Вечность

Кэрролл Шон Майкл

Часть III. Энтропия и ось времени

 

 

Глава 7. Время, назад!

 

Пьер-Симон Лаплас слыл карьеристом в те времена, когда карьеризм считался делом рискованным. В разгар Великой французской революции Лаплас занял место одного из величайших математиков Европы, о чем он любил частенько напоминать своим коллегам в Академии наук. В 1793 году — в эпоху террора — Академия была распущена; Лаплас объявил о своих республиканских взглядах, но все же покинул Париж, для того чтобы не подвергать себя опасности (он не без оснований беспокоился за свою жизнь; его коллегу Антуана Лавуазье, отца современной химии, в 1794 году отправили на гильотину). Когда к власти пришел Наполеон, Лаплас присоединился к бонапартистам и посвятил императору свою работу «Аналитическая теория вероятностей». Наполеон назначил Лапласа министром внутренних дел, однако его карьера на этом посту продлилась совсем недолго — слишком абстрактными для политика понятиями он мыслил. После реставрации Бурбонов Лаплас стал роялистом и убрал посвящение Наполеону из последующих редакций своей книги. Титул маркиза ему был дарован в 1817 году.

Рис. 7.1. Пьер-Симон Лаплас, математик, физик, гибкий политик и непоколебимый детерминист

Несмотря на большое социальное честолюбие, когда дело доходило до его научных исследований, Лаплас моментально забывал о такте. Бытует забавный анекдот о его встрече с Наполеоном после того, как ученый попросил императора принять в подарок копию «Небесной механики» — пятитомного трактата о движении планет. Маловероятно, что Наполеон ознакомился с этим трудом (или хотя бы с его частью), но кто-то из присутствующих при дворе доложил ему, что автор ни в одном из пяти томов ни разу не ссылается на Бога. Наполеон воспользовался возможностью подшутить над ученым: «Месье Лаплас, говорят, вы написали эту толстую книгу о системе мира, не упомянув Создателя ни единым словом». На что Лаплас невозмутимо ответил: «Мне не понадобилась эта гипотеза».

Одним из центральных догматов философии Лапласа был детерминизм. Именно Лапласу удалось разглядеть суть взаимосвязи между настоящим и будущим в ньютоновской механике: если вы знаете о настоящем каждую мелочь, то будущее для вас абсолютно предопределено. Как он писал во введении к рассуждениям о теории вероятностей:

Мы должны рассматривать настоящее состояние Вселенной как следствие ее предыдущего состояния и как причину последующего. Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если бы вдобавок он оказался достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями мельчайших атомов; не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором. [108]

Сегодня мы наверняка предположили бы, что достаточно мощный компьютер, если загрузить в него всю информацию о текущем состоянии Вселенной, смог бы с идеальной точностью предсказывать будущее (и восстанавливать прошлое). Лаплас о компьютерах ничего не знал, поэтому в качестве мысленного эксперимента предложил считать, будто во Вселенной существует некий бескрайний разум. Его биографам это предложение показалось суховатым, поэтому они придумали звучное название: демон Лапласа.

Разумеется, сам Лаплас никогда не называл предмет своего эксперимента демоном; скорее всего, у него просто не было необходимости в такой гипотезе — как и в гипотезе о существовании Бога. Однако идея отражает определенную угрозу, кроющуюся в изначальных уравнениях ньютоновской физики. Будущее не создается нашими руками; все судьбы предопределены и зашифрованы в деталях нынешнего состояния Вселенной. Каждый момент прошлого и будущего зафиксирован в настоящем. У нас всего лишь нет достаточного количества ресурсов, чтобы выполнить необходимые вычисления.

Каждый из нас на подсознательном уровне противится такому положению вещей. Мы не хотим, чтобы демон Лапласа существовал, чтобы будущее было предопределено, даже если бы у кого-то был доступ к полному описанию состояния Вселенной. Том Стоппард в «Аркадии» красочно описывает беспокойства подобного рода.

ВАЛЕНТАЙН: Верно. Еще в двадцатых годах прошлого века один ученый — не помню имени — утверждал, что, опираясь на законы Ньютона, можно предсказывать будущее. Естественно, для этого нужен компьютер — огромный, как сама Вселенная. Но формула, так или иначе, существует.

ХЛОЯ: Но она не срабатывает! Ведь правда же? Согласись! Не срабатывает!!!

ВАЛЕНТАЙН: Согласен. Расчеты неверны.

ХЛОЯ: Расчеты ни при чем. Все из-за секса.

ВАЛЕНТАЙН: Да ну?

ХЛОЯ: Я уверена. Хотя, спору нет, Вселенная детерминирована, Ньютон был прав. Вернее, она пытается соответствовать его законам, но все время сбоит. Буксует. А причина одна-единственная: люди любят не тех, кого надо. Поэтому сбиваются все планы и искажается картинка будущего.

ВАЛЕНТАЙН: Хм… Притяжение, которое Ньютон сбросил со счетов?.. Одно яблоко трахнуло его по башке, а другое подкинул змей-искуситель?.. Да. (Пауза.) Пожалуй, ты додумалась до этого первая. [110]

Мы не будем углубляться в обсуждение вопроса, помогает ли сексуальная привлекательность выбраться из-под тяжелого пресса детерминизма. Нас интересует лишь то, почему прошлое так разительно отличается от будущего. Это не представляло бы никакой загадки, если бы не тот факт, что основополагающие законы физики вообще-то абсолютно обратимы. Взять того же демона Лапласа: для него реконструкция прошлого и предсказание будущего совершенно идентичны.

Отражение во времени (изменение направления времени на обратное) оказывается удивительно коварным понятием, хотя на первый взгляд кажется, что все просто и очевидно (помните про кинопленку, прокручиваемую в обратном направлении?). Нельзя просто так взять и бездумно развернуть время в обратную сторону — это не будет отражением симметрии законов природы. Для того чтобы правильно описать основополагающую симметрию, необходимо подойти к значению того, что мы понимаем под «задней передачей времени», с другой стороны. Итак, сейчас мы с вами пойдем к нашей цели кружным путем, используя упрощенные модели. В конечном счете я хочу продемонстрировать, что главным понятием в наших рассуждениях является не «изменение хода времени на обратный», а похожее понятие «обратимости» — умение восстанавливать прошлое исходя из состояния настоящего — в точности, как это делает Демон Лапласа. Не исключено, что это окажется куда сложнее, чем пустить время в обратную сторону. Ключевое понятие, обеспечивающее явление обратимости, — это сохранение информации. Если информация, описывающая состояние мира, с течением времени не пропадает, то мы всегда можем прокрутить часы назад и восстановить любое из предыдущих состояний. И вот тогда на поверхность всплывает настоящая загадка стрелы времени.

 

Шахматный мир

Давайте сыграем в игру. Она называется «шахматный мир», и правила очень просты. Вам показывают массив квадратиков — шахматную доску, на которой часть квадратиков белые, а часть — серые. Если говорить на компьютерном языке, то каждый квадратик — это «бит», и мы можем пометить белые квадратики нулем, а серые единицей. Шахматная доска бескрайняя и простирается во все стороны до бесконечности, но в каждый момент времени мы можем видеть лишь ее часть.

Смысл игры в том, чтобы разгадать шаблон. Видя перед собой некий массив квадратиков, вы должны выделить закономерности и описать шаблон, или правила расстановки белых и серых квадратиков. После этого для проверки вам покажут другие части доски, и вы сможете сравнить свои предположения с фактическим расположением клеток. Последний шаг на языке игры называется «проверкой гипотезы».

Рис. 7.2. Пример мира «шахматной доски» с простым шаблоном заливки вертикальных столбцов

Разумеется, у этой игры есть и другое название: «наука». Мы всего лишь описали, что делают настоящие ученые для понимания природы, — только в сильно идеализированном контексте. В случае физики хорошая теория включает три ингредиента: характеристики объектов, из которых сделана Вселенная, место действия, по которому распределены эти объекты, и правила, которым подчиняется поведение объектов. К примеру, в качестве объектов могут выступать элементарные частицы или поля, местом действия можно считать четырехмерное пространство—время, а правилами — законы физики. Мир шахматной доски именно такой: в качестве объектов выступают биты (нули и единицы, белые и серые квадратики), местом действия является сама шахматная доска, а правила — законы природы в этом игрушечном мире — это шаблоны, которые мы распознаем исходя из поведения квадратиков. Играя в эту игру, мы ставим себя на место воображаемых физиков, живущих в одном из подобных шахматных миров. Они проводят время, пытаясь разгадать закономерности в композициях квадратиков и сформулировать глобальные законы природы.

На рис. 7.2 изображен простейший пример игры, который мы будем называть «шахматная доска A». Очевидно, что какой-то шаблон здесь присутствует: квадратики раскрашены по определенной схеме. Можно сказать, что «если взять любой произвольный столбец, то все квадратики в нем будут находиться в одном и том же состоянии». Однако мы должны быть осторожны и убедиться в том, что здесь случайно не затесались никакие другие шаблоны, ведь если кто-то найдет больше шаблонов, чем мы, то мы проиграем, а нашим соперникам достанется Нобелевская премия шахматного мира. Создается впечатление, что на шахматной доске A нет никаких других очевидных шаблонов; мы пробежались глазами вдоль всей строки, но никаких идей, позволяющих дополнительно упростить описание этого шахматного мира, не возникло. Значит, мы закончили.

Рис. 7.3. Физические законы можно представлять себе как машину, которая исходя из текущего состоянии мира дает предсказание, каким мир станет мгновением позже

Каким бы простым этот пример ни казался, у шахматной доски A много общего с реальным миром. Например, обратите внимание на то, что в найденном нами шаблоне различаются «время» (направление вверх по столбцам) и «пространство» (горизонтальное направление вдоль строк). Различие между ними состоит в том, что в строке может произойти все что угодно; насколько мы можем судить, наличие информации о состоянии одного конкретного квадратика не позволяет сделать никаких выводов о состоянии соседних. Аналогичным образом, в реальном мире мы также можем стартовать с любой произвольной конфигурации вещества в пространстве и предсказать, что с этой конфигурацией будет происходить с течением времени, руководствуясь «законами физики». Если у нас на коленях сидит кошка, то мы можем быть уверены, что и мгновение спустя она будет где-то неподалеку. Тем не менее наличие информации о присутствии рядом кошки не позволяет получить никакого представления о том, что еще есть в той комнате, где мы находимся.

Предположим, мы решили с нуля построить новую Вселенную. Кто сказал, что в нашем творении между временем и пространством обязательно должно существовать различие такого рода? Вполне возможно вообразить такой мир, в котором вещи от момента к моменту будут меняться настолько же резко и непредсказуемо, как от места к месту. Однако в той Вселенной, где живем мы с вами, данное различие действительно существует. Понятие времени, с ходом которого вещи во Вселенной эволюционируют, не является логически неотъемлемой частью мира; это всего лишь идея, которая внезапно оказывается весьма удобной для размышлений о реальности, в которой мы живем.

Мы описали правило, действующее на шахматной доске A, так: «если взять любой произвольный столбец, то все квадратики в нем будут находиться в одном и том же состоянии». Это глобальное описание, распространяющееся сразу же на весь столбец. Мы могли бы перефразировать его, сделав более локальным, чтобы можно было взять любую строку («момент во времени») и с помощью правила восстановить все остальные строки сверху или снизу. Например, таким способом: «если мы знаем состояние любого конкретного квадратика, то мы также знаем, что квадратик прямо над ним находится точно в таком же состоянии». Другими словами, мы описали шаблон в терминах развития с течением времени и теперь можем, начиная с какого-то конкретного состояния в какой-то конкретный момент времени, продвигаться вперед (или назад), восстанавливая состояние одной строки за раз. Это традиционный способ применения законов физики к реальному миру, как показано на рис. 7.3. Расскажите о состоянии всего мира (скажем, о положении и скорости каждой частицы во Вселенной) в определенный момент времени, и законы физики услужливо сообщат, каким мир станет мгновение спустя. Повторяя процесс, можно построить полную картину будущего. А как насчет прошлого?

 

Ставя время с ног на голову

Для мира, существующего только в нашем воображении, шахматная доска уж слишком однообразна и ограниченна. Невозможно представить, чтобы эти маленькие квадратики могли закатить вечеринку или написать эпическую поэму. Тем не менее если бы на шахматных досках жили физики, то они нашли бы, что обсудить после формулировки законов временной эволюции.

Физика шахматной доски A обладает определенной степенью симметрии, например инвариантностью относительно сдвига по времени. Это означает, что законы физики не меняются во времени от момента к моменту. Мы можем сместить точку наблюдения вперед или назад во времени (вверх или вниз по столбцам), но правило «квадратик прямо над текущим находится точно в таком же состоянии» продолжит выполняться. Симметрии так и работают: вы что-то делаете, но это ничего не меняет — правила продолжают действовать, как и раньше. Мы уже говорили о том, что реальный мир также инвариантен относительно сдвига по времени: с течением времени законы физики не меняются.

Кроме того, на шахматной доске A можно заметить еще один вид симметрии — инвариантность относительно обращения времени. Смысл такого вида симметрии очевиден: мы заставляем время идти в обратную сторону и наблюдаем за происходящим. Если результат «выглядит точно так же» — то есть создается впечатление, что «перевернутая» система подчиняется тем же законам физики, что и первоначальная расстановка, — то мы говорим, что действующие в системе правила инвариантны относительно обращения времени. Для того чтобы проверить это на шахматной доске, нужно зеркально отразить ее, выбрав осью симметрии какую-нибудь строку. При условии, что действующие на шахматной доске правила также инвариантны относительно сдвига по времени, совершенно неважно, какую строку мы выберем, так как они все равны. Если правила, с помощью которых мы описывали исходную расстановку, так же действуют в новом шаблоне, то можно утверждать, что шахматная доска инвариантна относительно обращения времени. Очевидно, что образец A, в котором каждый столбец содержит квадратики только одного цвета, обладает данным типом инвариантности: отраженный шаблон не только подчиняется тем же правилам, он еще и стопроцентно совпадает с исходным.

Для того чтобы лучше прочувствовать идею, давайте рассмотрим более интересный пример. На рис. 7.4 показан еще один мир шахматной доски, обозначенный B. Теперь мы видим два разных шаблона размещения серых квадратиков: диагональные линии, идущие в обоих направлениях (получившийся рисунок немного напоминает световые конусы, не правда ли?). И снова мы можем описать получившуюся схему размещения серых и белых квадратиков в терминах развития от одного момента времени к следующему. Нужно только не забывать о том, что в каждой конкретной строке нам недостаточно отслеживать цвет одного-единственного квадратика. Мы обязаны следить за тем, какие типы диагональных линий из серых квадратиков проходят через эту точку (и проходят ли вообще). Каждую клетку можно пометить одним из четырех состояний: «белая», «диагональная линия серых квадратиков проходит вверх и вправо», «диагональная линия серых квадратиков проходит вверх и влево», «диагональная линия серых квадратиков проходит в обе стороны». Если мы опишем любую произвольную строку всего лишь как последовательность нулей и единиц, этого будет недостаточно, чтобы понять, как будет выглядеть следующая строка. Все выглядит так, будто мы обнаружили в рассматриваемой Вселенной два типа «частиц»: одни движутся всегда только налево, а другие — только направо, причем частицы разных типов никак не взаимодействуют между собой и не влияют друг на друга.

Рис. 7.4. Шахматная доска B (слева) характеризуется чуть более сложной динамикой, чем шахматная доска A: в этом примере диагональные линии, состоящие из серых квадратиков, следуют в обоих направлениях. Шахматная доска B' (справа) иллюстрирует результат обращения времени на доске B относительно центральной строки

Что произойдет с шахматной доской B, если мы поменяем направление времени на обратное? Суть этого шахматного мира останется прежней, однако фактическое расположение белых и серых квадратиков, разумеется, изменится (в отличие от шахматной доски A, где вне зависимости от направления времени мы получали один и тот же набор белых и серых клеток). На второй панели рис. 7.4, обозначенной B', показан результат зеркального отражения относительно одной из строк шахматной доски B. В частности, диагональные линии, проходившие из левого нижнего угла в правый верхний, теперь протянулись из левого верхнего в правый нижний, и наоборот.

Инвариантен ли мир шахматной доски из примера B относительно обращения времени? Определенно, это так. Пусть изменение направления времени относительно произвольно выбранной строки и меняет индивидуальное распределение белых и серых клеток — это не важно. Важно то, что неизменными остаются «законы физики», то есть правила, которым подчиняются схемы закрашивания квадратиков. В исходном примере B, до изменения направления времени, правила гласили, что существуют два типа диагональных линий, содержащих серые клетки. То же самое верно и для B'. И пусть два типа линий обмениваются личинами; это не отменяет того факта, что как в состоянии «до», так и в состоянии «после» мы наблюдаем одни и те же два типа линий. Таким образом, воображаемые физики из мира шахматной доски B объявили бы, что законы природы инвариантны относительно изменения направления времени.

 

В Зазеркалье

Ну что, рассмотрим еще один мир шахматной доски? Теперь это будет шахматная доска C, показанная на рис. 7.5. И снова действующие в этом мире правила кажутся довольно простыми: мы видим только диагональные линии, протянувшиеся из левого нижнего угла в правый верхний. Попробуем сформулировать правило «предсказания будущего» в терминах пошагового развития: «если мы знаем состояние любого конкретного квадратика, то мы также знаем, что квадратик на один шаг выше и правее него находится в том же самом состоянии». Определенно, данное правило инвариантно относительно переноса во времени, так как результат его применения абсолютно не зависит от того, с какой строки мы начнем.

Рис. 7.5. В шахматном мире C присутствуют только диагональные линии серых квадратиков, идущие из левого нижнего угла в правый верхний. Если изменить направление времени на противоположное, то мы получим картинку C', на которой нет ничего, кроме диагональных линий из правого нижнего угла в левый верхний. Строго говоря, шахматная доска C не инвариантна относительно изменения направления времени — она инвариантна относительно одновременного отражения в пространстве и во времени

Если изменить направление времени на шахматной доске C на противоположное, то мы получим конфигурацию, показанную на рис. 7.5 на доске C'. Очевидно, что эта ситуация отличается от ситуации с B и B'. Правила, которым подчиняются клетки на доске C', отличаются от правил на доске C: вместо диагональных линий, идущих из левого нижнего угла в правый верхний, мы теперь видим линии, идущие в другую сторону. Физики, живущие в мирах C и C', сказали бы, что наблюдаемые ими законы природы не обладают симметрией относительно обращения времени. Мы безошибочно различаем направления «вперед во времени» и «назад во времени»: «вперед» — это то направление, в котором диагональные линии движутся вправо. Какое направление назначить «будущим» — решать нам, но как только выбор сделан, «прошлое» и «будущее» идентифицируются однозначно.

Однако это еще не конец истории. Хотя шахматная доска C, строго говоря, не инвариантна относительно изменения направления времени (в том смысле, как мы его определили), что-то «обратимое» в этом мире все же должно быть. Давайте попробуем понять — что.

Помимо обращения времени, мы также могли бы рассмотреть вариант «обращения» пространства. Для этого нам нужно отразить шахматную доску по горизонтали относительно какого-то столбца. В реальном мире мы получаем аналогичный результат, когда смотримся в зеркало, так что обращением пространства в данном случае можно считать обычное зеркальное отражение. В физике это обычно называют преобразованием четности, которое получается при одновременном обращении всех трех пространственных осей, а не одной (как на шахматной доске). Давайте тоже будем использовать этот термин, чтобы у нас была возможность при необходимости сойти за настоящих физиков.

Очевидно, что наша исходная шахматная доска A инвариантна относительно преобразования четности: те правила поведения, которые мы на ней обнаружили, выполняются даже после горизонтального зеркального отражения. В то же время на шахматной доске C мы сталкиваемся с ситуацией, аналогичной той, которую мы получали, когда меняли направление времени на противоположное: четность — это не симметрия. Меняя «лево» на «право», мы превращаем мир с диагоналями «только вверх и вправо» в мир с диагоналями «только вверх и влево».

Тем не менее почему бы нам не взять шахматную доску C и не обратить сразу и время и пространство? В получившемся мире будут действовать те же правила, с которых все началось. При обращении времени первый тип диагоналей превращается во второй, а отражение в пространстве восстанавливает исходную картинку. Все встает на свои места, а этот эксперимент иллюстрирует одну важную особенность изменения направления времени в фундаментальной физике: очень часто бывает так, что определенная физическая теория не инвариантна относительно «наивного инвертирования времени», при котором меняется лишь направление времени и больше ничего. Однако та же самая теория может быть инвариантной относительно некоторого правильно обобщенного преобразования симметрии, которое не ограничивается лишь обращением времени, а включает какие-то дополнительные преобразования. В реальном мире это происходит по весьма изощренному сценарию, который в изложении некоторых авторов учебников по физике становится еще сложнее и запутаннее. Итак, давайте оставим наш дискретный мир шахматных досок и бросим взгляд на настоящую Вселенную.

 

Адрес состояния системы

В теориях, которые используются физиками для описания реального мира, присутствует общее базовое понятие состояния, которое «развивается с течением времени». Это касается как классической механики, сформулированной Ньютоном, так и общей теории относительности и квантовой механики, и даже квантовой теории поля и стандартной модели в физике элементарных частиц. На любой из наших шахматных досок состоянием является горизонтальная строка квадратиков, каждый из которых окрашен в белый или серый цвет (и, возможно, несет какую-то дополнительную информацию). В зависимости от подхода к физике реального мира определение состояния может меняться. Однако каким бы оно ни было, мы можем задавать одни и те же вопросы об изменении направления времени и других возможных симметриях нашего мира.

«Состояние» физической системы — это «полный набор информации о системе в определенный момент времени, которая достаточна для описания ее дальнейшего развития с учетом законов физики». Если точнее, то данное определение распространяется только на изолированные системы, то есть системы, не подверженные влиянию непредсказуемых внешних сил (в ситуации с предсказуемыми внешними силами мы можем просто-напросто объявить их частью «законов физики», действующих на данную систему). Таким образом, мы можем рассуждать как обо всей Вселенной, которая предполагается изолированной, так и о каком-то космическом корабле, находящемся на достаточном удалении от любых планет или звезд.

