленное ЯИГОЛОИБ. Точно так же и информационная РНК, считанная с генома в одном направлении, может кодировать белок, но копирование того же участка ДНК задом наперед может породить какую-то мусорную РНК, которую нельзя транслировать в белок. Иногда это приводит к образованию саморегулирующихся петель в наших клетках. Такие петли ограничивают экспрессию определенных генов (см. пример на рис. 19.2).

По оценкам ряда ученых, примерно треть генов, кодирующих белки, также производят мусорную РНК на основе своей антисмысловой цепи. Однако антисмысловые молекулы обычно вырабатываются в меньших объемах, чем смысловая РНК: зачастую их не более 10% от ее общего количества7. Иногда антисмысловая область — просто короткая внутренняя секция гена. Иногда смысловая и антисмысловая области могут начинаться и кончаться в разных местах, так что они хоть и перекрываются, но и имеют свои уникальные участки. Иногда клеточная аппаратура, копирующая смысловую нить ДНК в смысловую РНК, врезается в аппаратуру, которая движется в противоположном направлении и создает антисмысловую РНК. Оба набора белков сваливаются с ДНК, и обе строящиеся молекулы РНК оказываются заброшенными. Существуют даже антисмысловые нити для некоторых длинных некодирующих РНК.

Рис. 19.2. В некоторых частях генома обе цепочки ДНК могут копироваться в РНК — при их считывании в противоположных направлениях. Нити, кодирующие белковые последовательности, называются смысловыми. Нити, не кодирующие белковые последовательности, называются антисмысловыми. Молекула антисмысловой РНК может соединяться с молекулой смысловой РНК, влияя на ее функционирование. В данном примере она ингибирует экспрессию белка, синтезируемого на основе матрицы смысловой информационной РНК.

Связывание антисмысловой РНК с ее смысловым РНК-партнером может приводить к весьма разнообразным последствиям. На рис. 19.2 показан случай, когда это связывание мешает трансляции смысловой информационной РНК в белок. Возможны и ситуации, при которых такое связывание стабилизирует информационную РНК, в конечном счете приводя к повышению уровня экспрессии белка8.

В рамках экспериментов с дюшенновской мышечной дистрофией, поначалу казавшихся столь перспективными, пациентам вводили антисмысловую молекулу, которая способна распознавать информационную РНК, кодирующую дистрофин, и соединяться с ней. Антисмысловую молекулу химически модифицировали, чтобы в организме она не распадалась слишком быстро. Соединяясь с информационной РНК, кодирующей дистрофин, она не позволяла сплайсинговой аппаратуре клетки осуществлять нормальное связывание. Это, в свою очередь, приводило к изменениям в сплайсинге данной информационной РНК. Ее кодирующие участки соединялись иначе, нежели при нормальном сплайсинге. В итоге удавалось избавиться от участка, который вызывал основные проблемы при выработке мутантного белка.

 

Иногда все кончается хорошо

Да, те эксперименты с дюшенновской мышечной дистрофией в конце концов провалились, но это отнюдь не бросает тень на всю сферу применения антисмысловых компонентов. Тут все-таки удалось добиться кое-каких успехов. Так, в 1998 году одно антисмысловое лекарство лицензировали для лечения больных с нарушениями иммунной системы, которым угрожает потеря зрения из-за вирусной инфекции сетчатки. Антисмысловая молекула соединялась с одним из вирусных генов, тем самым препятствуя размножению вируса9. Лекарство оказалось эффективным. Возникает два вопроса. Во-первых, почему оно так хорошо действовало? А во-вторых, раз уж оно так хорошо действовало, почему производитель в 2004 году прекратил его продажу?

Оба ответа довольно прямолинейны. Лекарство хорошо действовало, поскольку его посредством инъекции вводили непосредственно в глаз. Проблемы, что его захватит печень, попросту не существовало. Оно таргетировало вирус, к тому же в пределах одной довольно-таки самодостаточной части тела, что снижало риск широкомасштабных взаимодействий вводимого препарата с генами человека.

Но почему же производитель в 2004 году прекратил продажу этого чудодейственного средства? Препарат разработали для людей с чрезвычайно ослабленным иммунитетом. У подавляющей части таких людей СПИД. Между тем к 2004 году на рынке появились лекарства, неплохо позволяющие держать в узде ВИЧ, тот самый вирус, который и является причиной СПИДа. Состояние иммунной системы пациентов, принимавших эти лекарства, значительно улучшилось, и больные просто перестали подхватывать вирусные инфекции сетчатки.

Более недавние события показали, что использование антисмысловой мусорной ДНК в лечебных целях все-таки имеет кое-какие перспективы. Есть серьезное заболевание с длинным названием — наследственная гиперхолестеринемия. По оценкам медиков, в одной только Великобритании сейчас около 120 тысяч больных этим недугом, хотя у многих из них, вероятно, он не выявлен. Генетическая мутация мешает им управляться с «плохим холестерином» должным образом. В результате от трети до половины таких больных примерно к 55 годам получают (или получат) серьезное заболевание коронарной артерии10.