Рассмотрим для начала классическую механику — мир сэра Исаака Ньютона. Что нам нужно знать, чтобы предсказать будущее системы в ньютоновской механике? Выше я уже упоминал об этом: нам потребуются положения и скорости всех элементов системы. Однако не будем торопиться, а попробуем прийти к этому ответу постепенно, шаг за шагом.

Когда кто-то упоминает ньютоновскую механику, можно не сомневаться — дело закончится игрой в бильярд. Но давайте представим себе новый вариант игры — не тот традиционный бильярд с восемью шарами, а нечто уникальное. Свое гипотетическое развлечение с бильярдными шарами мы назовем бильярдом физиков. В попытке избавиться от излишних усложнений и добраться до сути вещей физики выдумывают игры, в которых нет ни шума, ни трения: идеально круглые сферы катаются по столу и отталкиваются друг от друга, не теряя ни капли энергии. Настоящие бильярдные шары ведут себя совершенно по-другому — каждому столкновению сопутствуют звук удара и рассеяние определенного количества энергии. Это наглядное проявление работы стрелы времени: шум и трение создают энтропию. Мы же на мгновение отбросим подобные сложности.

Для начала вообразим один-единственный бильярдный шар, катающийся по столу (распространить правила игры сразу на несколько шаров будет совсем нетрудно). Мы считаем, что он никогда не теряет энергию и, наталкиваясь на бортик, просто отскакивает. В целях нашей задачи «идеальный отскок» будет частью «физических законов» данной замкнутой системы — бильярдного шара. Так что же можно считать состоянием этого единственного шара?

На первый взгляд кажется, что логично считать состоянием шара в любой момент времени его положение на столе. В конце концов, если сделать фотографию стола, то что мы увидим? Место, где в тот момент находился шар. Однако выше мы определили состояние как полную информацию, требуемую для предсказания движения системы; очевидно, что одного лишь положения нам недостаточно. Если я скажу, что шар находится точно в центре стола (и больше ничего), и попрошу вас предсказать, где он окажется секундой позже, то вы не сможете дать мне точный ответ, ведь вам неизвестно, в какую сторону шар катился.

Разумеется, для предсказания движения шара на основании информации, имеющейся в наличии в конкретный момент времени, нам нужно знать как положение, так и скорость объекта. Говоря «состояние шара», мы имеем в виду его положение и скорость и — обратите внимание! — ничего более. Нам неважно, например, с каким ускорением шар катится, какое сейчас время суток, чем шар позавтракал в этот день и что еще происходит в его внутреннем мире.

Для описания движения частиц в классической механике вместо скорости часто используют такое понятие, как импульс. История данного понятия восходит к тысячному году и связана с величайшим персидским философом Ибн Синой (в латинизированном написании Авиценна). Он предложил теорию движения, в которой «влечение» — произведение массы и скорости — остается в отсутствие внешних воздействий постоянным. Импульс сообщает нам, какой энергией обладает объект и в каком направлении он движется. В ньютоновской механике импульс равен произведению массы на скорость, а в теории относительности формула слегка модифицируется с учетом того, что с приближением скорости объекта к скорости света его импульс возрастает до бесконечности. Если вам известен импульс объекта с фиксированной массой, то вы знаете его скорость, и наоборот. Следовательно, определить состояние любой частицы можно, указав ее положение и импульс.

Рис. 7.6. Одинокий бильярдный шар, катающийся по столу без трения. Показаны состояния в три разных момента времени. Стрелочки обозначают импульс шара; он остается постоянным до тех пор, пока шар не отскочит от бортика

Зная положение и импульс бильярдного шара, вы можете полностью предсказать всю траекторию, по которой он будет следовать, катаясь по столу. Пока шар свободно катится, не касаясь стенок, импульс остается постоянным; меняется лишь положение шара вдоль прямой линии, и происходит это с постоянной скоростью. Когда шар врезается в бортик, импульс мгновенно отражается относительно линии бортика, после чего шар продолжает движение с постоянной скоростью, то есть он отскакивает. Я описываю простые вещи сложными словами, но это необходимо.

Вся суть ньютоновской механики в этом и заключается. Если по одному и тому же столу катается много шаров, то полное состояние системы представляет собой всего лишь набор положений и импульсов каждого из них. Скажем, состояние Солнечной системы — это положения и импульсы всех планет, а также Солнца. Или же, если вам хочется большей детальности и реалистичности, — то это положения и импульсы всех частиц, из которых состоят эти объекты. А состояние вашего парня или девушки включает описание положения и импульса каждого атома его или ее тела. Правила классической механики позволяют однозначно предсказать, по какому пути пойдет развитие системы, опираясь лишь на информацию о ее текущем состоянии. После того как вы составили нужный список, дело берет в свои руки демон Лапласа, и исход предопределен. Однако вы не столь умны, как демон Лапласа, и у вас нет доступа к такому объему информации, поэтому парни и девушки навсегда останутся загадками. Кроме того, они представляют собой открытые системы, так что в любом случае вам потребовалась бы также информация и обо всем остальном мире.

Во многих ситуациях удобно рассуждать обо «всех потенциально возможных состояниях системы», называемых пространством состояний системы. Обратите внимание на то, что слово «пространство» употребляется в двух, казалось бы, совершенно разных смыслах. У нас есть пространство — физическая арена, на которой происходит движение реальных объектов во Вселенной, а также абстрактное понятие пространства как математического набора объектов (это почти то же самое, что и «множество», но с возможностью существования некой дополнительной структуры). Пространство состояний — это пространство, способное принимать разные формы в зависимости от рассматриваемых физических законов.

В ньютоновской механике пространство состояний называется фазовым пространством, хотя причины такого именования не до конца ясны. Это всего лишь набор всех возможных положений и импульсов всех присутствующих в системе объектов. В мире шахматных досок пространство состояний состоит из всевозможных последовательностей белых и серых квадратиков в одной строке, а также может включать некоторую дополнительную информацию в точках, где пересекаются диагональные линии. Когда мы окунемся в квантовую механику, то столкнемся с пространством состояний, состоящим из всех возможных волновых функций, описывающих квантовую систему; на техническом языке это называется гильбертовым пространством. В любой уважающей себя физической теории присутствует пространство состояний и правила, описывающие эволюцию конкретных состояний с течением времени.

У пространства состояний может быть громадное количество измерений, даже если обычное пространство всего лишь трехмерное. В этом контексте под измерением понимается «число, необходимое для фиксации точки в пространстве». В пространстве состояний есть по одному измерению для каждой компоненты положения и по одному измерению для каждой компоненты импульса для каждой частицы в системе. Если мы говорим о бильярдном шаре, катающемся по плоскому двумерному столу, то нам требуется два числа для описания его положения (так как сам стол двумерный) и два числа для описания его импульса (величины и направления). Таким образом, пространство состояний одного бильярдного шара, привязанного к двумерному столу, четырехмерное: два числа для положения, два для импульса.

Рис. 7.7. Два шара на бильярдном столе и соответствующее пространство состояний. Для обозначения положения каждого шара на столе требуется два числа, и еще два числа описывают его импульс. Полное состояние двух частиц представляет собой точку в восьмимерном пространстве (справа). Мы не можем нарисовать восемь измерений, так что постарайтесь вообразить, что они там действительно присутствуют. Каждый дополнительный шар добавляет к пространству состояний четыре измерения

Если бы на столе было девять шаров, то нам потребовалось бы по два числа на положение каждого шара и по два на их импульсы — итого тридцать шесть измерений фазового пространства. Число измерений, требующихся для описания импульса и положения, всегда совпадает, так как в реальном пространстве вдоль каждой из осей пространства направлено по одной компоненте импульса. Если рассмотреть случай бейсбольного мяча, летящего в воздухе, что эквивалентно задаче об одной частице, свободно движущейся в трехмерном пространстве, то пространство состояний для него будет шестимерным. Для 1000 частиц оно будет 6000-мерным.

В реалистичных задачах пространство состояний чрезвычайно велико. Настоящий бильярдный шар состоит примерно из 1025 атомов, а пространство состояний представляет собой список положений и импульсов каждого из них. Вместо того чтобы рассматривать эволюцию всех этих атомов, движущихся сквозь трехмерное пространство со своими импульсами, мы можем с равным успехом говорить о движении всей системы целиком как об одной точке (состоянии), движущейся сквозь пространство состояний с громадным количеством измерений. Это кардинальный способ перепаковки огромного объема информации в другую форму; нисколько не упрощая описание (мы всего лишь подменили огромное количество частиц огромным количеством измерений), он позволяет взглянуть на вещи с новой точки зрения.

Ньютоновская механика инвариантна относительно выбора направления времени. Если вы снимете фильм о том, как наш одинокий бильярдный шар катается по зеленому фетру и отскакивает от бортиков стола, то ни один зритель не сможет сказать, смотрит он эту пленку в прямом или в обратном воспроизведении. В обоих случаях на экране происходит одно и то же: шар катится по прямой линии с постоянной скоростью до тех пор, пока не врежется в бортик и не отскочит от него.

Однако это далеко не конец истории. В нашем шахматном мире мы определили инвариантность относительно обращения времени как идею о том, что последовательность состояний системы можно отразить во времени, и результат все так же будет подчиняться сформулированным для этого мира законам физики. На шахматной доске состоянием является строка белых и серых квадратиков; для бильярдного шара это точка в пространстве состояний, задающая положение и импульс шара.

Взгляните на первую часть траектории шара на рис. 7.6. Шар равномерно и прямолинейно катится вверх и вправо, величина его импульса остается постоянной, и направлен импульс также вверх и вправо. Если зеркально отразить происходящее во времени, то мы получим последовательность положений шара, движущегося из верхней правой области стола в нижнюю левую, а также набор одинаковых импульсов, указывающих вверх и вправо. Но это какое-то безумие. Если шар катится вдоль траектории с обратным направлением времени — сверху и справа вниз и влево, то и направление его импульса должно совпадать с направлением скорости. Очевидно, что самый простой рецепт — взять исходный набор состояний, упорядоченный во времени, и воспроизвести его в неизменном виде в обратную сторону — не работает. Получившаяся траектория не отвечает законам физики. (Совершенно очевидно, что импульс никак не может быть направлен в сторону, противоположную направлению скорости, ведь он равен произведению скорости и массы!)

Эта дилемма хоть и кажется неразрешимой, в действительности довольно проста. В классической механике мы можем определить операцию обращения времени не просто как воспроизведение исходного набора состояний в обратную сторону, но как составную операцию, включающую изменение направления импульсов на противоположное. И тогда действительно классическая механика окажется идеально инвариантной относительно обращения времени. Если вы предоставите мне описание эволюции системы с течением времени, включающее положения и импульсы каждой ее части в каждый момент времени, то я смогу развернуть эти импульсы в обратную сторону, воспроизвести последовательность в обратном порядке и получить новую траекторию, которая также будет представлять собой правильное решение ньютоновских уравнений движения.

Это более или менее отвечает здравому смыслу. Возьмем планету, вращающуюся вокруг Солнца. Предположим, что вам стало интересно, как этот процесс будет выглядеть в «обратной перемотке», — вы мысленно меняете направление течения времени, и теперь планета движется по той же орбите, но в обратную сторону. Наблюдая эту картину в течение какого-то времени, вы приходите к выводу, что все выглядит вполне достоверно. Это происходит потому, что ваш мозг автоматически меняет направление импульса на противоположное, — вам даже не приходится задумываться об этом, в вашем воображении планета совершенно естественным образом движется в обратную сторону. Мы не придаем этому большого значения, потому что не можем увидеть импульс так же, как видим положение. Тем не менее это такая же важная часть состояния любой системы, как и положение входящих в нее частиц.

Следовательно, нельзя говорить, что ньютоновская механика инвариантна относительно самого тривиального определения обращения времени: взять упорядоченную по времени допустимую последовательность состояний, поменять порядок их следования на обратный и посмотреть, будет ли новая последовательность отвечать действующим законам физики. При этом никого это особо не волнует. Мы просто даем более усовершенствованное определение: в этой упорядоченной во времени допустимой последовательности состояний нужно преобразовать каждое индивидуальное состояние некоторым простым, но конкретным способом и только после этого менять порядок следования состояний на обратный. Под «преобразованием» мы понимаем всего лишь изменение каждого состояния согласно заранее согласованному правилу; в случае ньютоновской механики требуемой трансформацией будет «изменение направления импульса на обратное». Если мы найдем достаточно простой способ преобразования отдельных состояний, обеспечивающий соблюдение законов физики даже после обращения времени, то сможем с гордостью объявить, что эти законы инварианты относительно изменения направления времени.

Это заставляет вспомнить (по крайней мере должно заставлять, если мой план удался) диагональные линии с шахматной доски C. Там мы обнаружили, что показанный на панели C' результат простого зеркального отражения упорядоченной по времени последовательности состояний не отвечает правилам исходного шаблона. Следовательно, шахматная доска C не допускает тривиального обращения времени. При этом если сначала отразить шахматную доску по горизонтали и только после этого поменять направление времени, то результат будет удовлетворять первоначальным правилам. Таким образом, в этом мире существует хорошо определенная процедура преобразования индивидуальных состояний (строк, состоящих из квадратиков), показывающая, что шахматная доска C инвариантна относительно обращения времени, но в более изощренном смысле.

Понятие об обращении времени, включающее преобразование состояний в дополнение к непосредственному изменению направления времени, может вызывать сомнения, но физики постоянно занимаются чем-то подобным. Например, в теории электричества и магнетизма при обращении времени электрическое поле остается неизменным, а направление магнитного поля меняется. Это всего лишь часть требуемого преобразования; прежде чем пускать время в обратную сторону, изменениям должны быть подвергнуты как магнитное поле, так и импульс.

Урок, который мы должны извлечь из всего этого, заключается в следующем. Фраза «данная теория инвариантна относительно обращения времени» не означает «можно только лишь поменять направление времени, и теория как работала, так и продолжит работать». На самом деле все немного сложнее: нужно каким-то простым способом преобразовать состояние в каждый момент времени, а потом уже менять направление времени, и тогда теория продолжит работать, как раньше. Очевидно, что выражения типа «каким-то простым способом» в определениях фундаментальных физических понятий несколько подрывают их авторитет. Кто вправе судить, что можно считать достаточно «простым», а что нет?

В действительности это не так уж важно. Если существует какое-то преобразование, которое можно применить к состоянию некой системы в каждой момент времени так, чтобы движение «назад во времени» подчинялось исходным физическим законам, вы можете смело объявлять это инвариантностью относительно изменения направления времени. Или другим видом симметрии, связанным с обращением времени, но не в точности равным ему. Название не играет роли; важно лишь понимание всевозможных симметрий и того, соблюдаются они рассматриваемыми законами или нет. В стандартной модели физики элементарных частиц действительно существует преобразование состояний, после которого они могут быть «прокручены назад во времени» так, чтобы исходные уравнения движения по-прежнему соблюдались. Но физики предпочитают не называть это «инвариантностью относительно изменения направления времени». Давайте посмотрим, как это работает.

 

Запуск частиц в обратном направлении

Элементарные частицы не слишком-то хорошо соблюдают постулаты классической механики: они живут по правилам квантовой механики. Тем не менее основополагающий принцип остается неизменным: существуют такие преобразования, что после изменения направления времени на обратное и применения этих трансформаций мы все так же получаем верное решение в исходной теории. Часто можно услышать, что элементарные частицы не инвариантны относительно отражения времени, и периодически высказываются даже не слишком тонкие намеки на то, что это связано со стрелой времени. Но это ложный след. Поведение элементарных частиц в условиях «обратного» времени никакого отношения к стреле времени не имеет, что, однако, вовсе не делает ее менее интересным объектом для исследований.

Давайте попробуем вообразить эксперимент, позволяющий понять, действительно ли физика элементарных частиц инвариантна относительно обращения времени. Для этого нам нужно взять какой-либо процесс, включающий элементарные частицы, и прокрутить его в обратном направлении. Например, две частицы могут взаимодействовать друг с другом с образованием других частиц (как в ускорителе), или же одна частица может распадаться на несколько других. Если продолжительность «прямого» процесса будет отличаться от продолжительности «обратного», это станет доказательством отсутствия инвариантности.

Атомные ядра состоят из нейтронов и протонов, которые в свою очередь состоят из кварков. Нейтроны остаются стабильными только в окружении протонов и других нейтронов, образующих ядро, а оказавшись в одиночестве, они распадаются в течение нескольких минут (будучи частицами с тонкой душевной организацией, они не могут жить без внимания окружающих). Нейтрон распадается на комбинацию из протона, электрона и нейтрино (очень легкая нейтральная частица). С теоретической точки зрения нет ничего сложного в том, чтобы сконструировать обратный процесс: нужно всего лишь выстрелить протоном, электроном и нейтрино в одну точку на правильной скорости и дождаться результата. Проблема, однако, состоит в том, что даже если подобное взаимодействие и позволило бы получить какие-нибудь новые интересные знания об обращении времени, реализовать это на практике невозможно. Никому не под силу поместить протон, электрон и нейтрино в такие положения и заставить вести себя так, чтобы полностью воспроизвести картину распада нейтрона в обратном направлении.

Рис. 7.8. Нейтральный каон и нейтральный антикаон. Поскольку оба обладают нулевым электрическим зарядом и суммарное кварковое число в них также равно нулю, каон и антикаон могут осциллировать друг в друга, оставаясь при этом разными частицами

Однако не всегда все так печально. В физике элементарных частиц встречаются специфические случаи, когда одиночная частица «распадается» в другую одиночную частицу, которая затем также может «распасться» обратно в исходную. В действительности это, конечно, нельзя называть распадом, поскольку в процесс вовлечена только одна частица. Такие процессы называются осцилляциями. Очевидно, что осцилляции могут происходить только в весьма специфических обстоятельствах. Например, протон не может осциллировать в нейтрон: их электрические заряды отличаются. Две частицы могут осциллировать друг в друга только в том случае, если они обладают одинаковым электрическим зарядом, одинаковым числом кварков и одинаковой массой, так как при осцилляции не может исчезать или увеличиваться энергия. Обратите внимание на то, что кварк и антикварк — это не одно и то же, и, следовательно, нейтроны не будут осциллировать в антинейтроны. В сущности, нас интересуют две практически одинаковые частицы, различия между которыми минимальны.

Природа предоставляет нам идеального кандидата для таких осцилляций: нейтральный каон. Каон относится к типу мезонов, и это означает, что он состоит из одного кварка и одного антикварка. Если мы хотим, чтобы частица состояла из кварков разных типов с нулевым суммарным зарядом, то проще всего сделать ее из одного нижнего (d)-кварка и одного странного (s) антикварка, или наоборот. Систему из нижнего кварка и странного антикварка принято называть «нейтральным каоном», а систему из странного кварка и нижнего антикварка — «нейтральным антикаоном». Массы этих частиц абсолютно одинаковы и составляют около половины массы протона или нейтрона. Вполне естественно ожидать, что между каонами и антикаонами возникают осцилляции, и действительно: изучение осцилляций именно этих частиц стало уже чем-то вроде промышленной отрасли в экспериментальной физике элементарных частиц. (Существуют также каоны, обладающие электрическим зарядом. Такой каон состоит из верхнего (u) кварка и странного кварка и для наших целей совершенно бесполезен. Даже если в дальнейшем обсуждении для простоты формулировок мы будем опускать слово «нейтральный», говорить мы все же будем именно о нейтральных каонах.)

Итак, нам нужно сделать несколько каонов и антикаонов, чтобы понаблюдать, как они будут осциллировать друг в друга. Если инвариантность относительно отражения времени отсутствует, то в одну сторону процесс будет идти дольше, чем в другую; в результате в нашем наборе частиц будет в среднем немного больше каонов, чем антикаонов (или наоборот). К сожалению, на самих частицах мы не найдем маленьких меточек, сообщающих, с каким типом каонов мы имеем дело. Зато в конечном счете они полностью распадутся и образуют совершенно новые частицы: каон распадается на пион с отрицательным зарядом, антиэлектрон и нейтрино, а антикаон — на пион с положительным зарядом, электрон и антинейтрино. Если оценить, насколько часто один тип распада происходит по сравнению с другим, то можно понять, в какой форме первоначальные частицы пребывали дольше — в форме каона или антикаона.

Несмотря на то что теоретические предсказания были получены уже достаточно давно, соответствующий эксперимент CPLEAR провели в лаборатории CERN в Женеве (Швейцария) лишь в 1998 году. Ученые обнаружили, что создаваемый ими пучок частиц, совершающий осцилляции между каонами и антикаонами, немного чаще (примерно на две трети процента) распадался как каон, чем как антикаон, то есть частицы в осциллирующем пучке чуть дольше пребывали в состоянии каонов, чем антикаонов. Другими словами, процесс превращения каона в антикаон занимал немного больше времени, чем обратный процесс перехода антикаона в каон. Таким образом, в реальном мире направление времени в физике элементарных частиц не симметрично.

По крайней мере, это справедливо для «бесхитростного» обращения времени, как мы определили его выше. Можно ли в мире элементарных частиц использовать какие-либо дополнительные преобразования, чтобы в результате добиться инвариантности относительно обращения времени? Ответ положительный, и сейчас мы обсудим это подробнее.

 

Три отражения природы

Если пристальнее всмотреться в принципы работы физики элементарных частиц, то выяснится, что существует три типа возможных симметрий, включающих «обращение» физического свойства, и каждое из них обозначено своей заглавной буквой. Инверсия времени T меняет местами прошлое и будущее. Четность P обозначает замену «право» на «лево», и наоборот. Мы уже обсуждали четность в контексте миров шахматных досок, но это понятие точно так же распространяется и на реальный трехмерный мир. Наконец, существует «зарядовое сопряжение» C — на самом деле это просто модное название для процесса замены частиц на античастицы. Преобразования C, P и T обладают одним общим свойством: если повторить любое из них два раза подряд, то вы вернетесь к исходному состоянию.