Стандартные лекарства, уменьшающие содержание липидов в организме (такие средства называются статинами), сегодня неплохо себя зарекомендовали — эти препараты существенно снижают риск развития сердечно-сосудистых заболеваний. Чаще всего они приносят пользу тем, кто обладает лишь одной мутантной копией определенного гена, но при этом другая его копия остается нормальной. Однако статины оказываются неэффективными для лечения многих острых случаев, особенно если у больного обе копии определенного гена мутантные. Такие больные часто вынуждены один или два раза в неделю проходить плазмаферез — процедуру, в ходе которой кровь пациента пропускается через специальный аппарат и опасный холестерин из нее удаляется.

Если вы хотите, чтобы ванна не переполнялась, у вас есть два выхода. Или просто предоставьте воде вытекать в сливное отверстие, или прекратите добавлять новую воду, завернув краны.

Компания Isis создала антисмысловую молекулу, таргетирующую первичный белок липопротеинов низкой плотности — так называемого «плохого» холестерина. Такое лечение наследственной гиперхолестеринемии при помощи антисмыслового препарата работает по принципу «закручивания кранов». Антисмысловая молекула лекарства связывается с информационной РНК, кодирующей белок «плохого» холестерина, и подавляет ее активность, в результате чего понижается экспрессия «плохого» холестерина и общий уровень его синтеза. Лицензию на этот препарат Isis продала более крупной компании, Genzyme, в рамках сделки стоимостью в сотни миллионов долларов.

Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США выдало лицензию на использование данного лекарственного средства, но лишь применительно к больным, страдающим наиболее острой формой наследственной гиперхолестеринемии. Почему препарат так хорошо себя проявил, что даже сумел попасть на рынок (хотя стоимость лечения им одного пациента составляет, между прочим, более 170 тысяч долларов в год11)? Одна из причин — в том, что ген, который он таргетирует, экспрессируется в... да, вы угадали: в печени. Однако и тут не обошлось без неувязок. Сообщалось, что использование препарата иногда приводит к гепатотоксическим эффектам (то есть он оказывается токсичным для печени). Все то же Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США потребовало от компании Sanofi (купившей Genzyme) обязательного мониторинга функционирования печени у всех пациентов, получающих такое лечение12. Европейское медицинское агентство и вовсе отказалось лицензировать этот препарат13.

Сотни миллионов долларов, которые компания Isis получила от Genzyme за свою методику терапии с помощью антисмыслового препарата, составляют немалую сумму. Но имейте в виду: на то, чтобы пройти путь от исходных исследований к выводу лекарства на рынок, ушло больше 20 лет, и весь процесс обошелся в три с лишним миллиарда долларов14. Такие колоссальные инвестиции трудновато окупить.

Конечно же, невольно ожидаешь, что пионерские лекарства, особенно те, где используется сравнительно мало испытанный тип молекул, как раз и потребуют для своей разработки много времени и денег. Всегда есть надежда, что последующие проекты будут осуществляться быстрее и проще. Сейчас неуклонно множатся клинические испытания методик лечения, основанных на мусорной ДНК. Существует малая РНК человека, которую один вирус втягивает в свое черное дело, заставляя ее помогать ему заражать клетки. Мусор пытаются побороть с помощью мусора: сейчас проходит уже вторую стадию клинических испытаний антисмысловое лекарство, таргетирующее эту малую РНК15.

Но вот что странно. В 2006 году фармацевтический гигант Merck более чем за миллиард долларов приобрел компанию, которая занималась созданием лечебных средств на основе малых РНК. А в 2014 году Merck сбыл ее с рук, причем по гораздо более низкой цене16. Еще одна компания, Roche, прекратила собственные исследования в этом направлении еще в 2010 году.

С недавних пор наблюдается мощный всплеск инвестиций в биотехнологические компании, занимающиеся малыми РНК. К примеру, RaNA Therapeutics (которая, как полагают специалисты, как раз сейчас разрабатывает лекарства, основанные на РНК и призванные воспрепятствовать взаимодействию длинных некодирующих РНК с клеточной эпигенетической аппаратурой) в 2012 году собрала свыше 20 миллионов долларов17. Dicerna, создающая малые РНК для борьбы с некоторыми редкими заболеваниями и ранними признаками рака, сумела в 2014 году добыть 90 миллионов долларов18. Это уже третий транш, который она получила, хотя и не дошла пока до клинических испытаний19.

И все-таки тут есть одна странность. Вот прямо сейчас, когда я пишу эту главу (весной 2014 года), новостная рассылка принесла мне сообщение о том, что компания Novartis решила серьезно снизить темпы своих исследований в данной области20. Фармацевтический гигант ссылается главным образом на проблемы с выяснением того, как доставлять малые РНК в нужные ткани. Собственно, это вообще главная трудность, с которой сталкиваются при создании таких методов лечения. Пока что-то не видно никаких революционных открытий, которые помогли бы справиться с этой проблемой.

Наверное, когда-нибудь наука сумеет интерпретировать все возможные эпигенетические модификации генома и точно предсказать их последствия для генетической экспрессии. Мы научимся улавливать углеродные выбросы и придумаем, как основать колонии на Марсе. Туберкулез станет туманным воспоминанием, и все мы будем отлично понимать, что такое бозон Хиггса. Но вот что касается того, сумеем ли мы разгадать, почему среди инвесторов надежда так часто одерживает верх над опытом... Ладно вам. Будем реалистами.