В принципе, можно представить себе набор физических законов, инвариантный относительно каждого из перечисленных преобразований в отдельности, и на первый взгляд кажется, что так и обстоит дело в нашем мире (главное, не копать слишком глубоко, например, изучая распад нейтральных каонов). Если создать атом антиводорода из антипротона и антиэлектрона, то он будет обладать почти такими же свойствами, как и обычный атом водорода, за исключением того, что при соприкосновении с атомом обычного водорода эти элементы проаннигилируют, оставив после себя лишь излучение. Таким образом, преобразование C создает впечатление симметрии нашего мира, так же как P и T.

В результате, когда в 1950-х годах американские физики китайского происхождения Чжэндао Ли, Чжэньнин Янг и Цзяньсюн Ву показали, что одно из преобразований — четность — не является симметрией природы, для многих это стало огромным сюрпризом. Мысль о возможном нарушении инвариантности относительно четности витала в воздухе уже довольно давно. Об этом говорили разные люди, но всерьез такую возможность никто не рассматривал. В физике авторство открытия приписывается не тому, кто случайно высказывает предположение, а тому, кто подходит к этому предположению с достаточно основательных позиций, чтобы взять его в работу и превратить в солидную теорию или убедительный эксперимент. В случае нарушения принципа четности именно Ли и Янг сели и выполнили тщательный анализ проблемы. Они поняли, что существует множество экспериментальных доказательств того, что электромагнетизм и сильное взаимодействие инвариантны относительно P, однако что касается слабого взаимодействия, вопрос оставался открытым.

Ли и Янг предложили несколько путей поиска доказательств нарушения четности при слабом взаимодействии. В конце концов они убедили Ву — физика-экспериментатора, специализирующуюся на слабых взаимодействиях, и коллегу Ли по Колумбийскому университету, что на этот проект стоит потратить время и силы. Ву пригласила физиков из Национального бюро стандартов США присоединиться к ней для проведения эксперимента над атомами кобальта-60 в магнитных полях при очень низких температурах.

В ходе подготовки к эксперименту Ву убедилась в том, что этот проект имеет фундаментальную значимость. Позднее в своих воспоминаниях она живо описывала свои ощущения от участия в важнейшем событии научного мира:

После визита профессора Ли я глубоко задумалась. Для физика, изучающего бета-распад, это было великолепной возможностью провести решающий эксперимент, и, конечно же, я не могла ее упустить. Той весной мы с моим мужем Чиа-Лью Юань планировали посетить конференцию в Женеве, а затем отправиться на Дальний Восток. Мы оба покинули Китай в 1936 году, ровно двадцать лет назад. Билеты на рейс Королевы Елизаветы были уже забронированы, но внезапно я осознала, что обязана провести эксперимент немедленно, до того как его значимость станет очевидной физическому сообществу и кто-нибудь меня опередит. Поэтому я попросила Чиа-Лью позволить мне остаться и отправиться в поездку без меня.

Сразу же по завершении весеннего семестра, в конце мая, я начала с энтузиазмом готовиться к эксперименту. В середине сентября я наконец-то поехала в Вашингтон на первую встречу с доктором Аблером… В перерывах между экспериментами в Вашингтоне мне приходилось то и дело возвращаться в Колумбийский университет — я продолжала преподавать, а также должна была заниматься исследованиями. В канун Рождества я добралась до Нью-Йорка на последнем поезде; аэропорт был закрыт из-за сильных снегопадов. Там я рассказала профессору Ли о замеченной асимметрии — она не только была огромной, но и оказалась воспроизводимой. Параметр асимметрии составлял почти –1. Профессор Ли отметил, что это замечательный результат. Именно тот результат, которого следовало ожидать для двухкомпонентной теории нейтрино. [124]

Супруг и возвращение в дом детства подождут — наука зовет! В 1957 году Ли и Янгу была присуждена Нобелевская премия; в число награждаемых надо было включить и Ву, однако этого не произошло.

Вскоре после того, как выяснилось, что слабое взаимодействие нарушает четность, ученые заметили, что эксперименты вроде бы подтверждают инвариантность относительно комбинации преобразований — когда к четности добавляется зарядовое сопряжение C, заменяющее частицы античастицами. Более того, что-то подобное предсказывали теоретические модели, популярные в то время. Таким образом, люди, которых неприятно поразило открытие асимметрии четности в реальном мире, нашли некоторое утешение в мысли о том, что комбинация C и P является хорошей симметрией.

Тем не менее это было ошибкой. В 1964 году Джеймс Кронин и Вал Фитч совместно провели исследование, объектом которого выступил наш старый друг нейтральный каон. Они обнаружили, что четность нарушается не только при распаде каона, но и при распаде антикаона, только во втором случае это происходит несколько иным образом. Другими словами, комбинация преобразований C и P не является симметрией природы. Нобелевскую премию Кронину и Фитчу присудили в 1980 году.

Долго ли, коротко ли, но обнаружилось, что природа нарушает не только все потенциальные симметрии — C, P и T, но и комбинацию любых двух преобразований. Очевидным следующим шагом стала проверка комбинации всех трех: CPT. Если взять какой-либо процесс природы, заменить все частицы античастицами, поменять местами лево и право и изменить направление времени на обратное, то будет ли получившийся процесс подчиняться законам физики? С учетом того, что нам уже известно про комбинации двух преобразований, логично ожидать, что и комбинация CPT также не будет инвариантной.

Однако и здесь мы ошибаемся! (Хорошо, что и задаем вопросы, и отвечаем на них мы сами.) Пока что все проведенные эксперименты подтверждают, что преобразование CPT является симметрией реального мира. Более того, сделав некоторые обоснованные предположения про законы физики, можно доказать, что преобразование CPT обязано быть симметрией, — это утверждение неудивительным образом называется «CPT-теоремой». Разумеется, даже обоснованные предположения могут оказываться ошибочными, так что ни физики-экспериментаторы, ни теоретики не чураются исследовать возможное нарушение CPT-инвариантности. Но насколько можно судить, эта симметрия пока что не собирается сдавать позиции.

Ранее я говорил, что для того, чтобы получить преобразование, применение которого не нарушает законов природы, может оказаться необходимым «починить» операцию обращения времени. В случае стандартной модели физики элементарных частиц в список преобразований также добавляются зарядовое сопряжение и четность. Большинство физиков полагают, что следует разделять гипотетический мир, в котором C, P и T инвариантны по отдельности, и реальный мир, в котором инвариантностью обладает лишь комбинация CPT. Это позволяет заявлять, что реальный мир не инвариантен относительно изменения направления времени. Однако необходимо все время помнить, что существует возможность дополнить инверсию времени другими операциями так, чтобы результат отвечал всем требованиями симметрии реального мира.

 

Сохранение информации

Мы убедились, что обращение времени включает в себя не только изменение направления эволюции системы, то есть воспроизведение естественной последовательности состояний в обратную сторону, но также требует применения определенных преобразований к самим состояниям. Это может быть изменение импульса на противоположный, зеркальное отражение строки на шахматной доске или что-то более изысканное, например замена частиц античастицами.

Однако если это так, то можно ли утверждать, что каждый осмысленный набор физических законов инвариантен относительно той или иной формы «усложненного обращения времени»? Всегда ли возможно найти такие преобразования состояний, после применения которых движение «в обратную сторону по времени» все так же будет подчиняться законам физики?

Нет. Возможность определить обращение времени таким образом, чтобы законы физики относительно данной операции оставались инвариантными, зависит от одного критически важного предположения: предположения о сохранении информации. Это всего лишь означает, что два разных состояния в прошлом всегда переходят в два разных состояния в будущем — пути их эволюции не могут пересечься в одном и том же состоянии. Если это выполняется, то мы говорим, что «информация сохраняется», так как зная состояние в будущем, можно понять, каким было соответствующее состояние в прошлом. Физические законы, в которых заложена такая особенность, считаются обратимыми, и в таком случае можно утверждать, что существуют какие-то (возможно, очень сложные) преобразования, которые можно применять к состояниям таким образом, что инвариантность относительно обращения времени сохранится.

Для того чтобы посмотреть, как это работает на деле, давайте снова вернемся в шахматный мир. Шахматная доска D, показанная на рис. 7.9, выглядит довольно просто. Серые квадратики на ней образуют несколько диагональных линий и один вертикальный столбец. Но здесь происходит нечто интересное, что нам еще не доводилось наблюдать в предыдущих примерах: разные линии серых квадратиков «взаимодействуют» друг с другом, а именно создается впечатление, что диагональные линии могут подходить к вертикальному столбцу справа или слева, но в месте соприкосновения с вертикальным столбцом диагональные линии неизменно обрываются.

Рис. 7.9. Шахматная доска с необратимой динамикой. Информация о прошлом не сохраняется в будущем

Казалось бы, правило довольно простое, и его можно считать отличным «набором законов физики». Но между шахматной доской D и предыдущими шахматными мирами существует кардинальное отличие: на этой доске происходящее необратимо. Пространство состояний, как и раньше, представляет собой простое перечисление белых и серых квадратиков вдоль каждой строки (с дополнительной информацией о том, является квадратик частью диагонали, движущейся направо, диагонали, движущейся налево, или вертикального столбца). Имея на руках такую информацию, мы без труда можем предсказать развитие «вперед во времени» — мы точно знаем, как будет выглядеть следующая строка и строка сразу за ней, и так далее.

Однако, зная состояние одной строки, мы не можем прокрутить развитие системы в обратную сторону. Мы сможем продолжить существующие диагональные линии, но с точки зрения прокрутки времени в обратную сторону новые диагонали могут отпочковываться от вертикального столбца в абсолютно случайных точках (соответствующих точкам «столкновения» диагоналей с вертикальным столбцом при развитии вперед во времени). Когда мы говорим, что физический процесс необратим, мы имеем в виду, что невозможно восстановить прошлое состояние, отталкиваясь от знания о текущем состоянии, и эта шахматная доска служит прекрасным примером.

В подобных ситуациях информация теряется. Даже зная о состоянии мира в какой-то момент времени, мы не можем сказать с уверенностью, в каких состояниях он пребывал в прошлом. У нас есть пространство состояний — описания строчек из белых и серых квадратиков с дополнительными метками на серых, сообщающими направление движения: вверх и вправо, вверх и влево или строго вверх. Это пространство состояний со временем не меняется: каждая строка остается членом одного и того же пространства состояний и в каждой конкретной строке может наблюдаться любое из допустимых состояний. Необычно в шахматной доске D то, что двум разным строкам может соответствовать одно и то же состояние в будущем. Когда мы оказываемся в этом будущем состоянии, мы уже не можем восстановить информацию о том, какая прошлая конфигурация стала предшественницей этого состояния; воспроизвести последовательность смены состояний в обратную сторону не представляется возможным.

Рис. 7.10. Очевидная потеря информации в стакане воды. Состояние в будущем — «стакан прохладной воды» — может быть следствием любого из двух состояний в прошлом — «стакан прохладной воды» или «стакан теплой воды с кубиком льда»

В реальном мире постоянно происходит очевидная потеря информации. Рассмотрим два разных состояния стакана воды. В одном состоянии в стакане находится только прохладная вода; в другом состоянии в стакан налита теплая вода и брошен кубик льда. В будущем эти два состояния могут развиться в то, что с нашей точки зрения будет одним и тем же состоянием: стакан прохладной воды.

Мы уже встречались с этим явлением раньше: это стрела времени. По мере того как кубик льда тает в теплой воде, энтропия увеличивается; этот процесс может происходить, но никогда не может быть обращен. Загадка в том, что движение отдельных молекул, составляющих воду, инвариантно относительно обращения времени — в этом нет сомнений. И в то же время макроскопическое описание в терминах льда и жидкости не инвариантно. Для того чтобы понять, как так получается, что обратимые базовые законы порождают макроскопическую необратимость, нам необходимо снова вспомнить Больцмана и его идеи относительно энтропии.

 

Глава 8. Энтропия и беспорядок

 

Почему обсуждения энтропии и второго начала термодинамики так часто заканчиваются разговорами о еде? Вот несколько популярных (и вкусных) примеров, когда энтропия увеличивается в ходе необратимых процессов:

• вы разбиваете яйца и готовите яичницу;

• смешиваете кофе с молоком;

• проливаете вино на новый ковер;

• вынимаете пирог из духовки, и его аромат распространяется по квартире;

• кидаете кубики льда в стакан воды, и они постепенно тают.

Честно говоря, не все эти примеры одинаково аппетитны; тот, что с кубиком льда, пресноват, — хотя это легко исправить, заменив воду джином. Кроме того, пример с приготовлением яичницы требует дополнительного разъяснения. На самом деле приготовление яиц нельзя считать прямолинейной демонстрацией второго начала термодинамики. Готовка — химическая реакция, вызываемая нагреванием, и этот процесс не был бы возможен, если бы яйца не были открытыми системами. Энтропия вступает в игру, когда мы разбиваем яйца и перемешиваем белки с желтками; смысл тепловой обработки получившейся смеси в том, чтобы избежать отравления сальмонеллой, а не продемонстрировать принципы термодинамики.

Взаимоотношения между энтропией и едой основываются по большей части на таком вездесущем процессе, как смешивание. На кухне мы очень часто именно этим и занимаемся — смешиваем два вещества, которые до этого существовали сами по себе или хранились раздельно. Это могут быть как две разные формы одной и той же субстанции (лед и жидкая вода), так и два совершенно разных ингредиента (молоко и кофе, белки и желтки яиц). Первопроходцы термодинамики были чрезвычайно заинтересованы в изучении влияния тепла на различные объекты из повседневной жизни, и таяние кубика льда стало бы для них проблемой первоочередной важности. Куда меньшее любопытство у них вызвали бы процессы, в которых принимают участие ингредиенты, имеющие одинаковую температуру, например пролитое на ковер вино. Однако совершенно очевидно, что независимо от температуры между всеми этими процессами есть нечто сходное: изначально субстанции разъединены, а в конечном состоянии перемешаны между собой. Смешать вещи очень легко, а вот разъединить куда труднее. Стрела времени накладывает свой отпечаток на все, что мы делаем на кухне.

Почему смешивать ингредиенты легко, а отделять их друг от друга сложно? Когда мы смешиваем две жидкости, мы видим, как разноцветные завихрения постепенно сливаются, образуя равномерно окрашенную текстуру. Это зрелище не слишком помогает разобраться, что именно там происходит. Так что давайте вместо этого рассмотрим смешивание песка двух разных цветов. Важно то, что песок состоит из дискретных частей — отдельных песчинок. Это ни у кого не вызывает сомнения. Смешивая, например, синий песок с красным, мы получаем песок фиолетового цвета. Но это не означает, что каждая песчинка из обеих порций окрасилась в фиолетовый цвет. Песчинки сохраняют индивидуальность — синие остаются синими, а красные красными; они просто беспорядочно перемешиваются. Только если мы глядим издалека («макроскопически») смесь кажется однообразно фиолетовой; если приглядеться (посмотреть на нее «микроскопически»), мы увидим те же самые синие и красные песчинки.

Одним из величайших достижений пионеров кинетической теории — Даниила Бернулли из Швейцарии, Рудольфа Клаузиуса из Германии, Джеймса Клерка Максвелла и Уильяма Томсона из Великобритании, Людвига Больцмана из Австрии и Джозайи Уилларда Гиббса из США — было то, что они первыми стали рассматривать все жидкости и газы так, как мы только что описывали песок: как наборы крохотных кусочков, сохраняющих свои отличительные черты. Разумеется, мы не ищем в жидкостях и газах песчинки; мы знаем, что они сделаны из атомов и молекул. Однако принцип остается неизменным. Когда мы наливаем молоко в кофе, не происходит никакого чудесного объединения отдельных молекул молока с отдельными молекулами кофе, и молекулы нового вида не появляются в этой смеси. Два набора молекул просто перемешиваются. Даже тепло — это свойство атомов и молекул, а не какая-то отдельная самостоятельная жидкость. Теплота объекта — характеристика энергии быстро движущихся молекул, из которых он состоит. Когда кубик льда тает в стакане воды, молекулы не меняются. Они всего лишь сталкиваются друг с другом, вследствие чего их энергия равномерно распределяется между всеми молекулами, содержащимися в стакане.

Не давая (пока что) точного математического определения энтропии, на примере смешивания песка двух цветов мы можем показать, что перемешивать вещи значительно проще, чем разделять их обратно. Представьте себе миску, в которую насыпали песок: все синие песчинки находятся у одного бортика, а все красные у противоположного. Очевидно, что эта конфигурация достаточно специальная: если потрясти миску или помешать содержимое ложкой, то красный песок начнет смешиваться с синим. Если же с самого начала насыпать в миску смесь двух типов песка, то конфигурация будет устойчива: сколько ни перемешивай, менее разнородной смесь не станет. Причина проста: для того чтобы разделить два типа песка, нам потребуется применить намного более точное действие, чем простое потряхивание или перемешивание. Нам придется взять увеличительное стекло и аккуратно поработать пинцетом, перенося красные песчинки к одному бортику миски, а синие к другому. Для создания нестабильного специального состояния необходимо вкладывать куда больше труда, чем для создания стабильной неразберихи.

Все то же самое можно изложить с ужасающе научной количественной точки зрения — что Больцман и другие, собственно говоря, и сделали в 1870-х годах. Мы тщательно изучим результаты их работы и попробуем понять, на какие вопросы они дают ответы, а на какие нет и насколько эти ответы согласуются с основополагающими законами физики, которые, как мы знаем, полностью обратимы. Однако уже сейчас должно быть понятно, что ключевую роль здесь играет большое количество атомов, составляющих макроскопические объекты в реальном мире. Если бы у нас была только одна красная песчинка и одна синяя, то между «смешанным» и «несмешанным» состояниями никакого различия бы не было. В предыдущей главе мы говорили о том, что физические законы работают совершенно одинаково как вперед во времени, так и назад (при условии, что мы дали надлежащее определение направлению времени). Это микроскопическое описание, требующее тщательного отслеживания каждой индивидуальной составляющей системы. Однако в реальном мире, где в различных процессах участвует невообразимое количество атомов, мы попросту не в состоянии обрабатывать такие объемы информации. Нам приходится прибегать к упрощениям — рассматривать средний цвет, или температуру, или давление вместо положения и импульса каждого атома. Когда мы мыслим макроскопически, мы забываем (или отбрасываем) детальную информацию об отдельных частицах, — и здесь на сцену выходят энтропия и необратимость.

 

Огрубление

Главное, что мы хотим понять, — это «как макроскопические характеристики системы, состоящей из множества атомов, меняются вследствие движения отдельных атомов?» (Я буду попеременно использовать все три термина — «атомы», «молекулы» и «частицы», подразумевая примерно одно и то же, так как для нас важно лишь то, что это крохотные объекты, подчиняющиеся обратимым законам физики, и что для того, чтобы сконструировать нечто макроскопическое, нужно взять необычайно много таких объектов.) Чтобы разобраться в этом, рассмотрим герметичный контейнер, разделенный на две части перегородкой, в которой проделано отверстие. Молекулы газа летают в одной половине контейнера и чаще всего отскакивают от центральной перегородки, однако периодически часть молекул пролетает сквозь отверстие на другую половину. Можно предположить, например, что молекулы отскакивают от перегородки в 995 случаях из 1000, но полпроцента из них при каждом столкновении (которое случается, скажем, каждую секунду) умудряется пробраться в другую часть контейнера.

Рис. 8.1. Контейнер, полный молекул газа, посередине которого установлена перегородка с отверстием. Каждую секунду у каждой молекулы есть крошечный шанс пролететь сквозь отверстие на другую сторону

Этот пример весьма специфичен и тем удобен; мы можем в деталях изучить каждый вариант развития событий и описать, что при этом происходит. Про каждую молекулу в левой половине контейнера мы можем сказать, что каждую секунду с вероятностью 99,5 % она останется в своей половине, а с вероятностью 0,5 % переместится в противоположную; то же самое верно для правой половины контейнера. Это правило абсолютно инвариантно относительно обращения времени: если снять на пленку движение произвольной частицы, подчиняющейся этому правилу, то при просмотре фильма невозможно будет сказать, вперед или назад по времени воспроизводится запись. На уровне отдельных частиц прошлое и будущее совершенно идентичны.

На рис. 8.2 мы изобразили один из возможных вариантов; как всегда, значение времени увеличивается снизу вверх. В контейнере 2000 «молекул воздуха», и в момент времени t = 1 в левой части находится 1600 молекул, а в правой — только 400. (Пока что вы не должны спрашивать, почему первоначальная конфигурация выбрана именно такой, хотя позже, когда мы заменим «контейнер» на «Вселенную», мы начнем задавать подобные вопросы.) Итак, мы наблюдаем за молекулами, летающими внутри контейнера и отскакивающими от стенок, и то, что происходит далее, нас совсем не удивляет. Каждую секунду любая молекула с небольшой вероятностью может перелететь на другую половину, но поскольку в самом начале в одной части контейнера существенно больше молекул, чем в другой, в целом наблюдается тенденция к выравниванию. (В точности как с температурами в формулировке второго начала термодинамики, предложенной Клаузиусом.) Пока в левой части контейнера молекул больше, общее количество молекул, пролетающих сквозь отверстие слева направо, превышает количество молекул, перемещающихся в обратном направлении. Через 50 секунд мы увидим, что количества молекул в обеих частях начинают выравниваться, а через 200 секунд они станут практически равными.

Очевидно, что этот контейнер — еще одна иллюстрация существования стрелы времени. Даже если бы мы не указали моменты времени на различных конфигурациях, показанных на рисунке, большинство людей без труда угадали бы, что было в начале, а чем все закончилось. Нас не удивляет тот факт, что концентрация молекул воздуха выравнивается, но мы бы были поражены, если бы все (или почти все) молекулы внезапно собрались в одной половине контейнера. «Прошлое» — это с той стороны стрелы времени, где объекты находятся в более разделенном состоянии, тогда как «будущее» — это там, где они перемешались, а их концентрация выровнялась. То же самое происходит, когда вы наливаете в чашку кофе ложку молока и две жидкости смешиваются.

Рис. 8.2. Поведение 2000 молекул газа в контейнере с перегородкой. В самом начале 1600 молекул находятся в левой части контейнера и 400 молекул — в правой. Через 50 секунд в левой половине остается около 1400 молекул, а в правой их число уже составляет 600. По истечении 200 секунд молекулы равномерно распределены между двумя половинами контейнера

Конечно же, это всего лишь статистическая картина, а не абсолютная действительность. Я хочу сказать, что вполне вероятна ситуация, когда вначале слева и справа в контейнере будет одинаковое число молекул, а потом по удивительному стечению обстоятельств большинство частиц соберется в какой-то одной половине, образовав очень неравномерное распределение. Как мы увидим далее, вероятность такого исхода невелика, и чем больше частиц участвуют в процессе, тем она ниже; тем не менее нельзя сбрасывать ее со счетов. Однако пока что мы можем смело игнорировать такие редкие события и сконцентрироваться на наиболее вероятном варианте эволюции системы.

 

Энтропия по Больцману

Нам хотелось бы сделать нечто большее, чем просто заявить: «Вполне очевидно, что молекулы, скорее всего, будут перемещаться до тех пор, пока равномерно не распределятся по объему». Мы хотели бы уметь обосновывать это ожидание и заменять выражения типа «скорее всего» и «равномерно распределятся» строгими количественными характеристиками. Этим занимается раздел науки под названием «статистическая механика». Повторяя бессмертные слова Питера Венкмана: «С дороги, человек, я ученый!»

Первой крупной догадкой Больцмана было осознание того факта, что у молекул есть гораздо больше способов равномерно (более или менее) распределиться по объему контейнера, чем всем вместе скопиться у одной из его стенок. Представьте себе, что мы подсчитали имеющиеся молекулы и навесили на них номера от 1 до 2000. Нам интересно, сколько существует способов организовать молекулы так, чтобы в левой и правой половинах контейнера оказалось ровно требуемое число молекул. Например, сколько есть способов поместить 2000 молекул в левую часть и 0 в правую? Ровно один. Мы следим только за тем, в какой половине контейнера находится каждая молекула, и нас не интересуют ее точное положение и импульс, поэтому мы всего лишь берем и помещаем каждую молекулу в левую часть контейнера.

Теперь попробуем ответить на вопрос: сколькими способами можно поделить молекулы так, чтобы в левой части оказалось 1999 молекул, а в правой — ровно одна? Ответ: двумя тысячами способов, по одному на каждую молекулу, которой посчастливилось попасть в правую половину. А если мы хотим, чтобы в правой части всегда находилась пара молекул? Это можно сделать 1 999 000 способов. И в конце концов, если мы обнаглеем поместить в правую половину три молекулы, оставляя в левой 1997, то обнаружим, что вариантов такого размещения молекул целых 1 331 334 000.

Очевидно, что эти числа увеличиваются очень быстро: 2000 намного больше 1, 1 999 000 намного больше 2000, а 1 331 334 000 еще больше. По мере того как мы в ходе своего мысленного эксперимента перемещаем все больше и больше молекул в правую половину, опустошая левую, они продолжают возрастать, а затем в определенный момент начинают уменьшаться. В конце концов, задавшись вопросом, много ли существует способов поместить все 2000 молекул в правую часть контейнера, оставив в левой ровно ноль, мы вновь вернемся к единственному уникальному варианту такой конфигурации.

Ситуация, соответствующая наибольшему числу всевозможных конфигураций, — очевидно, та, когда в каждой половине контейнера находится ровно по 1000 молекул. Создать такую конфигурацию можно… в общем, очень большим количеством способов. Мы не будем приводить точное число; скажем только, что оно примерно равно 2 ∙ 10600 — двойка, за которой следует шестьсот нулей. И это всего лишь для двух тысяч частиц. Попробуйте вообразить приблизительное число возможных конфигураций атомов в комнате с обычным объемом воздуха или даже в стакане воды (предмет, который можно удержать в руке, состоит где-то из 6 ∙ 1023 молекул — это число Авогадро). Возраст Вселенной — всего лишь около 4 ∙ 1017 секунд, так что можете представить себе, как быстро вам придется двигать молекулы туда и сюда, для того чтобы изучить все возможные допустимые конфигурации.

Все это наводит на определенные мысли. Существует относительно немного способов собрать все молекулы в одной половине контейнера, но огромное число вариантов более или менее равномерного распределения их по доступному пространству. К тому же разумно ожидать, что очень неравномерное распределение с легкостью будет переходить в относительно равномерное, но не наоборот. Эти заявления похожи, но не эквивалентны. Следующим шагом Больцмана было предположение о том, что если у нас нет какой-то особой информации о состоянии системы, то следует предполагать, что она будет переходить от «специальных» конфигураций к «общим», то есть от ситуаций, соответствующих относительно небольшому числу вариантов расположения частиц, к ситуациям, соответствующим множеству способов их расположения.

Размышляя подобным образом, Больцман ставил целью объяснить на атомном уровне второе начало термодинамики — утверждение, что энтропия в замкнутой системе всегда увеличивается (или остается постоянной). Формулировки второго начала уже были даны Клаузиусом и другими учеными, однако Больцман хотел вывести их из некоего простого набора базовых принципов. Вы уже заметили, что статистическое мышление движет нас в правильном направлении: заявление о том, что «развитие систем происходит от специальных конфигураций к общим», весьма похоже на «развитие систем происходит от конфигураций с низкой энтропией к конфигурациям с высокой энтропией».

Таким образом, напрашивается определение энтропии как «количества перестановок микроскопических частей системы, при которых ее макроскопическое состояние не меняется». В нашем примере с перегородкой внутри контейнера это соответствует количеству способов разместить отдельные молекулы внутри сосуда так, чтобы общее число молекул в каждой половине осталось неизменным.

Мы почти подобрались к верному ответу, но все же не совсем. В действительности пионерам термодинамики было известно об энтропии не только то, что «она обычно увеличивается». Например, они знали, что если взять две разные системы и заставить их взаимодействовать, то общая энтропия будет равна простой сумме отдельных энтропий этих двух систем. Энтропия аддитивна, точно так же, как число частиц (в отличие, например, от температуры). Однако количество конфигураций совершенно точно свойством аддитивности не обладает: если соединить два контейнера с газом, то общее количество способов реорганизации молекул в двух контейнерах станет во много раз больше, чем в пределах одной емкости.

Больцману удалось справиться с задачей формулировки определения энтропии в терминах микроскопических перестановок. Мы будем использовать букву W (от немецкого Wahrscheinlichkeit — «вероятность») для обозначения количества перестановок микроскопических составляющих системы без изменения ее макроскопических свойств. Последним шагом Больцмана было взятие логарифма от W и объявление о том, что результат пропорционален энтропии.

Слово «логарифм» звучит очень по-научному, но это всего лишь способ показать, как много цифр понадобится для написания числа. Если число представляет собой степень 10, то его логарифм равен всего лишь этой степени, то есть логарифм 10 равен 1, логарифм 100 равен 2, логарифм 1 000 000 равен 6 и т. д.

В приложении мы более подробно обсудим некоторые математические тонкости. Они не очень важны для составления глобальной картины; если вы притворитесь, что не замечаете слова «логарифм», то ничего особо не потеряете. В действительности важно знать только лишь две вещи:

• по мере увеличения чисел возрастают и их логарифмы;

• но не слишком быстро; сами числа становятся неимоверно больше, однако их логарифмы увеличиваются довольно медленно. Один миллиард намного больше тысячи, однако 9 (логарифм миллиарда) не сильно больше 3 (логарифм 1000).

Когда дело доходит до огромных чисел, например таких, с которыми мы сталкиваемся в этой игре, последнее свойство здорово нам помогает. Поделить 2000 частиц поровну можно 2∙10600 способов — просто невообразимое число! Но логарифм этого числа равен всего лишь 600,3 — с этим еще можно иметь дело.

Формула Больцмана для энтропии, традиционно обозначаемой буквой S (букву E мы использовать не хотим, потому что она обычно обозначает энергию), гласит, что энтропия равна произведению некоторой константы k, которая называется постоянной Больцмана, на логарифм W, где W — число микроскопических состояний системы, неразличимых с макроскопической точки зрения. Таким образом,

S = k lg W.

Это, без сомнения, одно из важнейших уравнений за всю историю науки — триумф физики XIX века, которое можно поставить в один ряд с ньютоновским описанием динамики в XVII веке и революционными открытиями в области теории относительности и квантовой механики в двадцатом. Посетив могилу Больцмана в Вене, вы увидите, что это уравнение выгравировано на его надгробном камне (см. главу 2).

Взятие логарифма избавляет нас от основной проблемы, а формула Больцмана приводит как раз к тем свойствам, которые разумно ожидать от такого явления, как энтропия. В частности, полная энтропия двух систем после объединения равна всего лишь сумме энтропий этих систем. Это обманчиво простое уравнение обеспечивает количественную связь между микроскопическим миром атомов и макроскопическим миром, который мы видим вокруг себя.

 

Контейнер с газом возвращается

Для примера мы могли бы вычислить энтропию показанного на рис. 8.2 контейнера с газом, внутри которого есть перегородка с небольшим отверстием. Наша макроскопическая наблюдаемая — это полное количество молекул в левой или правой половине контейнера (нам неизвестно, что это за молекулы, где они находятся и какие у них импульсы). Величина W в данном примере — это всего лишь число способов распределить 2000 частиц между двумя половинами контейнера так, чтобы их количество в каждой половине оставалось постоянным. Если слева 2000 частиц, то W равно 1, а lg W равен 0. Еще несколько вариантов перечислено в табл. 8.1.

Таблица 8.1. Количество расположений W и логарифм этого значения, вычисленные для контейнера с 2000 частицами, часть из которых находится слева от перегородки, а часть — справа

Число частиц слева/справа | W | lgW

2000/0 | 1 | 0

1999/1 | 2000 | 3,3

1998/2 | 1999000 | 6,3

1997/3 | 1331334000 | 9,1

… | … | …

1000/1000 |2*10 600 | 600,3

… | … | …

3/1997 | 1331334000 | 9,1

2/1998 | 1999 000 | 6,3

1/1999 | 2000 | 3,3

0/2000 | 1 | 0

На рис. 8.3 представлено изменение энтропии (в определении Больцмана) со временем в нашем контейнере с газом. Я перемасштабировал график так, чтобы максимальное значение энтропии контейнера равнялось 1. Начальное значение энтропии относительно невелико — оно соответствует первой конфигурации на рис. 8.2, где в левой части контейнера находится 1600 молекул, а в правой — только 400. По мере того как молекулы постепенно просачиваются сквозь отверстие в центральной перегородке, энтропия увеличивается. Это лишь один пример эволюции системы; поскольку наш «закон физики» (каждую секунду у каждой частицы есть 0,5-процентная вероятность попасть на другую сторону) включает вероятностную составляющую, движение системы в разных экспериментах неизбежно будет отличаться в деталях. Однако в подавляющем большинстве случаев энтропия все же будет увеличиваться, поскольку система тяготеет к макроскопическим конфигурациям, соответствующим большему числу микроскопических расстановок. Второе начало термодинамики в действии.

Рис. 8.3. Увеличение энтропии в контейнере с перегородкой, содержащем молекулы газа. Вначале большая часть молекул сосредоточена в левой половине, но со временем распределение выравнивается (см. рис. 8.2). Соответственно увеличивается и энтропия, поскольку существует гораздо больше способов равномерно поделить молекулы между двумя отсеками контейнера, чем собрать их все с одной или с другой стороны. Для удобства мы показываем энтропию в единицах ее максимального значения, которое на данном графике равно единице

Согласно Больцману и коллегам, это и есть источник стрелы времени. Сначала у нас имеется лишь набор микроскопических законов физики, инвариантных относительно обращения времени: для них прошлое и будущее неразличимы. Однако мы имеем дело с системами, включающими огромное количество частиц, для полного описания состояния которых нам не требуется отслеживать каждую деталь — мы следим лишь за некоторыми поддающимися наблюдению макроскопическими величинами. Энтропия — это мера числа микроскопических состояний, неразличимых с точки зрения макроскопического наблюдателя (и под этим заявлением мы подразумеваем, что она пропорциональна логарифму этого числа). В предположении, что система развивается по направлению к макроскопическим конфигурациям, соответствующим большему количеству возможных состояний, естественно говорить о том, что со временем энтропия увеличивается.

В частности, было бы очень странно, если бы она внезапно уменьшилась. Стрела времени появляется потому, что система (или Вселенная) с течением времени естественным образом переходит от редких конфигураций к более общим.

Все это на первый взгляд кажется весьма правдоподобным, и в конечном итоге мы убедимся, что это действительно так. Но в ходе наших рассуждений мы сделали несколько «обоснованных» логических скачков, заслуживающих более тщательного рассмотрения. В оставшихся разделах этой главы мы прольем свет на различные предположения, которые необходимо сделать для больцмановской интерпретации энтропии, и попробуем решить, насколько они оправданны.

 

Полезная и бесполезная энергия

У нашего примера с контейнером газа есть интересная особенность: стрела времени там — явление временное. После того как концентрация газа выравнивается (примерно в момент времени t = 150 на рис. 8.3), ничего больше не происходит. Отдельные молекулы продолжают перелетать из левой половины в правую и обратно, но число таких молекул взаимно компенсируется, и большую часть времени количество молекул слева и справа будет одинаково. Это конфигурации, соответствующие наибольшему числу расстановок отдельных молекул, в которых система соответственно обладает наибольшей энтропией.

Система, обладающая максимально возможной энтропией, находится в равновесии. Когда наступает состояние равновесия, системе становится некуда двигаться дальше; такая конфигурация для нее наиболее естественна. В равновесной системе стрела времени отсутствует, так как энтропия не увеличивается (и не уменьшается). Для макроскопического наблюдателя система в равновесии предстает статичной, не меняющейся.

Ричард Фейнман в своей лекции «Характер физических законов» рассказывает историю, иллюстрирующую концепцию равновесия. Представьте себе, что вы сидите на пляже и внезапно на вас обрушивается ливень. Вы принесли с собой полотенце, но пока вы успеваете добежать до укрытия, оно также промокает. Оказавшись под крышей, вы начинаете вытираться полотенцем. Какое-то время это работает, потому что полотенце промокло чуть меньше, чем вы. Тем не менее вскоре вы обнаруживаете, что оно пропиталось влагой и вы, вытираясь им, настолько же быстро смачиваете свою кожу, насколько быстро стираете с нее капли воды. Вы с полотенцем достигли состояния «равновесия влажности», и оно уже не может высушить вас. Это состояние, в котором число способов разместить молекулы воды на вас и на вашем полотенце максимально.

После достижения состояния равновесия полотенце становится непригодным для достижения первоначальной цели (обсушиться). Обратите внимание, что когда вы вытираетесь, полный объем воды не меняется — она просто переходит с вас на полотенце. Аналогично, в контейнере с газом, изолированном от внешнего мира, полная энергия не меняется; она остается постоянной, по крайней мере в ситуациях, когда расширением пространства можно пренебречь. Однако энергия может быть распределена так, чтобы приносить какую-то пользу, а может быть и бесполезной. Когда энергия находится в конфигурации с низкой энтрпией, ее можно использовать для совершения работы. Но тот же объем энергии в состоянии равновесия абсолютно бесполезен. Энтропия — это также мера бесполезности конфигурации энергии.

Снова вернемся к нашему контейнеру с перегородкой. Но на этот раз пусть это будет не перегородка с отверстием, жестко зафиксированная внутри контейнера и лишь позволяющая некоторой части молекул пролетать из одной его половины в другую, а сплошная подвижная пластина, прикрепленная к стержню, выходящему за пределы контейнера. То, что мы сейчас описали, — всего лишь обыкновенный поршень, с помощью которого при определенных обстоятельствах можно производить работу.

На рис. 8.4 показаны две разные ситуации, в которых может оказаться наш поршень. Вверху проиллюстрирована конфигурация с низкой энтропией: все молекулы газа находятся с одной стороны от перегородки. Внизу изображена ситуация с высокой энтропией: с обеих сторон от перегородки находятся равные объемы газа. Полное количество молекул и полная энергия одинаковы в обоих случаях; отличается только энтропия. Также очевидно, что развиваться события в этих двух случаях будут совершенно по-другому. В случае, представленном в верхней части рисунка, весь газ находится с левой стороны от поршня. Сила молекул, ударяющихся о перегородку, оказывает давление, которое выталкивает поршень до тех пор, пока газ не заполнит весь объем контейнера. Подвижный стержень поршня можно использовать для выполнения полезной работы, например кручения маховика (по крайней мере, в течение какого-то небольшого промежутка времени). При этом расходуется энергия газа, поэтому в конце процесса его температура станет ниже. (Поршни в двигателе вашего автомобиля работают точно так же, расширяя и охлаждая горячие газы — продукты сгорания паров бензина; эта полезная работа и приводит автомобиль в движение.)

В нижней части рисунка показан процесс, в котором первоначальная энергия такая же, но энтропия намного выше: по обеим сторонам перегородки находится одинаковое количество частиц. Высокая энтропия подразумевает равновесие, что, в свою очередь, свидетельствует о бесполезности энергии. И действительно, мы видим, что поршень не движется. Давление газа с одной стороны перегородки компенсируется давлением с другой стороны. Полная энергия газа в этом контейнере равна полной энергии в контейнере, изображенном в левом верхнем углу, однако в данном случае мы не можем воспользоваться ею в своих целях, например заставить газ передвинуть поршень и помочь нам сделать что-то полезное.

Рис. 8.4. Газ в разделенном сплошной перегородкой контейнере, применяемый для приведения в движение поршня. Вверху газ в состоянии с низкой энтропией выталкивает поршень вправо, производя полезную работу. Внизу газ в состоянии с высокой энтропией никак не влияет на положение поршня

Этот пример помогает нам понять связь между взглядом Больцмана на энтропию и мнением Рудольфа Клаузиуса, который впервые сформулировал второе начало термодинамики. Вспомните, что Клаузиус и его предшественники вообще не думали об энтропии в терминах атомов, они рассматривали ее как независимую субстанцию с собственной динамикой. В исходной версии второго начала термодинамики энтропия даже не упоминалась; это было всего лишь утверждение о том, что «теплота не может спонтанно начать течь от более холодного объекта к более горячему». Когда контактируют два объекта с разной температурой, их температуры постепенно изменяются по направлению к некоторому равновесному значению между ними. Если же в контакте находятся два объекта с одинаковой температурой, то с ними ничего не происходит (так как они уже находятся в температурном равновесии).

С точки зрения физики атомов все это также имеет смысл. Возьмем классический пример соприкосновения двух объектов с разной температурой: кубик льда в стакане теплой воды (о котором мы говорили в конце прошлой главы). И кубик льда, и жидкость состоят из совершенно одинаковых молекул, а именно H2O. Единственное различие заключается в том, что температура льда намного ниже. Как мы уже говорили выше, температура — это мера средней энергии движения молекул в веществе. Таким образом, молекулы жидкой воды двигаются относительно быстро, а молекулы льда — медленно.

Однако такой тип условий — два набора молекул, в одном из которых молекулы движутся быстро, а в другом медленно, концептуально почти не отличается от двух наборов молекул, заключенных в контейнере по разные стороны от перегородки. В любом случае присутствуют макроскопические ограничения на перестановки микроскопических частей этих систем. Если бы у нас был только стакан воды, имеющей постоянную температуру, мы могли бы заменять молекулы в одной части стакана молекулами из какой-то другой его части, и с макроскопической точки зрения никаких различий при этом мы бы не увидели. Но если в воде плавает кубик льда, то нельзя запросто поменять местами молекулы льда и молекулы обычной воды — при этом кубик льда начал бы двигаться, и мы заметили бы это даже со своей макроскопической точки зрения. Деление молекул воды на «жидкость» и «лед» накладывает серьезные ограничения на число доступных перестановок, поэтому данная конфигурация обладает низкой энтропией. По мере того как температура молекул воды, составлявших в начале эксперимента ледяной кубик, и температура «жидкой» воды в стакане выравниваются, энтропия возрастает. Правило Клаузиуса о тенденции к выравниванию температур и о том, что теплота не может спонтанно течь от холодного объекта к горячему, абсолютно эквивалентно утверждению, что энтропия, как ее определил Больцман, в замкнутой системе никогда не уменьшается.

Ничто из этого, разумеется, не означает, что охладить объект невозможно. Однако в повседневной жизни с учетом того, что большинство вещей вокруг нас имеют одинаковую температуру, это требует большей изобретательности, чем нагревание. Холодильник — куда более сложное устройство, чем плита (работа холодильника основывается на том же базовом принципе, что и работа поршня, показанного на рис. 8.4: двигатель устройства расширяет газ, забирая у него энергию и таким образом охлаждая его). Когда Гранту Ачатцу, шеф-повару чикагского ресторана «Alinea», потребовалось устройство, которое умело бы быстро охлаждать продукты — точно так же, как поставленная на огонь сковорода мгновенно нагревает их, для создания такой машины ему пришлось объединить усилия с Филипом Престоном, технологом, специализирующемся на кухонном оборудовании. Результатом их совместной работы стала «антисковорода» — устройство размером с микроволновую печь, металлическая верхняя поверхность которого имеет температуру –34 °C. Если вылить на эту «антисковороду» горячее пюре или соус, то нижний его слой мгновенно замерзнет, а верхняя часть останется мягкой. Мы уже давно усвоили основы термодинамики, но продолжаем изобретать новые способы применения науки для облегчения собственной жизни.

 

Не зацикливайтесь на деталях

В пятницу вечером вы выбрались с друзьями в клуб поиграть в бильярд. Сейчас мы говорим о бильярде из реального мира, а не о «бильярде физиков», в котором мы пренебрегаем трением и шумом. Один из ваших друзей только что эффектно разбил пирамиду. Раскатившиеся по столу шары остановились, вы принялись обдумывать свой следующий удар, и вдруг проходящий мимо незнакомец восклицает: «Ух ты! Это невероятно!»

В недоумении вы спрашиваете, что же тут невероятного, и слышите в ответ: «Вы только посмотрите: все эти шары оказались ровно в этих точках на столе! Какова вероятность того, что вам когда-либо удастся расположить их в точности таким же образом? Да вы не сможете повторить этого и за миллион лет!»

От загадочного незнакомца попахивает безумием — наверное, он немного свихнулся, читая слишком много философских трактатов об основах статистической механики. Однако в его словах есть определенный смысл. На столе с несколькими шарами появление любой заданной конфигурации крайне маловероятно. Представьте, что вы запустили биток в группу случайным образом расставленных по столу шаров, а они, покатавшись туда-сюда, остановились ровно в тех же точках, в которых находились до удара. Увидев такое, вы были бы поражены до глубины души! Однако вероятность данной конфигурации (конечные положения в точности совпадают с начальными) не больше и не меньше вероятности любого другого расположения шаров на столе. Имеем ли мы право выделять ее на фоне других, называя «поразительной» или «невероятной», а все остальные именовать «непримечательными» или «случайными»?

Этот пример превосходно иллюстрирует центральный вопрос больцмановского определения энтропии и понимания второго начала термодинамики: кто решает, можно ли считать два данных микроскопических состояния системы одинаковыми с нашей, макроскопической, точки зрения?

Формула для энтропии, выведенная Больцманом, основывается на величине W, которую мы определили как «количество способов разместить микроскопические составляющие системы так, чтобы ее макроскопический образ не изменился». В предыдущей главе мы определили «состояние» физической системы как полный набор информации, необходимой для однозначного описания ее движения с течением времени; в классической механике это положения и импульсы всех составляющих систему частиц. Теперь, когда мы рассматриваем статистическую механику, удобно использовать термин «микросостояние», подразумевая точное состояние системы, в противоположность «макросостоянию», включающему лишь те характеристики, которые поддаются наблюдению с макроскопической точки зрения. В этом случае можно дать величине W краткое определение: число микросостояний, соответствующих данному макросостоянию.

Для контейнера с газом, разделенного перегородкой на две половины, микросостоянием в любой момент времени является список положений и импульсов всех молекул газа. Однако нас интересовало только, сколько молекул находится слева от перегородки, а сколько — справа. Неявным образом каждый вариант деления группы молекул на части — сколько-то слева, а оставшиеся справа — определял «макросостояние» контейнера. А когда мы вычисляли значения W, мы всего лишь подсчитывали количество микросостояний, соответствующих данному макросостоянию.

Раньше решение не отслеживать ничего, кроме количества молекул в каждой половине контейнера, казалось нам совершенно безобидным. Но мы могли бы следить и за массой других параметров. Имея дело с атмосферой в настоящей комнате, мы можем учитывать намного больше параметров, чем просто количество молекул в каждой части помещения: например, отслеживать температуру, плотность и атмосферное давление в каждой точке комнаты или, по крайней мере, в некотором наборе точек. Если в атмосфере содержится смесь газов, то мы могли бы по отдельности следить за плотностью и другими параметрами каждого из газов. В любом случае, объем информации, которым нам пришлось бы при этом манипулировать, все равно был бы намного меньше, чем если бы мы записывали положения и импульсы всех молекул в комнате. Тем не менее процедура выбора, какую информацию относить к макроскопическим характеристикам, а какую отбрасывать как несущественную составляющую микросостояния, определена недостаточно четко.

Процесс деления пространства микросостояний какой-то физической системы (газ в контейнере, стакан воды или Вселенная) на наборы, которые мы помечаем как «макроскопически неразличимые», называется «огрублением». Это такая черная магия, играющая критически важную роль в наших рассуждениях об энтропии. Рисунок 8.5 демонстрирует, как она работает: мы всего лишь делим пространство всех состояний системы на области (макросостояния), которые с точки зрения макроскопического наблюдателя кажутся одинаковыми. Каждая точка внутри любой такой области соответствует одному из микросостояний, а энтропия, связанная с данным микросостоянием, пропорциональна логарифму площади этой области, которому это микросостояние принадлежит (в действительности не площади, а объема, так как мы говорим о чрезвычайно многомерном пространстве). При взгляде на подобную схему становится очевидно, почему энтропия имеет тенденцию к увеличению: как правило, система развивается по направлению от состояний с низкой энтропией, соответствующих крошечной части пространства состояний, к состояниям из объемных областей, с которыми связаны большие значения энтропии.

Рис. 8.5. Процедура огрубления представляет собой разделение пространства всех возможных микросостояний на области, считающиеся неразличимыми с макроскопической точки зрения, — макросостояния. С каждым макросостоянием связано значение энтропии, пропорциональное логарифму объема этого макросостояния в пространстве состояний. Размер областей с низкой энтропией увеличен в целях наглядности; в действительности они чрезвычайно малы по сравнению с областями с высокой энтропией

Рисунок 8.5 не масштабирован; если бы мы хотели представить реальную систему, то макросостояния с низкой энтропией занимали бы намного меньшую площадь по сравнению с площадью, отведенной под макросостояния с высокой энтропией. Как мы убедились на примере с поделенным на две части контейнером, количество микросостояний, соответствующих макросостояниям с высокой энтропией, куда больше количества микросостояний, определяющих макросостояния с низкой энтропией. Нет ничего удивительного в том, что система с низкой начальной энтропией перейдет в более объемные области пространства состояний, к макросостояниям с высокой энтропией. Если же вначале система обладает высокой энтропией, то она может очень долго блуждать по пространству состояний, не встречая при этом областей с низкой энтропией. Вот что мы имеем в виду, говоря, что система находится в равновесии: она не находится в статическом микросостоянии, просто никогда не выходит из области, соответствующей макросостоянию с высокой энтропией.

Все эти рассуждения могут показаться вам нелепыми. Два микросостояния принадлежат одному и тому же макросостоянию, если они макроскопически неразличимы. Но это всего лишь один из способов сказать: «…когда мы не можем отличить одно от другого, основываясь на своих макроскопических наблюдениях». Именно это «мы» и должно вызывать у вас тревогу. Почему вообще мы приплели сюда какие-то свои способности? Мы говорим об энтропии как о характеристике всего мира, а не как об одной из сторон нашего умения воспринимать мир. Два стакана воды находятся в одном и том же макросостоянии, если весь объем воды в них имеет одинаковую температуру, даже если распределения положений и импульсов молекул воды в них отличаются, потому что мы не можем непосредственно измерить эти величины. Однако представьте себе, что нам встретилась раса супернаблюдательных инопланетян, способных впериться взором в толщу воды и увидеть положения и импульсы каждой заключенной там молекулы. Неужели эта раса вправе будет заявить, что энтропии вообще не существует?

Ученые, работающие в области статистической механики, пока что не признали единственно верным ни один из возможных ответов на озвученные выше вопросы (если бы это произошло, то мы бы только его и рассматривали). Давайте обсудим пару мнений.

Прежде всего, многие считают, что это вообще не важно. То есть вам-то может быть очень даже важно, как именно вы будете объединять микросостояния в макросостояния в целях какой-то конкретной актуальной для вас физической задачи, но в конечном итоге не имеет значения, как вы сделаете это, если единственная ваша цель — доказать истинность какого-то утверждения вроде второго начала термодинамики. Если посмотреть на рис. 8.5, станет понятно, почему второе начало термодинамики работает: в пространстве состояний гораздо больший объем отведен под состояния с высокой энтропией, чем с низкой, поэтому если мы начнем путешествие из последнего состояния, нет ничего удивительного в том, что в итоге мы окажемся в первом. Однако так будет всегда, независимо от того, как мы отсортируем микросостояния. Второе начало термодинамики непоколебимо; оно зависит от определения энтропии как логарифма от некоего объема внутри пространства состояний, но не от точного способа выбрать этот объем. Как бы то ни было, на практике из множества альтернатив мы выбираем что-то одно, поэтому такая прозрачная попытка избежать прямого ответа не может нас полностью удовлетворить.

Второе мнение заключается в том, что выбор — как именно провести огрубление — не может быть абсолютно произвольным и зависящим от человека, даже если без определенной степени предвзятости не обойтись. Действительно, мы сортируем микросостояния естественным, на наш взгляд, образом, учитывая реальные физические условия, а не собственные прихоти. Например, наблюдая за температурой и давлением в стакане воды, мы отбрасываем ту информацию, получить которую можно лишь путем изучения содержимого данного стакана под микроскопом. Мы определяем средние свойства в относительно небольших областях пространства, потому что так работают наши органы чувств. Определившись с доступными критериями огрубления, мы получаем относительно хорошо определенный набор поддающихся макроскопическому наблюдению величин.

Усреднение величин в небольших областях пространства — это не случайный метод и не специфическая особенность функционирования человеческих органов чувств в противоположность органам чувств гипотетических инопланетян. Это совершенно естественный подход с учетом того, как работают законы физики. Когда я среди нескольких чашек кофе отмечаю те, куда только что вылили ложку молока, и те, в которых молоко уже хорошенько перемешали с основным содержимым, мои решения, к какой категории «состояний кофе» отнести ту или иную чашку, не случайны; я руководствуюсь тем, как кофе, с моей точки зрения, выглядит — непосредственно и феноменологически. Итак, даже если, в принципе, наш подход к огрублению микросостояний в макросостояния кажется абсолютно произвольным, в действительности мудрая природа одарила нас умением делать это правильно и разумно.

 

Прокрутка энтропии в обратную сторону

У сформулированного Больцманом статистического определения энтропии есть одно примечательное следствие: второе начало термодинамики не абсолютно, а всего лишь описывает сценарий развития, вероятность наступления которого существенно выше всех остальных. Если взять систему, находящуюся в макросостоянии с энтропией средней величины, почти все микросостояния, составляющие это макросостояние, будут развиваться в сторону увеличения энтропии, однако найдется некоторое незначительное число микросостояний, эволюция которых пойдет в противоположную сторону.

Это утверждение несложно проиллюстрировать. Снова представьте себе контейнер с газом. Пусть энтропия газа в начальный момент времени очень низкая — все молекулы собрались в центре сосуда. Если просто понаблюдать за развитием событий, то мы увидим, как молекулы летают туда и сюда, сталкиваются друг с другом и со стенками контейнера и в итоге (с громадной вероятностью) формируют конфигурацию с намного более высокой энтропией.

Теперь рассмотрим одно конкретное микросостояние газа в какой-то момент времени после того, как энтропия внутри контейнера стала высокой. Из него сконструируем новое состояние: сохраним положения всех молекул, но скорости заменим на противоположные. Полученное микросостояние также будет обладать высокой энтропией, ведь оно входит в то же макросостояние, с которого мы начали (если кто-то внезапно поменяет направления движения всех молекул воздуха вокруг вас на противоположные, вы этого даже не заметите; в среднем в любом направлении движется примерно одинаковое число молекул). Начиная с этого состояния каждая молекула «пройдет по своим следам» обратно, то есть их движение будет происходить по тому же пути, по которому они пришли из состояния с низкой энтропией, но в обратную сторону. Для внешнего наблюдателя это будет выглядеть так, словно энтропия начала спонтанно уменьшаться. Процент высокоэнтропийных состояний, способных продемонстрировать это занятное свойство, астрономически мал, но они определенно существуют.

Если мы верим, что фундаментальные физические законы обратимы, то почему бы целой Вселенной не развиваться по такому сценарию? Взять нашу Вселенную в ее сегодняшнем виде: ее описывает какое-то конкретное микросостояние, нам неизвестное, и все же мы знаем кое-что о макросостоянии, которому оно принадлежит. Давайте возьмем и поменяем импульсы всех частиц во Вселенной на противоположные, а в дополнение проделаем любые другие преобразования (например, заменим частицы античастицами), необходимые для совершения полного обращения времени. И посмотрим, что произойдет. Мы должны увидеть, как Вселенная развивается по направлению к «будущему», где ее ждет коллапс, расформирование звезд и планет и общее уменьшение энтропии; это будет история нашей настоящей Вселенной, воспроизведенная в обратную сторону.

Однако мысленный эксперимент поворота стрелы времени в целой Вселенной вспять совсем не так интересен, как тот же самый эксперимент, но проведенный над некоторой подсистемой Вселенной. Причина проста: никто ничего не заметит.

В главе 1 мы задавали вопрос, как будет выглядеть наша жизнь, если время потечет быстрее или медленнее, и основная трудность, с которой мы столкнулись в поисках ответа на этот вопрос, — нам было непонятно, с чем сравнивать. «Для всего, что только есть в мире, время внезапно начинает идти быстрее» — утверждение бессмысленное; мы измеряем время с помощью синхронизированных повторений, и пока все часы, к какому бы типу они ни принадлежали (включая биологические часы и часы, определяемые субатомными процессами), идут синхронно друг с другом, у нас нет никакой возможности определить, что «скорость времени» изменилась в ту или иную сторону. Только если ход каких-то конкретных часов ускорится или замедлится по сравнению со всеми остальными, это понятие обретет какой-то смысл.

Точно такая же проблема связана и с идеей о «времени, идущем назад». Представляя ситуацию, когда время начинает течь в обратную сторону, мы обычно воображаем, будто процессы в какой-то одной части Вселенной побежали вспять, например в стакане прохладной воды внезапно образовался кубик льда. Однако если вообще все сущее начнет «жить в обратную сторону», то с точки зрения внутреннего наблюдателя по сравнению с текущей ситуацией ничего не изменится. Все будет точно так же, как при развитии Вселенной вперед во времени, за исключением странной временно́й координаты, бегущей в противоположном направлении.

Стрела времени — следствие не того, что «энтропия увеличивается по направлению к будущему», а того, что «поведение энтропии вдоль одного направления во времени кардинально отличается от поведения энтропии вдоль другого». Предположим, во Вселенной есть место, с которым мы никоим образом не соприкасаемся и не взаимодействуем, и там энтропия в том направлении, которое мы сейчас называем будущим, уменьшается. Так же как и мы, люди, обитающие в этом мире обратного времени, ничего особенного вокруг себя не замечают. Они живут в соответствии с обычной стрелой времени и утверждают, что в их прошлом (в те времена, о которых у них есть воспоминания) энтропия была ниже, а в будущем она будет только возрастать. Различие лишь в том, что «будущее» для них — это наше «прошлое», и наоборот. Направление временной координаты во Вселенной абсолютно произвольно, устанавливается нами самими и никакого смысла само по себе не несет. Просто нам удобно говорить, что «время» растет в направлении увеличения энтропии. Важно понимать, что энтропия увеличивается вдоль одного и того же временного направления для всех, кто живет в обозримой Вселенной, если все они договорились о направлении стрелы времени.

Разумеется, все меняется, когда два человека (или две другие подсистемы физической Вселенной), способных общаться и взаимодействовать друг с другом, расходятся во мнениях относительно направления стрелы времени. Возможно ли, чтобы моя стрела времени указывала в другом направлении — совсем не туда, куда указывает ваша?

 

Деконструкция Бенджамина Баттона

Вторую главу мы открыли несколькими литературными примерами необычной стрелы времени — это были истории о людях или вещах, для которых время текло в обратную сторону. В «Стреле времени» у повествователя были воспоминания о будущем, но не о прошлом; Белая Королева чувствовала боль от укола еще до того, как булавка касалась ее пальца; а главный герой «Загадочной истории Бенджамина Баттона» Фрэнсиса Скотта Фицджеральда становился моложе с течением времени, хотя воспоминания и опыт у него накапливались обычным образом, как у всех остальных людей. Теперь у нас есть инструменты, благодаря которым мы можем обоснованно доказать, что ничего подобного в реальном мире никогда не произойдет.

Если фундаментальные законы физики обратимы, то, зная точное состояние всей Вселенной (или любой другой замкнутой системы) в произвольный момент времени, мы с помощью этих законов можем определить, в каком состоянии она окажется в любой момент в будущем или какой она была в любой момент в прошлом. Обычно в качестве точки отсчета выбирают «начальный» момент времени, но это, в принципе, может быть и любое другое мгновение. Более того, в текущем контексте, когда нас больше всего волнуют стрелы времени, указывающие во всевозможных направлениях, одного начального момента времени для всего сущего мы и вовсе не найдем. Итак, вот что нам интересно: почему настолько сложно, а то и вовсе невозможно найти состояние Вселенной, обладающее интересующим нас свойством — чтобы по мере нашей эволюции вперед во времени в некоторых ее частях энтропия увеличивалась, а в других уменьшалась?

На первый взгляд кажется, что это элементарно. Возьмите два контейнера с молекулами газа. Создайте в одном из них состояние с низкой энтропией, как в левом верхнем углу на рис. 8.6. Как только молекулы начинают движение, их энтропия возрастает, как и ожидалось. Второй контейнер мы возьмем в состоянии с высокой энтропией, которое получилось из состояния с низкой энтропией в результате временной эволюции. Изменим скорости всех содержащихся в нем молекул на противоположные, как в левом нижнем кадре на том же рисунке. Таким образом, во втором контейнере все будет готово для того, чтобы энтропия начала со временем уменьшаться. Итак, начиная с мгновения, когда вы завершили подготовку, в двух контейнерах энтропия будет меняться в противоположных направлениях.

Рис. 8.6. На верхних рисунках мы видим обычное поведение молекул в контейнере, которые из начального состояния с низкой энтропией переходят в конечное высокоэнтропийное состояние. На нижних рисунках мы обратили импульсы всех частиц из финального состояния верхней строки, для того чтобы пустить эволюцию в обратную сторону и добиться снижения энтропии

Однако нам нужно больше. Совсем не интересно наблюдать, как жизнь протекает вдоль разнонаправленных стрел времени в двух не связанных друг с другом мирах. Мы хотим воспроизвести это состояние во взаимодействующих системах — таких, которые способны каким-то образом общаться друг с другом.

И это все изменяет. Представьте себе, что мы взяли эти два контейнера: в одном все готово к увеличению энтропии, а во втором — к ее уменьшению. После этого добавим крошечное взаимодействие: скажем, несколько протонов, летающих туда и сюда между двумя контейнерами. Столкнувшись с молекулами в одном контейнере, они будут перелетать в другой, отталкиваться там от новых молекул и т. д. Определенно, тело Бенджамина Баттона взаимодействовало с окружающим миром куда сильнее (так же, как Белая Королева и повествователь в «Стреле времени» Мартина Эмиса).

Это небольшое взаимодействие приведет к легкому изменению скоростей тех молекул, с которыми доведется столкнуться протонам (импульс сохраняется, поэтому других вариантов быть не может). Для контейнера, где энтропия изначально была низкой, это не представляет никакой проблемы, так как для того, чтобы заставить энтропию расти, специальной тонкой настройки проводить не нужно. Однако это полностью разрушает нашу попытку создать во втором контейнере условия, при которых энтропия смогла бы уменьшиться. Даже самое незначительное изменение скорости очень быстро распространится на весь объем газа: одна столкнувшаяся с протоном молекула ударит другую, та, в свою очередь, врежется еще в пару и т. д. Для того чтобы энтропия в контейнере с газом стала волшебным образом уменьшаться, направления скоростей всех молекул должны быть точно согласованы, и любое дополнительное взаимодействие нарушит это хрупкое согласие. В первом контейнере энтропия будет вполне ожидаемо возрастать, а во втором она как была высокой, так высокой и останется — по сути, эта подсистема будет пребывать в равновесном состоянии. Во взаимодействующих подсистемах Вселенной не могут существовать несовместимые стрелы времени.

 

Энтропия как беспорядок

Мы часто говорим, что энтропия — мера беспорядка. Это всего лишь удобный перевод очень специфического понятия на простой человеческий язык — абсолютно адекватный на первый взгляд, но таящий пару неточностей, которые при определенных обстоятельствах могут всплыть на поверхность. Теперь, когда нам известно настоящее определение энтропии, данное Больцманом, мы можем проверить, насколько близка к истине эта неформальная идея.

Вопрос в том, что следует понимать под «порядком». В отличие от энтропии, порядок — не такое понятие, которому можно с легкостью дать строгое определение. В голове мы ассоциируем «порядок» с целенаправленным расположением объектов тем или иным способом в отличие от состояния хаоса. Действительно, обсуждая энтропию, мы использовали очень похожие выражения. Неразбитое яйцо кажется нам более упорядоченным, чем яйцо, вылитое в чашку и взбитое до однородного состояния.

Энтропия кажется естественным образом связанной с понятием беспорядка, потому что чаще всего путей создания беспорядка больше, чем путей упорядочения объектов. Классический пример роста энтропии — распределение документов на рабочем столе. Вы складываете их в аккуратные стопки — приводите в порядок, в состояние с низкой энтропией, но со временем они расползаются по столу — порядок утерян, энтропия возросла. Конечно, ваш стол нельзя назвать замкнутой системой, но основная идея, думаю, понятна.

С другой стороны, если слишком налегать на ассоциации, можно опровергнуть свои же идеи. Взять, например, молекулы воздуха в комнате, где вы сидите прямо сейчас. Скорее всего, они равномерно распределены по всему объему помещения и образуют высокоэнтропийную конфигурацию. Теперь представьте себе, что все молекулы собрались в центре комнаты в небольшой области всего лишь в несколько сантиметров шириной и к тому же выстроились в фигуру, повторяющую Статую Свободы, только в миниатюрном варианте. Неудивительно, что энтропия такой конфигурации намного ниже, и все согласятся, что порядка в ней намного больше. Но попробуем зайти еще дальше: пусть газ сожмется еще сильнее и соберется в крохотную аморфную кляксу диаметром не больше одного миллиметра. Поскольку область пространства, в которой теперь сконцентрирован весь газ, стала еще меньше, энтропия новой конфигурации также уменьшилась по сравнению с конфигурацией «Статуя Свободы» (расположить молекулы так, чтобы они образовали статуэтку среднего размера, можно куда большим числом способов, чем собрать их в очень маленькую кляксу). Однако вряд ли кто-то будет утверждать, что аморфная клякса более «упорядочена», чем копия знаменитого памятника, даже если эта клякса действительно крайне мала. Получается, что в данном случае корреляция между упорядоченностью и малой энтропией отсутствует, так что нам следует быть более осторожными с выбором примеров.

Этот пример кажется несколько надуманным, и действительно, совсем не нужно так изощряться, чтобы опровергнуть утверждение об эквивалентности энтропии и беспорядка. Продолжая серию кухонных примеров, рассмотрим масло и уксус. Если вы смешаете эти два ингредиента в чашке, готовя заправку для салата, а затем отставите посудину в сторону, то заметите, что смесь очень быстро перестает быть однородной — масло отделяется от уксуса. Не бойтесь, это не означает, что салатная заправка способна нарушить второе начало термодинамики. Уксус в основном состоит из воды, а молекулы воды прилипают к молекулам масла, и, в силу определенных химических свойств масла и воды, они способны образовывать при этом лишь строго определенные конфигурации. Таким образом, когда вы тщательно перемешиваете масло с водой (или с уксусом), молекулы воды прилипают к молекулам масла в очень специальных конфигурациях, соответствующих состоянию с относительно низкой энтропией. Когда же две субстанции по большей части разделены, отдельные молекулы получают возможность свободно перемещаться между другими молекулами того же типа. При комнатной температуре это приводит к тому, что у масла с водой энтропия выше в конфигурации, когда они разделены, а не когда их старательно перемешали. Порядок спонтанно возникает на макроскопическом уровне, но по сути — на микроскопическом уровне — это банальнейший беспорядок.

В по-настоящему больших системах все еще сложнее. Давайте перейдем от газа, содержащегося в одном небольшом помещении, к облаку газа и пыли астрономических масштабов — скажем, галактической туманности. Она производит впечатление весьма хаотичного и высокоэнтропийного объекта. Однако если размер туманности достаточно велик, она начинает сжиматься под давлением собственной гравитации, в результате чего формируется звезда — возможно, даже с вращающимися вокруг нее планетами. Поскольку этот процесс подчиняется второму началу термодинамики, мы можем быть уверены в том, что в конце него энтропия выше, чем была в начале (мы старательно учитываем все порожденное коллапсом излучение и другие побочные эффекты). Но звезда с несколькими планетами кажется, по крайней мере с неформальной точки зрения, более упорядоченной системой, чем рассредоточенное межзвездное облако газа. Энтропия увеличилась, но точно так же возросла степень упорядоченности.

Хитрость в данном случае в гравитации. Можно бесконечно говорить о том, как гравитация в пух и прах разносит наше бытовое понимание энтропии, но достаточно будет заметить, что взаимодействие гравитации с другими силами обладает чудесной способностью создавать порядок, одновременно, тем не менее, повышая энтропию — хотя бы и временно. Это великолепная подсказка, дающая понять, как работает Вселенная; жаль только, что пока наших знаний недостаточно для того, чтобы ею воспользоваться.

Пока давайте просто запомним, что связка «энтропия — беспорядок» не идеальна. В этом нет ничего страшного, и мы можем продолжать неформально объяснять понятие энтропии на примере захламленного рабочего стола. Однако что в действительности сообщает нам энтропия, так это сколько микросостояний с макроскопической точки зрения кажутся нам неразличимыми. Иногда это напрямую связано с порядком, а иногда нет.

 

Принцип безразличия

С больцмановским подходом ко второму началу термодинамики связаны еще два надоедливых вопроса, которые не мешало бы прояснить или, по крайней мере, о которых стоит упомянуть. Итак, у нас есть огромный набор микросостояний, который мы подразделяем на макросостояния, и мы объявляем, что энтропия равна логарифму числа микросостояний в данном макросостоянии. Теперь нам предлагают добавить еще один существенный факт — предположение о том, что все микросостояния, отвечающие одному и тому же макросостоянию, «равновероятны».

Следуя по цепочке рассуждений Больцмана, логично было бы утверждать, что причина возрастания энтропии со временем кроется всего-навсего в количестве микросостояний: куда больше микросостояний образуют макросостояния с высокой энтропией, чем с низкой. Однако это утверждение не имело бы никакого смысла, если бы типичная система проводила намного больше времени в низкоэнтропийных микросостояниях (а их относительно немного), чем в высокоэнтропийных (которых гораздо больше). Представьте себе, будто у микроскопических законов физики появилось новое свойство: почти все высокоэнтропийные состояния естественным образом переходят в одно из немногих низкоэнтропийных состояний. В таком случае тот факт, что состояний с высокой энтропией больше, не играл бы совершенно никакой роли; мы все равно знали бы, что если подождать достаточно долго, то энтропия в системе понизится.

Несложно вообразить мир с подобными безумными законами физики. Давайте еще раз вернемся к бильярдному столу с катающимися по нему шарами. Шары перемещаются по столу совершенно обычным образом, за одним важным исключением: каждый раз, когда шар врезается в какой-то один бортик стола, он мгновенно к нему прилипает. (Мы предполагаем, что в нашем мысленном эксперименте нет злоумышленника, намазавшего бортик клеем, или еще чего-то подобного, демонстрирующего, тем не менее, обратимое поведение на микроскопическом уровне, — в данном случае мы вводим совершенно новый фундаментальный закон физики.) Обратите внимание на то, что пространство состояний этих бильярдных шаров абсолютно такое же, каким оно было бы в традиционном мире: зная положение и импульс каждого шара, мы можем с идеальной точностью предсказать их будущее. Тонкость лишь в том, что с громадной вероятностью в конце эволюции этой системы все шары будут находиться возле одного из бортиков. Энтропия такой конфигурации чрезвычайно низка; подобных микросостояний совсем немного. В таком мире энтропия могла бы спонтанно уменьшиться даже в замкнутой системе, такой как бильярдный стол.

Совершенно очевидно, что в этом примере, хоть и притянутом за уши, фигурирует новшество: необратимый закон физики. А сама система очень напоминает шахматную доску D из предыдущей главы: там диагональные линии серых квадратиков обрывались после соприкосновения с одним из вертикальных столбцов. Информации о положениях и импульсах всех шаров на этом забавном столе достаточно для того, чтобы предсказывать будущее, но восстановить прошлое она не позволит. Увидев шар, лежащий рядом с бортиком, мы уже не сможем узнать, как долго он там находится.

Реальные же законы физики на фундаментальном уровне обратимы. И если вдуматься, это их свойство гарантирует, что высокоэнтропийные состояния не будут стремиться переходить в состояния с низкой энтропией. Как вы помните, основа обратимости — сохранение информации. Информация, необходимая для описания конкретного состояния, сохраняется, несмотря на то что система движется, меняясь с течением времени. Это означает, что два разных состояния с течением времени всегда переходят в два разных состояния; если бы в будущем они приходили в какое-то одно состояние, то мы не могли бы восстановить прошлое этого состояния. Поэтому совершенно невозможно, чтобы все высокоэнтропийные состояния стремились в низкоэнтропийные: состояний с низкой энтропией просто-напросто слишком мало, для того чтобы это было реально. Данный результат называется теоремой Лиувилля в честь французского математика Жозефа Лиувилля.

Это почти то, что нам нужно, но не совсем. И, как это часто случается, мы хотим того, что вряд ли сможем в действительности получить. Предположим, что у нас есть какая-то система, мы знаем, в каком макросостоянии она находится, и хотели бы сделать какие-то предсказания относительно ее будущего. Пусть это будет, например, стакан воды с плавающим в ней кубиком льда. Согласно теореме Лиувилля, большинство микросостояний этого макросостояния будут стремиться к увеличению (либо сохранению) энтропии. То же самое говорит нам второе начало термодинамики: кубик льда, скорее всего, растает. Однако система находится ровно в одном конкретном микросостоянии, даже если мы не знаем точно, в каком. Можем ли мы быть уверены, что это не одно из того крошечного набора микросостояний, в которых энтропия способна в любое мгновение внезапно уменьшиться? Как гарантировать, что кубик льда не увеличится, одновременно нагрев окружающую его воду?

Ответ прост: никак. В макросостоянии «вода с кубиком льда» обязательно присутствует какое-то конкретное, очень редкое микросостояние, которое действительно будет эволюционировать по направлению к микросостоянию с меньшей энтропией. Статистическая механика (основанная на атомах версия термодинамики), по сути, наука вероятностная: нам неизвестно, что в точности произойдет; мы можем лишь утверждать, что вероятность определенных событий наиболее высока. По крайней мере, нам хотелось бы иметь возможность делать такие утверждения. В действительности же мы можем говорить лишь о том, что большинство состояний с небольшой энтропией будут развиваться в сторону увеличения, а не уменьшения энтропии. Вы обратили внимание на тонкое различие между «большинство микросостояний данного макросостояния развиваются в сторону увеличения энтропии» и «принадлежащее данному макросостоянию микросостояние с большой вероятностью будет развиваться в сторону увеличения энтропии»? Первое утверждение — это всего лишь подсчет относительного числа микросостояний, обладающих разными свойствами («кубик льда тает» или «кубик льда растет»), однако во втором мы уже делаем заявление о вероятности какого-то события в реальном мире. Это не одно и то же. В мире больше китайцев, чем литовцев; однако это не означает, что вы с большей вероятностью столкнетесь с китайцем, чем с литовцем, прогуливаясь по улицам Вильнюса.

Другими словами, традиционная статистическая механика основывается на критически важном допущении: если мы находимся в определенном макросостоянии и знаем полный набор составляющих его микросостояний, мы можем предполагать, что все эти микросостояния одинаково вероятны. В любых подобных рассуждениях допущения неизбежны, потому что без их помощи нам никак не перейти от банального подсчета количества состояний к точному вычислению вероятностей. У предположения о равной вероятности есть название, которое также отлично подошло бы в качестве заглавия для стратегии поиска спутника жизни, особенно если вы человек эмоциональный: «принцип безразличия». Впервые оно прозвучало в контексте теории вероятностей задолго до того, как на сцене появилась статистическая механика, и озвучил его наш старый друг Пьер-Симон Лаплас. Он был упертым детерминистом, однако, как и любой другой человек, понимал, что чаще всего нам приходится оперировать далеко не всеобъемлющими наборами фактов. Тем не менее ему было интересно, какие выводы человек способен делать в ситуациях неполной информированности.

Так вот, чаще всего лучшее из всего, что мы можем предпринять, — применить принцип безразличия. Если нам не известно ничего, кроме того, что система находится в определенном макросостоянии, мы предполагаем, что все образующие его микросостояния одинаково вероятны (не забывая, однако, об одном принципиальном исключении, которое называется гипотезой о прошлом, — о нем мы поговорим в конце главы). Было бы очень здорово, если бы у нас была возможность доказать истинность данного предположения, — и действительно, многие люди пытались это сделать. Например, если бы система в процессе своего движения проходила через все возможные микросостояния (или по крайней мере через достаточно большой их набор, почти полностью охватывающий все возможные микросостояния) за разумный промежуток времени, то у нас были бы определенные основания считать все микросостояния одинаково вероятными. Система, посещающая каждое (или почти каждое) состояние в своем пространстве состояний и, таким образом, перебирающая все (или почти все) возможные исходы, называется эргодической. Проблема в том, что даже если система действительно является эргодической (а таковыми являются далеко не все системы), ей потребовалась бы целая вечность, чтобы пройти вблизи всех своих микросостояний. Ну ладно, может быть, не вечность, но это все равно заняло бы ужасно много времени. Макроскопическая система может пребывать в таком огромном числе состояний, что для того, чтобы перепробовать их все, потребуется время, сопоставимое с возрастом Вселенной.

Настоящая причина существования принципа безразличия заключается в том, что ничего лучше у нас просто нет. Ну и, конечно, потому что он вроде бы работает.

 

Другие энтропии, другие стрелы

В наших рассуждениях мы дали четкие определения энтропии и стрелы времени. Энтропия — это число состояний, неразличимых с точки зрения макроскопического наблюдателя, а стрела времени возникает, потому что во всей обозримой Вселенной энтропия непрерывно увеличивается. Несмотря на то что, формулируя эти определения, мы отталкивались от свойств реального мира, другие люди, употребляя те же самые термины, могут подразумевать что-то совершенно иное.

Определение энтропии, с которым мы работаем, — то самое, что выгравировано на могильной плите Больцмана, — связывает с каждым индивидуальным микросостоянием определенную энтропию. Главная особенность этого определения — его двухэтапность. Сначала мы принимаем решение о том, что же можно считать «макроскопически неразличимыми» характеристиками состояния, а затем на основании этого разбиваем все пространство состояний на части — набор макросостояний. Для вычисления энтропии микросостояния мы берем общее число макроскопически неотличимых от него микросостояний и вычисляем ее логарифм.

Однако обратите внимание на то, что здесь происходит кое-что очень интересное. Пусть некоторое состояние эволюционирует с течением времени из низкоэнтропийной области в высокоэнтропийную. Пусть мы потеряли всю информацию об этом состоянии, кроме макросостояния, которое оно проходит в данный момент времени. Тогда со временем мы будем обладать все меньшей информацией о микросостоянии, которое рассматриваем. Другими словами, когда нам говорят, что система принадлежит определенному макросостоянию, вероятность того, что она находится в конкретном микросостоянии из этого макросостояния, с увеличением энтропии уменьшается — просто потому, что число вариантов стремительно возрастает. Точность нашей информации о состоянии — насколько верно мы определили микросостояние — уменьшается по мере того, как энтропия увеличивается.

Это подразумевает необходимость иного подхода к определению энтропии, и альтернативный взгляд традиционно связывают с именем Джозайи Уилларда Гиббса (в действительности Больцман исследовал похожие определения, но нам удобнее ассоциировать новый подход именно с Гиббсом, потому что у Больцмана уже один есть). Вместо того чтобы рассматривать энтропию как характеристику состояний, а именно числа других состояний, макроскопически неотличимых от рассматриваемого, — мы могли бы считать энтропию мерой того, что нам известно о состоянии. В больцмановском подходе сведения о том, в каком макросостоянии мы находимся, по мере увеличения энтропии теряют информативность: мы не понимаем, о каком микросостоянии идет речь. Гиббс то же самое рассматривает с другой стороны, и у него энтропия определяется в терминах того, как много мы знаем. Вместо того чтобы фильтровать пространство состояний, мы начинаем с распределения вероятностей, указывающего для каждого возможного микросостояния шанс, что система действительно сейчас находится в нем. Также Гиббс дает нам формулу, аналогичную больцмановской, для расчета энтропии, связанной с данным распределением вероятностей. Ничего огрублять не приходится.

И все же ни больцмановскую формулу для энтропии, ни формулу Гиббса нельзя назвать «правильной». Мы сами вводим эти определения, манипулируем ими и используем для того, чтобы лучше понять мир; у каждой свои преимущества и недостатки. Формулу Гиббса часто применяют в прикладных задачах по одной простой причине: ее проще использовать. Поскольку огрубление отсутствует, дискретного изменения значения энтропии при переходе системы от одного макросостояния к другому не происходит — это важное преимущество, упрощающее решение уравнений.

Однако подход Гиббса обладает двумя заметными недостатками. Один из них эпистемологический: идея «энтропии» здесь связывается с нашими знаниями о системе, а не с самой системой. У людей, старающихся с большой осторожностью рассуждать о том, что же такое на самом деле энтропия, это продолжает вызывать страшную головную боль, и споры насчет обоснованности этого подхода не утихают. Но тот подход, которого я решил придерживаться в этой книге: считать энтропию характеристикой состояния, но не характеристикой наших знаний о нем, — вроде бы позволяет избежать большинства проблемных вопросов.

Второй недостаток куда значительнее: если вам известны законы физики и вы примените их для изучения эволюции «энтропии Гиббса» с течением времени, вы обнаружите, что ее величина не меняется. Если вдуматься, то никакой ошибки здесь нет. Энтропия Гиббса описывает то, насколько хорошо мы понимаем текущее состояние системы. Однако при условии обратимости физических законов данная величина меняться не будет, ведь информация не возникает и не разрушается. Для того чтобы энтропия увеличивалась, в будущем у нас должно стать меньше сведений о состоянии системы, чем есть сейчас; но мы всегда можем прокрутить пленку назад и посмотреть, что было раньше, поэтому такая ситуация невозможна. Вывести второе начало термодинамики или что-то подобное, придерживаясь подхода Гиббса, можно только в том случае, если «забыть» часть информации о движении. Но если копнуть поглубже, то станет очевидно, что с философской точки зрения это то же самое, что огрубление, с которым мы имели дело в больцмановском подходе; просто мы перенесли процедуру «забывания» из пространства состояний на уравнения движения.

Тем не менее практическая польза формулы Гиббса для определенных приложений не вызывает сомнения, и ученые продолжают активно пользоваться ею. Однако и это еще не конец истории; существует несколько других известных подходов к изучению энтропии, а в литературе непрерывно продолжают появляться упоминания о новых. Ничего странного в этом нет; в конце концов, определения Больцмана и Гиббса должны были заменить вполне достойное определение энтропии, данное Клаузиусом, но оно и по сей день используется под названием термодинамической энтропии. После появления на сцене квантовой механики Джон фон Нейман предложил формулу для энтропии, особым образом адаптированную под квантовый мир. Клод Шеннон сформулировал определение энтропии, очень близкое по духу к гиббсоновскому, однако в рамках информационной теории, а не физики — об этом мы поговорим в следующей главе. Смысл не в том, чтобы найти одно-единственное истинное определение энтропии. Ученые придумывают понятия, служащие полезным целям в определенных случаях, и это абсолютно нормально. Не позволяйте никому одурачить вас заявлениями о «единственно верном определении», уникальным образом раскрывающем суть такого явления, как энтропия.

Точно так же, как существует несколько определений энтропии, есть множество различных «стрел времени» — еще один потенциальный источник мошенничества. Мы рассматривали термодинамическую стрелу времени, определяемую энтропией и вторым началом термодинамики. Но можно также говорить о космологической стреле времени (Вселенная расширяется), психологической стреле времени (мы помним прошлое, но не будущее), стреле времени излучения (электромагнитные волны расходятся прочь от движущихся зарядов, а не притягиваются к ним) и т. д. Все это разнообразие стрел времени естественным образом подразделяется на несколько категорий. Часть из них, например космологическая стрела, отражает факты об эволюции Вселенной, но тем не менее обладает свойством обратимости. Вполне возможно, что окончательное объяснение термодинамической стрелы времени также раскроет нам глаза на космологическую стрелу (и это действительно кажется весьма вероятным); в то же время с точки зрения микроскопических законов физики расширение Вселенной не представляет никакой загадки в отличие от увеличения энтропии. Другие стрелы, отражающие поистине необратимые процессы, — психологическую стрелу, стрелу излучения и даже стрелу, определяемую квантовой механикой, мы будем исследовать позже. Все они кажутся отражениями одних и тех же глубинных причин, характеризуемых изменением энтропии. Разобраться в подробностях, как они все взаимосвязаны, несомненно, важно и интересно, однако я продолжу использовать термин «стрела времени», имея в виду одну конкретную стрелу — ту, что основывается на увеличении энтропии.

 

Доказательство второго начала термодинамики

После того как Больцману открылся смысл энтропии как меры количества микросостояний, соответствующих выбранному макросостоянию, он поставил себе новую цель: уже на этом уровне понимания установить происхождение второго начала термодинамики. Я уже рассказывал об основных причинах, почему второе начало действительно работает: состояний с высокой энтропией намного больше, чем с низкой, а разные начальные состояния в процессе развития приходят к разным конечным состояниям, поэтому большую часть времени (с действительно подавляющей вероятностью) можно ожидать, что энтропия будет увеличиваться. Однако Больцман был истинным ученым, и ему недостаточно было лишь этого. Он хотел доказать, что второе начало термодинамики следует из его определения.

Довольно непросто вообразить себя на месте ученого, занимающегося исследованием термодинамики в конце XIX века. Эти ребята чувствовали, что неспособность энтропии уменьшаться в замкнутой системе не просто отличная идея, а закон. Мысль о том, что энтропия, вероятно, будет увеличиваться, казалась им не более правдоподобной, чем, например, предположение о том, что энергия, вероятно, будет сохраняться. И правда, числа настолько ошеломляюще велики, что вероятностные выводы статистической механики можно было бы использовать как абсолютно верные для всех практических задач. Тем не менее Больцман стремился продемонстрировать нечто более определенное.

В 1872 году Больцман (в то время ему было двадцать восемь лет) опубликовал статью, в которой предлагал использовать для доказательства того, что энтропия всегда будет либо увеличиваться, либо оставаться постоянной, кинетическую теорию. Этот результат называется H-теоремой, которая с того самого времени остается источником множества споров в научной среде. Даже сегодня одни люди уверены, что H-теорема объясняет незыблемость второго начала термодинамики в реальном мире, тогда как другие полагают ее всего лишь забавным пережитком истории интеллектуальной мысли. Правда в том, что это действительно чрезвычайно интересный результат для статистической механики, но «доказать» второе начало он все же не в силах.

Больцман размышлял следующим образом. В макроскопическом объекте, таком как наполненная газом комната или чашка кофе с молоком, присутствует невероятное количество молекул — более 1024. Он рассматривал такой случай, когда газ относительно разрежен; в этой ситуации столкнуться могут две любые частицы, но редкие события, когда одновременно друг в друга врезаются три или более частиц, можно игнорировать (это на самом деле не вызывающее претензий предположение). Нам необходимо найти способ, как охарактеризовать макросостояние всех этих частиц. Итак, вместо того чтобы отслеживать положения и импульсы всех молекул (что дало бы нам полное описание микросостояния), давайте следить за средним числом частиц, обладающих данным положением и импульсом. Например, в контейнере с газом, находящемся в равновесии при определенной температуре, среднее число частиц в каждой точке равно, а также существует некоторое распределение импульсов, такое, что средняя энергия частиц дает нам нужную температуру. Имея на руках лишь эту информацию, можно вычислить энтропию газа. А затем (если вы Больцман) доказать, что энтропия газа, пребывающего не в равновесном состоянии, будет со временем возрастать, пока не достигнет максимального значения, после чего останется на этом уровне. Очевидно, что мы вывели второе начало термодинамики.

Очевидно, однако, что здесь что-то не чисто. Мы начали с микроскопических законов физики, совершенно инвариантных относительно направления времени, — они работают одинаково хорошо как вперед во времени, так и назад. А Больцман утверждал, что получил на основе этих законов результат, абсолютно точно не обладающий свойством инвариантности и приводящий к очевидной стреле времени, что подтверждается словами об увеличении энтропии по направлению к будущему. Как же можно получить необратимые результаты исходя из обратимых предположений?

Данное возражение было громко и ясно высказано Йозефом Лошмидтом в 1876 году, после того как схожие сомнения появились у Уильяма Томсона (лорда Кельвина) и Джеймса Клерка Максвелла. Лошмидт был близким другом Больцмана, взявшим молодого физика под свою опеку в Вене в 1860-е годы. И он не проявлял никакого скептицизма по отношению к атомной теории; в действительности Лошмидт первым сумел точно оценить физические размеры молекул. Однако ему было невдомек, как Больцман сделал вывод об асимметрии времени, не прибегая к помощи его предположений.

Доводы, стоящие за тем, что нам сегодня известно под названием «возражения Лошмидта об обратимости», просты. Рассмотрим какое-то конкретное микросостояние, соответствующее макросостоянию с низкой энтропией. Оно с огромной вероятностью будет развиваться в сторону высокоэнтропийных состояний. Но инвариантность относительно отражения времени гарантирует, что для каждого такого пути развития существует другой допустимый путь — зеркальное отражение оригинала, — начинающийся в высокоэнтропийном состоянии и эволюционирующий навстречу низкой энтропии. В пространстве всех процессов, которые могут происходить с течением времени, можно найти ровно столько же систем, начинающих существование в условиях высокой энтропии и приходящих в состояние с низкой энтропией, как и систем, переходящих из низкоэнтропийного состояния к высокоэнтропийному. На рис. 8.5, где показано пространство состояний, разделенное на макросостояния, мы нарисовали траекторию, берущую начало в макросостоянии с очень низкой энтропией. Однако траектория не появляется из ниоткуда; она должна была существовать и до того, и в ее истории должно было быть состояние с высокой энтропией, — явный пример пути, вдоль которого энтропия уменьшилась. Очевидно, что если вы верите в динамику, инвариантную относительно отражения времени (как все эти ученые), то совершенно невозможно доказать, что энтропия всегда только увеличивается.

Однако Больцман что-то доказал, и, насколько можно было судить, в его рассуждениях не было математических или логических ошибок. Скорее всего, в его доводы каким-то образом проникло предположение об асимметричности времени, даже если эта идея не была высказана явно.

Действительно, так и случилось. Одним из важнейших шагов в аргументах Больцмана было предположение о молекулярном хаосе — Stosszahlansatz по-немецки, что можно буквально перевести как «гипотеза о числе столкновений». Суть его в том, что мы считаем движение молекул произвольным, то есть они не строят коварных заговоров с целью подчинить свое движение определенной схеме. Но для того, чтобы энтропия уменьшалась, именно это и требуется — коварный заговор! Таким образом, Больцман, в сущности, доказал, что энтропия может увеличиваться только в том случае, если с самого начала отмести любые альтернативные варианты. В частности, он предполагал, что импульсы любой пары частиц до того, как они столкнутся, независимы или не скоррелированы между собой. Однако это «до» как раз и иллюстрирует то самое предположение об асимметричности времени; если частицы никак не скоррелированы до столкновения, то после между ними установится взаимосвязь или корреляция. Вот так предположение о необратимости прокралось в доказательство.

Если взять систему в состоянии с низкой энтропией и позволить ей развиваться по направлению к увеличению энтропии (например, подождать, пока растает кубик льда), то после того, как все закончится, между молекулами можно будет найти огромное количество корреляций. В частности, среди них будут корреляции, гарантирующие, что если мы инвертируем все импульсы, то система вернется в низкоэнтропийное начальное состояние. В рассуждениях Больцмана такая возможность учтена не была. Он доказал, что энтропия никогда не будет уменьшаться, если отбросить обстоятельства, при которых энтропия могла бы уменьшиться.

 

Когда законов физики недостаточно

В конечном счете совершенно ясно, каким будет итог всех этих споров — по крайней мере, в нашей наблюдаемой Вселенной. Лошмидт прав; действительно, в наборе всех возможных процессов уменьшение энтропии встречается так же часто, как и увеличение. Однако прав и Больцман, поскольку статистическая механика убедительно объясняет, почему с подавляющей вероятностью мы будем встречать низкоэнтропийные условия, переходящие в высокоэнтропийные, а не наоборот. Вывод очевиден: помимо того что динамикой управляют физические законы, необходимо также предполагать, что Вселенная начала свое существование в состоянии с низкой энтропией. Это дополнительное предположение, граничное условие, которое не является частью законов физики (во всяком случае, пока мы не переходим к обсуждению того, что происходило до Большого взрыва, а такую дискуссию вряд ли можно было услышать в 1870-х годах). К сожалению, такого вывода было недостаточно для ученых того времени, и в последующие годы дискуссии о статусе H-теоремы заполонили ученый мир.

В 1876 году Больцман опубликовал ответ на возражение Лошмидта об обратимости, который, впрочем, ничуть не прояснил ситуацию. Определенно, Больцман согласился с тем, что в словах Лошмидта есть смысл, и признал, что второе начало термодинамики, несомненно, обладает вероятностными свойствами — ведь если кинетическая теория верна, то оно попросту не может быть абсолютным. В начале статьи Больцман явно говорит об этом:

Поскольку энтропия уменьшалась бы при прохождении системы через эту последовательность в обратном направлении, мы убеждаемся, что факт увеличения энтропии во всех физических процессах нашего мира невозможно было бы подтвердить, отталкиваясь исключительно от природы сил, действующих между частицами; это должно быть следствием начальных условий.

Можно ли найти заявление более недвусмысленное, чем это: «факт увеличения энтропии во всех физических процессах нашего мира… должен быть следствием изначальных условий»? Однако, не в силах расстаться с идеей о доказательстве, не зависящем от начальных условий, он тут же заявляет:

Тем не менее нам не нужно предполагать существование специального типа начальных условий для того, чтобы предоставить механическое доказательство второго начала термодинамики, — если мы готовы принять статистическую точку зрения.

«Принятие статистической точки зрения», судя по всему, означает, что он согласен с утверждением о подавляющей вероятности такого развития событий, при котором энтропия будет увеличиваться, хотя это будет происходить не всегда. Но что он имеет в виду, говоря, что нам не нужно предполагать существование специального типа начальных условий? Следующие предложения подтверждают худшие опасения:

Хотя вероятность любого индивидуального неоднородного состояния (соответствующего низкой энтропии) эквивалентна вероятности любого индивидуального однородного состояния (соответствующего высокой энтропии), существует намного больше однородных состояний, чем неоднородных. Следовательно, если начальное состояние выбирается случайным образом, то можно с уверенностью говорить, что система, скорее всего, будет развиваться по направлению к однородному состоянию, а энтропия будет увеличиваться.

Первое предложение истинно, но второе содержит очевидную ошибку. Если выбирать начальное состояние случайным образом, то оно не «скорее всего, будет развиваться по направлению к однородному состоянию», а вероятнее всего само окажется однородным (высокоэнтропийным). Почти все из небольшого числа низкоэнтропийных состояний будут стремиться к увеличению энтропии. В противоположность этому, лишь крайне малая часть состояний с высокой энтропией будет развиваться по сценарию уменьшения энтропии; в то же время самих высокоэнтропийных состояний существует невообразимо больше. Общее число низкоэнтропийных состояний, эволюционирующих по направлению к увеличению энтропии, равно, как и утверждал Лошмидт, общему числу высокоэнтропийных состояний, теряющих энтропию в процессе эволюции.

Чтение трудов Больцмана вызывает стойкое ощущение того, что этот ученый на несколько шагов опережал свое время: он видел детали, заключенные в любых приводимых доводах, куда лучше любого собеседника. Однако, перебирая эти детали, он все же не всегда умел вовремя остановиться; более того, печально известно его непостоянство в выборе рабочих гипотез, на которых он основывал ту или иную работу. Тем не менее не нам его судить. Ведь прошло уже 140 лет, а мы до сих пор не можем прийти к согласию относительно того, что же такое энтропия и в каких терминах правильно рассуждать о втором начале термодинамики.

 

Гипотеза о прошлом

Невозможно установить происхождение постоянного увеличения энтропии и соответствующей этому стрелы времени в пределах наблюдаемой Вселенной, опираясь только на основополагающие обратимые законы физики. Требуется некое граничное условие в начале времен. Чтобы понять, почему второе начало термодинамики действительно работает в реальном мире, недостаточно всего лишь подойти к основополагающим физическим законам со статистической точки зрения; мы должны также предположить, что обозримая Вселенная начала свое существование в состоянии очень низкой энтропии. Дэвид Альберт заботливо присвоил данному предположению удобное и простое название: «Гипотеза о прошлом».

Гипотеза о прошлом представляет собой несущее огромную значимость исключение из принципа безразличия, на который мы ссылались выше. Согласно принципу безразличия, если нам известно, в каком макросостоянии пребывает система, то мы должны считать все составляющие данное макросостояние микросостояния одинаково вероятными. Это предположение здорово помогает прогнозировать будущее на основе статистической механики. Но если попытаться применить его для реконструкции прошлого, результат будет плачевным.

Больцман привел убедительные аргументы, объясняющие, почему энтропия увеличивается: возможностей оказаться в высокоэнтропийном состоянии куда больше, чем в низкоэнтропийном, поэтому большинство микросостояний в макросостояниях с низкой энтропией эволюционируют по направлению к высокоэнтропийным макросостояниям. Однако направление времени в этом объяснении никак не фигурирует. Следуя этой логике, высокую энтропию в большей части микросостояний из произвольного макросостояния мы будем наблюдать не только в будущем — в прошлом они также когда-то прошли через этап высокой энтропии.

Рассмотрим все микросостояния из произвольного макросостоянии с небольшой энтропией. Подавляющее большинство этих состояний когда-то обладали высокой энтропией. Так обязательно должно быть, потому что состояний с низкой энтропией не так много, чтобы все рассматриваемые микросостояния могли произойти из них. Таким образом, высока вероятность того, что типичное микросостояние с небольшой энтропией — «статистическая флуктуация» высокоэнтропийного прошлого. Этот довод эквивалентен утверждению о том, что энтропия в будущем должна увеличиваться, но только в противоположном направлении по времени.

В качестве примера снова возьмем контейнер с перегородкой, содержащий 2000 частиц газа. Изначально у системы низкая энтропия (80 % частиц скопились в одной половине контейнера), но затем она начинает увеличиваться, как показано на рис. 8.3. На рис. 8.7 мы дополнили график роста энтропии в будущем, показав, как энтропия эволюционирует по направлению к прошлому. Поскольку базовое правило динамики нашей системы («каждая частица каждую секунду с вероятностью 0,5 % может перелететь на другую сторону») не зависит от направления времени, неудивительно, что высокая энтропия наблюдается и справа, и слева относительно нашей стартовой точки, то есть и в прошлом, и в будущем.

Рис. 8.7. Энтропия контейнера с газом, разделенного перегородкой. «Граничное» условие наложено в момент времени, равный 500, когда 80 % частиц находятся в одной половине контейнера, а 20 % — в другой (низкоэнтропийное макросостояние). Энтропия увеличивается в обоих направлениях от этой точки: и при эволюции в сторону будущего, и при движении к прошлому

Вы можете возразить: очень маловероятно, что система, начавшая существование в равновесном состоянии, вдруг начнет терять энтропию. Это верно; скорее всего, энтропия либо возрастет, либо останется примерно на том же уровне. Однако учитывая, что мы, в принципе, настаиваем на существовании низкоэнтропийного состояния, высока вероятность того, что данное состояние представляет на кривой энтропии минимум — с более высокими значениями как в прошлом, так и в будущем.

По крайней мере, такая ситуация была бы наиболее вероятной, если бы, кроме принципа безразличия, нам больше не на что было опереться. Проблема в том, что никто не считает, будто энтропия реальной Вселенной ведет себя так, как показано на рис. 8.7. Все согласны с утверждением о том, что завтра энтропия будет выше, чем сегодня, и ни у кого не возникает сомнений, что сегодня она выше, чем была вчера. Это всеобщее убеждение поддерживается вескими аргументами, которые мы подробно обсудим в следующей главе: если сейчас мы живем в минимуме кривой энтропии, то никакие наши воспоминания о прошлом не могут быть достоверными, а осмыслить такой вариант Вселенной попросту невозможно.

Итак, если нам правда интересно, какие механизмы работают под капотом нашего мира, мы должны в дополнение к принципу безразличия учитывать также и гипотезу о прошлом. Когда дело доходит до выбора микросостояний из нашего макросостояния, мы не считаем их все одинаково вероятными: мы выбираем только те микросостояния, которые совместны с условием намного более низкой энтропии в прошлом (а их очень, очень мало!), и лишь им присваиваем равные значения вероятности.

Однако эта стратегия поднимает важнейший вопрос: почему мы считаем, что гипотеза о прошлом верна? Во времена Больцмана никто и понятия не имел об общей теории относительности или Большом взрыве, не говоря уж о квантовой механике или квантовой гравитации. И все же вопрос остается, хотя и приобретает более конкретную форму: почему непосредственно после Большого взрыва у Вселенной была такая низкая энтропия?

 

Глава 9. Информация и жизнь

 

В знаменитой сцене из романа «По направлению к Свану» Марселя Пруста повествователя охватывает тоска и уныние. Мать предлагает ему чай, и он с неохотой соглашается его выпить. Это действо и вкус традиционного бисквита «Мадлен» заставили героя непроизвольно окунуться в воспоминания детства.

И вдруг воспоминание ожило. То был вкус кусочка бисквита, которым в Комбре каждое воскресное утро… угощала меня, размочив его в чае или в липовом цвету, тетя Леония, когда я приходил к ней поздороваться… И как только я вновь ощутил вкус размоченного в липовом чае бисквита, которым меня угощала тетя… в то же мгновенье старый серый дом фасадом на улицу, куда выходили окна тетиной комнаты, пристроился, как декорация, к флигельку окнами в сад, выстроенному за домом для моих родителей… А стоило появиться дому — и я уже видел городок, каким он был утром, днем, вечером, в любую погоду, площадь, куда меня водили перед завтраком, улицы, по которым я ходил, далекие прогулки в ясную погоду. [150]

«По направлению к Свану» — первый из семи томов магнум-опуса Пруста À la recherche du temps perdu, что переводится как «В поисках утраченного времени». Интересно, что Скотт Монкриф, первый переводчик опуса, позаимствовал для названия на английском языке строку из тридцатого сонета Шекспира Remembrance of Things Past («Память дней былых»).

Разумеется, совершенно естественно хранить воспоминания о прошлом. Что еще мы могли бы помнить? Определенно, не будущее. Из всех проявлений стрелы времени самое очевидное и самое важное для нашей повседневной жизни — это воспоминания, а конкретнее, тот факт, что помнить можно то, что уже было, но не то, что ждет нас впереди. Возможно, главное различие в нашем восприятии текущего момента и момента, который вот-вот наступит, заключается как раз в накоплении воспоминаний, вынуждающих нас двигаться вперед, в будущее.

Пока все мои рассуждения сводились к тому, что все важные различия между прошлым и будущим можно свести к одному основополагающему принципу — второму началу термодинамики. Из этого следует, что нашу способность вспоминать прошлое, но не будущее, в конечном счете можно будет объяснить в терминах энтропии, в частности, с помощью гипотезы о прошлом, которая гласит, что в ранней Вселенной наблюдалось состояние чрезвычайно низкой энтропии. Изучение тонкостей этого механизма позволит нам погрузиться в исследование взаимосвязей между энтропией, информацией и жизнью.

 

Картинки и воспоминания

Одна из проблем, непременно возникающих при обсуждении «памяти», заключается в том, что мы очень многого не знаем о работе человеческого мозга, не говоря уж о том, что такой феномен, как сознание, до сих пор остается для нас по большей части загадкой. Нашим текущим целям это, тем не менее, не помеха. Обсуждая воспоминания прошлого, мы заинтересованы не столько в определении, что такое память с точки зрения человека, сколько в общем значении реконструкции событий прошлого исходя из текущего состояния мира. Мы ничего не потеряем, если будем рассматривать простые и понятные механические записывающие устройства или даже такие бесхитростные артефакты, как фотографии и учебники истории. (Мы делаем явное предположение о том, что люди являются частью земного бытия, поэтому под человеческим разумом можно, в принципе, понимать человеческий мозг, который так же, как и все остальное, подчиняется законам физики.)

Итак, представьте себе, что в вашем распоряжении есть нечто, что вы считаете достоверным отражением прошлого, например фотография, сделанная в ваш десятый день рождения. Вы уверенно заявляете: «Можно не сомневаться, что в тот день на мне была красная рубашка, ведь на фотографии с праздника я запечатлен именно в красной рубашке». Мы сейчас не рассматриваем возможность того, что фотография могла быть отретуширована или изменена еще каким-то способом. Вопрос в том, имеете ли вы право делать выводы касательно прошлого, основываясь на существовании данной фотографии в настоящем?

В частности, предположим, что вы не купились на всю эту чепуху с гипотезой о прошлом. Все, что у вас есть, — это некоторая информация о текущем макросостоянии Вселенной, в том числе тот факт, что в ней существует эта конкретная фотография, вы обладаете определенными воспоминаниями, и т. п. Вы совершенно точно не знаете текущее микросостояние — вам неизвестны положения и импульсы всех частиц в мире, — однако вы можете воззвать к принципу безразличия и связать равные значения вероятности со всеми микросостояниями, совместимыми с текущим макросостоянием. И разумеется, вы знакомы с законами физики — возможно, не с полной Теорией Обо Всем На Свете, но ваших знаний достаточно, чтобы делать выводы об окружающем мире. Достаточно ли всего этого — текущего макросостояния, включающего фотографию, принципа безразличия и законов физики — для того, чтобы обоснованно утверждать, что в свой десятый день рождения вы действительно нарядились в красную рубашку?

Нет, и даже близко нет. Нам кажется, что этой информации вполне достаточно, и мы, живя обычной жизнью, даже не задумываемся о том, какие невообразимо тонкие взаимосвязи существуют между повседневными объектами. Грубо говоря, мы полагаем, что подобная фотография представляет собой очень специфичную конфигурацию составляющих ее молекул (так же, как и воспоминание о соответствующем событии, хранящееся в нашем мозге). Никому и в голову не приходит, что молекулы могут случайным образом собраться так, чтобы образовать именно эту конкретную фотографию, — это астрономически маловероятно. Если же, однако, в прошлом действительно произошло событие, соответствующее изображению на фотографии, и в этот момент присутствовал человек с камерой, то существование снимка становится весьма вероятным. Следовательно, логично говорить о том, что раз мы видим эту фотографию сегодня, то на том дне рождения все было именно так, как представлено на ней.

Все эти утверждения вполне разумны, но проблема в том, что они даже наполовину не подтверждают истинность последнего вывода. Причина проста, и она не изменилась с прошлой главы, где мы обсуждали контейнер с газом. Действительно, фотография — это очень редкая и маловероятная конфигурация молекул. Тем не менее история, с помощью которой мы пытаемся «объяснить» ее существование: детальное воспроизведение событий прошлого, включающее дни рождения и камеры, и фотографии, сохраняющиеся в неизменном виде до сегодняшнего дня, — еще менее вероятна, чем сам снимок. По крайней мере если под «вероятностью» понимать ту самую равную вероятность, которую мы назначили всем возможным микросостояниям, совместимым с нашим текущим макросостоянием.

Попробуйте посмотреть на это с такой точки зрения: вы никогда не стали бы апеллировать к какой-то хитро закрученной истории из будущего, чтобы объяснить существование некоего предмета в настоящем. Мы можем рассуждать о том, что ждет в будущем нашу фотографию с дня рождения, и строить относительно нее определенные планы: вот бы поместить ее в альбом или повесить в рамке на стену… Но в то же время нам приходится мириться с огромной степенью неопределенности этих начинаний, ведь фотография может потеряться, может упасть в лужу и выцвести, а то и сгореть во время пожара. Все это абсолютно правдоподобные экстраполяции текущего состояния в будущее, пусть и привязанные к настоящему специфическим якорем, роль которого играет фотография. Так почему же мы с такой уверенностью рассуждаем о событиях прошлого, приводя в качестве доказательства собственной правоты всего лишь какую-то фотографию?

Рис. 9.1. Траектории, проходящие через (часть) пространства состояний и совместимые с нашим текущим макросостоянием. Мы можем безошибочно восстановить ход истории лишь в том случае, если в дополнение к информации о текущем макросостоянии примем на вооружение гипотезу о прошлом

Разгадка, разумеется, кроется в гипотезе о прошлом. На самом деле мы не применяем принцип безразличия ко всему текущему мировому макросостоянию — мы рассматриваем лишь те микросостояния из него, которые совместимы с условием существования очень низкой энтропии в прошлом. Именно это и порождает различия в наших трактовках того, какой смысл несут фотографии или воспоминания или любые другие виды записей о прошлом. На вопрос: «Каким путем данная конкретная фотография с наибольшей вероятностью могла образоваться в пространстве всех возможных путей эволюции Вселенной?», скорее всего, мы получим ответ, что она появилась как случайная флуктуация высокоэнтропийного прошлого. И доказать это можно с помощью тех же аргументов, которые убеждают нас в истинности идеи о росте энтропии в будущем. Однако вместо этого мы задаем вопрос: «Каким способом можно с наибольшей вероятностью получить данную фотографию в пространстве всех возможных эволюций Вселенной, начинающихся из очень низкоэнтропийного прошлого?» И тогда мы совершенно естественным образом приходим к тому, что, скорее всего, нам нужно будет пройти через все промежуточные этапы, включающие день рождения, красную рубашку, камеру и все остальное. Рисунок 9.1 иллюстрирует общий принцип: требуя соблюдения условия чрезвычайно низкой энтропии в начале времен, мы значительно сокращаем пространство допустимых траекторий, благодаря чему получаем возможность рассматривать лишь те варианты эволюции, в которых наши записи служат (по большей части) надежным отражением событий прошлого.

 

Когнитивная нестабильность

Я по своему опыту знаю, что далеко не всем эти аргументы кажутся убедительными. Очень многие спотыкаются на утверждении — критически важном, замечу! — о том, что в самом начале у нас нет ничего, кроме информации о текущем макросостоянии да незначительных сведений о фотографиях, или учебниках истории, или сохранившихся в мозге воспоминаниях. Мы на интуитивном уровне чувствуем, что обладаем знаниями не только о настоящем, но знаем что-то о прошлом, потому что видим его, — так, как, в принципе, не способны увидеть будущее. Это кажется нам совершенно нормальным. Хороший пример — космология, просто потому что скорость света играет важнейшую роль, и поэтому мы в буквальном смысле «смотрим на события прошлого». Человека, пытающегося восстановить историю Вселенной, может соблазнить идея посмотреть, скажем, на космическое микроволновое фоновое излучение и заявить: «Я вижу, какой Вселенная была почти 14 миллиардов лет назад; мне не нужно прибегать ни к какой мудреной гипотезе о прошлом, чтобы объяснить, каким путем я пришел к своим выводам».

Однако это неверно. Исследуя реликтовое излучение (или свет от любого другого удаленного источника, или фотографическое свидетельство предположительно свершившегося в прошлом события), мы не смотрим непосредственно на события прошлого. Мы наблюдаем за конкретными фотонами здесь и сейчас. Когда мы с помощью радиотелескопа сканируем небо и обнаруживаем тепловое излучение с температурой около 2,7 кельвина, практически однородное во всех направлениях, в действительности мы видим излучение, проходящее сквозь наше текущее местоположение. Чтобы «заглянуть в прошлое», эту информацию необходимо экстраполировать в обратную сторону. Нельзя исключать вероятность того, что это однородное излучение пришло к нам из чрезвычайно неоднородного прошлого — но такого, где температуры, и допплеровские смещения, и гравитационные эффекты оказались так хитро и тонко между собой скоррелированы, что сумели создать очень однородный набор фотонов, который в конечном счете и прибыл в наше время. Вы можете заявить, что такой процесс крайне маловероятен, однако процесс, полученный из него обращением времени, — это в точности то, что мы ожидаем получить, если возьмем типичное микросостояние из нашего текущего макросостояния и проэволюционируем его по направлению к Большому сжатию. Суть в том, что у нас в равной степени отсутствует прямой эмпирический доступ как к прошлому, так и к будущему, если только мы не согласимся признать истинной гипотезу о прошлом.

На самом деле с гипотезой о прошлом нужно не просто «мириться» — она нам жизненно необходима, если мы хотим, чтобы в нашей интерпретации истории Вселенной действительно был смысл. Представьте себе, что мы полностью отказались от этой идеи и оперируем исключительно теми данными, которые в состоянии предоставить нам текущее макросостояние, включая конфигурацию нашего мозга, фотографии в фотоальбоме и учебники истории. В этом случае мы бы говорили, что с большой вероятностью и в прошлом, и в будущем Вселенная находилась и будет находиться в состоянии с высокой энтропией, а все низкоэнтропийные детали настоящего являются всего лишь случайными флуктуациями. Это уже звучит не слишком хорошо, но в действительности все еще хуже. В таких обстоятельствах все источники информации, которые мы традиционного используем для подтверждения истинности нашего понимания законов природы, или, если уж на то пошло, все умственные состояния (или письменная аргументация), с помощью которых мы обосновываем и математику, и логику, и научные методы, относились бы к множеству вещей, появившихся на свет таким вот случайным образом. Другими словами, подобные предположения не дают нам абсолютно никаких причин верить, будто у нас есть возможность хоть что-то доказать; более того, они ставят под сомнение допустимость самих подобных предположений.

Дэвид Альберт называл подобные парадоксы условиями когнитивной нестабильности: мы сталкиваемся с предположениями, само существование которых развеивает любые доказательства того, что данные предположения могут быть истинны. Это безвыходная ситуация, с которой невозможно справиться, если не призвать на помощь информацию, выходящую за рамки текущего момента. Без гипотезы о прошлом мы попросту не в состоянии рассказать о мире ничего вразумительного. Получается, нам без нее никуда — и, следовательно, мы не имеем права оставлять попытки найти теорию, которая даст нам полноценное объяснение этой гипотезы.

 

Причина и следствие

Вся эта история с тем, как мы пользуемся воспоминаниями и записями, отличается невообразимой временной асимметрией: мы всегда апеллируем только к гипотезе о прошлом, но никогда — о будущем. Строя прогнозы, мы не отбрасываем никакие микросостояния из числа совместимых с нашим текущим макросостоянием лишь на том основании, что они не удовлетворяют какому-то конкретному будущему граничному условию. А что, если попробовать сделать так? В главе 15 мы исследуем космологические положения Голда, согласно которым Вселенная в конечном счете прекратит расширяться и примется сжиматься обратно, стрела времени перевернется, а энтропия начнет уменьшаться, знаменуя приближение Большого сжатия. При таком развитии событий мы не заметим никакой разницы между фазой сжатия и текущей фазой расширения, потому что они идентичны (по крайней мере, статистически). Наблюдатели, которым доведется жить в фазе сжатия, не будут считать, что в их Вселенной творится что-то странное, — как и мы не считаем сейчас. Они будут думать, что это мы жили «в обратную сторону».

Намного интереснее представить себе, какие следствия могут иметь небольшие ограничения на допустимые траектории в ближайшем будущем. По сути, это та самая ситуация, когда мы бы могли делать надежные пророчества о будущих событиях. Когда Гарри Поттеру сообщают, что либо он убьет Волдеморта, либо Волдеморт убьет его, в действительности это означает наложение очень строгих ограничений на допустимое пространство состояний.

Крэйг Каллендер весьма красочно описывает жизнь, в которой присутствует граничное условие в будущем. Вообразите, что предсказатель с внушительным послужным списком (намного более впечатляющим, чем успехи профессора Трелони из книг о Гарри Поттере) говорит вам, что однажды все существующие в мире яйца Фаберже окажутся в ящике вашего комода и именно в этот момент ваша жизнь оборвется. Не очень правдоподобное предсказание: сами вы не увлекаетесь коллекционированием дорогого антиквариата, да и не склонны впускать в свою квартиру посторонних людей. Однако каким-то образом благодаря последовательностям непредсказуемых и невероятных совпадений эти яйца все же умудряются проникать к вам в спальню и в ящик комода. Вы запираете ящик, но замок разбалтывается и открывается; вы просите владельцев яиц следить за тем, чтобы сокровища не перемещались, но действия воров и разнообразные случайные события оборачивают происходящее так, что яйца продолжают стекаться в вашу комнату. Вы получаете посылку, ошибочно доставленную по вашему адресу, — она должна была прибыть в музей, а внутри оказывается яйцо. В страхе вы выбрасываете его в окно, но оно отскакивает от уличного фонаря под совершенно невообразимым углом и залетает обратно в комнату, приземляясь точно в ящик комода. В этот момент у вас случается сердечный приступ, и вы умираете.

Никакие законы физики не нарушаются на протяжении этой последовательности невероятных событий. На каждом шаге происходят события, которые нельзя назвать невероятными — они просто очень маловероятны. В результате наше привычное понимание причинно-следственной связи искажается, и мы уже не уверены, что есть причина, а что следствие. В повседневной жизни мы руководствуемся впитанным с молоком матери убеждением о том, что причина предшествует следствию: «По полу растеклось разбитое яйцо, потому что я только что уронил его», а не «Я только что уронил яйцо, потому что на полу должна оказаться лужица из желтка и белка с осколками скорлупы». В общественных науках, где порой бывает сложно установить причинно-следственную связь между различными явлениями социума, данное интуитивное понимание возведено в ранг принципа. Когда между двумя свойствами существует тесная взаимосвязь, не всегда очевидно, какие роли они играют: где причина, где следствие, а может быть, оба они стали результатом какого-то совершенно постороннего события? Обнаружив, что люди, которые счастливы в браке, едят больше мороженого, какой вывод вы сделаете? Что мороженое скрепляет брак или что счастье заставляет чаще покупать мороженое? Тем не менее в определенных ситуациях сомнений не возникает ни у кого, а именно когда одно свойство проявляется раньше по времени, чем второе. Уровень образования ваших дедушек и бабушек может влиять на ваш заработок, однако вашему заработку не под силу изменить образование ваших предков.

Из-за граничных условий в будущем, то есть утверждений о том, что в будущем обязательно должны произойти какие-то конкретные, хоть и маловероятные события, наше понимание причин и следствий переворачивается с ног на голову. То же самое относится и к идее свободной воли. В конце концов, возможность «выбирать», каким образом жить дальше и как действовать в будущем, — это отражение нашего полнейшего непонимания конкретного микросостояния Вселенной; если бы неподалеку появился демон Лапласа, то он бы совершенно точно знал, каких поступков ожидать от нас. Граничное условие в будущем — это одна из форм предопределения.

Все это кажется какими-то научными бреднями, в которые совершенно не стоит углубляться, — ведь мы не думаем, что на наше текущее микросостояние наложены какие-то ограничения просто потому, что в будущем должно выполниться некое граничное условие. Мы уверены, что причина всегда предшествует следствию. И тот факт, что в прошлом существовало условие, ныне ограничивающее наше текущее микросостояние, у нас сомнений не вызывает. Однако для микроскопических законов физики никакого различия между прошлым и будущим нет, и в их формулировках мы не найдем упоминаний о том, что одно событие может «вызвать» другое или что мы можем «выбирать», как нам действовать в будущем, несмотря на то что свои поступки в прошлом изменить уже невозможно. Получается, что без гипотезы о прошлом мы попросту не в состоянии осмыслить окружающий мир, и все же она отвечает далеко не на все вопросы.

 

Демон Максвелла

Давайте немного отвлечемся и снова вернемся к песочнице для мысленных экспериментов — кинетической теории XIX века. В конечном итоге это приведет нас к пониманию связи между энтропией и информацией, что, в свою очередь, прольет наконец-то свет на проблему памяти.

Самым известным мысленным экспериментом в области термодинамики, вероятно, остается демон Максвелла. Джеймс Клерк Максвелл предложил своего демона — куда более знаменитого, чем демон Лапласа, и по-своему не менее пугающего — в 1867 году, когда гипотезу о существовании атомов только-только начали применять к проблемам термодинамики. Первая работа Больцмана на эту тему вышла в свет лишь в 1870-х годах, поэтому у Максвелла не было возможности сослаться на определение энтропии в контексте кинетической теории. Но ему была известна формулировка второго начала термодинамики, предложенная Клаузиусом: при взаимодействии двух систем теплота перетекает от более горячей к более холодной, что в итоге приводит к выравниванию температур. Также Максвелл достаточно хорошо разбирался в том, что такое атомы, чтобы понимать, что «температура» представляет собой меру их средней кинетической энергии. Однако благодаря своему демону он сумел придумать способ, как увеличить разницу между температурами систем без привлечения дополнительной энергии, — очевидно, в нарушение второго начала термодинамики.

Схема проста: речь идет о том же самом контейнере с перегородкой, который нам уже давно стал близким и родным. Но вместо небольшого отверстия, через которое молекулы могут случайным образом пролетать в ту или другую сторону, перегородка оснащена крохотной дверцей — такой маленькой и легкой, что, для того чтобы открыть или закрыть ее, не приходится прилагать никаких сколько-нибудь заметных усилий. У дверцы сидит демон, наблюдающий за всеми молекулами по обе стороны от перегородки. Если справа к дверце приближается быстро движущаяся молекула, демон пропускает ее на левую половину; если медленная молекула подлетает слева, то демон пропускает ее на правую половину. Однако если медленная молекула приближается к дверце справа или быстрая слева, то демон запирает дверцу и не позволяет им перелететь на противоположную сторону перегородки.

Совершенно очевидно, к чему это все в итоге приведет: постепенно и без каких-либо затрат энергии молекулы, обладающие высокой энергией, соберутся в левой половине контейнера, а молекулы с низкой энергией скопятся справа. Если в самом начале слева от перегородки у вещества была такая же температура, как и справа, то со временем эти величины начнут расходиться: в левой половине будет становиться все горячее, а правая половина начнет остывать. Однако это же прямое нарушение формулировки второго начала термодинамики, предложенной Клаузиусом! Что же здесь происходит?

Если система из высокоэнтропийного состояния с одинаковой температурой газа во всем объеме контейнера гарантированно переходит в низкоэнтропийное (то есть события развиваются по такому сценарию для любого начального состояния, а не только для некоторых, подвергшихся тонкой настройке), то это означает, что мы имеем дело с ситуацией, в которой количество возможных начальных состояний во много раз превышает количество конечных. Но это попросту невозможно, если мы говорим о динамических законах, которые сохраняют информацию и обладают свойством обратимости. Даже представить себе нельзя, что все эти разнообразные первоначальные состояния смогут уместиться в крохотном пространстве конечных состояний. Определенно, это чем-то компенсируется: пока энтропия газа уменьшается, где-то еще энтропия возрастает. И при таком раскладе единственным местом, где мы могли бы наблюдать возрастающую энтропию, остается сам демон.

Рис. 9.2. Пропуская высокоэнергичные молекулы справа налево и низкоэнергичные молекулы слева направо, демон Максвелла заставляет теплоту перетекать от холодной системы к горячей, явно нарушая второе начало термодинамики

Однако как же это работает? Ведь с энтропией демона вроде бы ничего не происходит: он как сидел тихо-спокойно в начале эксперимента, наблюдая за газом и пропуская через перегородку контейнера только подходящие молекулы, так и продолжает заниматься этим в конце — все так же тихо и спокойно. Поразительно, но ученым потребовалось громадное количество времени — больше века, — чтобы понять, с какой точки зрения в действительности следует рассматривать эту проблему. Критическую связь между информацией, собираемой демоном, и его энтропией сумели обнаружить венгерско-американский физик Лео Силард и физик из Франции Леон Бриллюэн (ученые, которые впервые в истории применили новую теорию — квантовую механику — для решения задач, представляющих практический интерес). Однако лишь благодаря вкладу двух физиков и специалистов по вычислительной технике, трудившихся в IBM, — Рольфа Ландауэра (1961) и Чарльза Беннетта (1982) — стало окончательно понятно, почему в соответствии со вторым началом термодинамики энтропия демона просто не может не увеличиваться.

 

Записываем и стираем

Многие попытки разгадать загадку демона Максвелла концентрировались на способах измерения скоростей молекул, пролетающих мимо него. Ландауэр и Беннетт сделали огромный концептуальный скачок вперед, изучив вопрос о том, каким образом демон записывает эту информацию. В конце концов, демону необходимо запоминать — хотя бы на микросекунду, — какие молекулы он должен пропустить на другую сторону, а перед какими дверцу открывать нельзя. Если бы демон просто с самого начала знал, какие молекулы какими скоростями обладают, ему бы вообще не пришлось измерять скорости; следовательно, суть проблемы кроется не в процессе измерения.

Таким образом, мы должны снабдить демона каким-то средством для фиксации скоростей молекул — возможно, он носит с собой блокнотик, а мы для удобства рассуждений вообразим, что места в этом блокнотике достаточно, чтобы записать всю необходимую информацию. (От того, будем мы рассматривать большие или маленькие блокноты, ничего не изменится; главное, чтобы блокнот не был бесконечно большим.) Это означает, что состояние блокнота тоже следует учитывать при вычислении энтропии полной системы, состоящей из газа и демона. В частности, в самом начале листы блокнота должны быть чистыми и готовыми к тому, чтобы демон записывал на них скорости молекул.

Однако пустой блокнот представляет собой не что иное, как низкоэнтропийное граничное условие в прошлом. Это всего лишь гипотеза о прошлом, только в ином обличии — соответствующем миру демона Максвелла. Таким образом, если это действительно так, то энтропия полной системы газ/Демон изначально совсем не так высока, как принято было считать. И демон не уменьшает энтропию объединенной системы; он всего лишь переносит ее из одного места в другое, одновременно меняя и состояние газа, и состояние блокнота.

Этот аргумент может показаться некоторым читателям безосновательным. Действительно, разве не может демон взять и стереть записи в блокноте после того, как дело сделано? И тогда блокнот вернется в первоначальное состояние, а энтропия газа уменьшится.

Именно в этом и кроется суть озарения Ландауэра и Беннета: нельзя просто так взять и стереть записи в блокноте. По крайней мере, невозможно стереть информацию, если вы являетесь частью замкнутой системы, живущей в соответствии с обратимыми динамическими законами. В такой формулировке результат становится вполне достоверным: если бы информацию можно было бесследно уничтожать, то как бы мы могли восстановить историю вплоть до какого-то предыдущего состояния? Если в системе можно стирать информацию, то это означает, что либо фундаментальные законы необратимы — и тогда наличие демона, умеющего уменьшать энтропию, не должно никого удивлять, либо система на самом деле не замкнута. В последнем случае «уничтожение информации» является процессом переноса энтропии во внешний мир. (В случае стирания настоящих записей карандашом в реальном мире энтропия в основном принимает форму тепла, пыли и крохотных ошметков ластика.)

В конечном итоге возможны два варианта: либо демоническая версия гипотезы о прошлом (у демона в самом начале в руках чистый блокнот, обладающий низкой энтропией, и демон переносит энтропию газа в блокнот), либо процесс переноса энтропии во внешний мир, необходимый для того, чтобы стирать информацию в блокноте. В любом случае можно перевести дыхание: второе начало термодинамики в безопасности. И кстати, в ходе расследования мы неожиданно открыли дверь в захватывающий мир взаимосвязей между информацией и энтропией.

 

Информация — физическая величина

Несмотря на то что, обсуждая динамические законы физики, мы то и дело произносили слово «информация» — обратимые законы сохраняют информацию, само это понятие все так же кажется несколько абстрактным по сравнению с беспорядочным миром энергии, тепла и энтропии. Один из уроков, которые преподает нам демон Максвелла, заключается в том, что это мнение ошибочно. Информация — физическая величина. А именно благодаря наличию информации мы можем заставлять систему производить полезную работу, которая в противном случае была бы нам недоступна.

Лео Силард наглядно продемонстрировал это на упрощенной модели демона Максвелла. Вообразите, что в контейнере с газом содержится одна-единственная молекула; следовательно, «температура» представляет собой всего лишь энергию этой одинокой молекулы газа. Если это вся информация, которой мы обладаем, то заставить молекулу произвести полезную работу у нас не получится; она хаотично летает от стенки к стенке, как камешек в жестяном ведре. Однако теперь представьте себе, что у нас появилась дополнительная информация: нам известно, в какой половине контейнера находится молекула — в правой или в левой. Основываясь на этом знании и применив хитрые манипуляции, возможные лишь в мысленном эксперименте, мы можем заставить молекулу работать. Для этого нам нужно просто-напросто быстренько вставить поршень в противоположную половину контейнера. Молекула врежется в поршень и нажмет на него, а мы используем движение поршня для выполнения полезной работы, например поворота маховика.

Обратите внимание на то, какую важную роль в эксперименте Силарда играет информация. Если бы мы не знали, в какой половине контейнера находится молекула, то не догадывались бы, в какую половину нужно вставить поршень. Если бы мы случайным образом выбирали, в какую половину контейнера вставить поршень, то в половине случаев он бы выталкивался наружу, а в половине — затягивался внутрь. В среднем никакой полезной работы бы не производилось. Информация, которой мы обладаем, позволила нам извлечь энергию из системы, и так, казалось бы, находящейся на максимальном уровне энтропии.

Повторю еще раз, чтобы ни у кого не оставалось сомнений: ни в одном из этих мысленных экспериментов мы не нарушили второе начало термодинамики. Да, эти эксперименты выглядят так, будто мы действительно нашли способ нарушить этот физический закон, — но стоит принять во внимание критически важную роль информации, как все становится на свои места. Информация, которую собирает и обрабатывает демон, должна каким-то образом учитываться в любой согласованной и непротиворечивой истории, включающей энтропию.

Конкретная связь между энтропией и информацией была установлена в 1940-х Клодом Шэнноном, инженером и математиком, трудившимся в «Bell Labs». Одна из задач, которую решил Шэннон, состояла в поиске эффективных и надежных способов отправки сигналов по зашумленным каналам. Он высказал идею о том, что одни сообщения несут эффективно больше информации, чем другие, просто потому, что они более «удивительные» или неожиданные. Если я скажу, что солнце завтра взойдет на востоке, то не передам вам никакой особой информации, потому что этот факт и так уже был вам известен. Однако если я скажу, что завтра максимальная температура составит ровно 25 °C, то это уже будет сообщение, содержащее больший объем информации, потому что без этого вы бы не знали, какую точно температуру ожидать завтра.

Шэннон нашел способ, как формализовать эту интуитивную идею об эффективном информационном наполнении сообщения. Предположим, что мы рассматриваем набор из всех возможных сообщений определенного типа, которые мы могли бы получить (правда же, это навевает воспоминания о «пространстве состояний», с которым мы работали при обсуждении физических систем, а не сообщений?). Например, если речь идет о результатах подбрасывания монеты, то возможных сообщений только два: «орел» или «решка». До того как мы получаем сообщение, оба варианта одинаково вероятны; тот факт, что мы получаем сообщение, означает, что мы узнаем ровно один бит информации.

Если же, с другой стороны, нам рассказывают о максимальной температуре завтра днем, то набор возможных сообщений становится куда больше: скажем, это может быть любое целое число от –273 и до плюс бесконечности, представляющее собой температуру, выраженную в градусах Цельсия (температура –273 °C соответствует абсолютному нулю). Однако не все эти варианты одинаково вероятны. Летом в Лос-Анджелесе наиболее вероятна температура 27–28 °C, тогда как зафиксировать температуру –13 или +4324 °C относительно сложно. Узнав, что завтрашняя температура лежит в области этих «невероятных» значений, мы действительно получаем огромный объем информации (по всей видимости, связанной с какой-то глобальной катастрофой).

Грубо говоря, информационное наполнение сообщения возрастает по мере того, как вероятность получения данного сообщения уменьшается. Однако Шэннону хотелось большей конкретики в формулировках. В частности, он хотел показать, что если мы получим два сообщения, совершенно независимых друг от друга, то общая полученная информация будет равна сумме информации, извлеченной из каждого индивидуального сообщения. (Вспомните, что, когда Больцман разрабатывал свою формулу энтропии, одно из свойств, которые он стремился воспроизвести, заключалось в следующем: энтропия полной системы равна сумме энтропий подсистем.) Попробовав то и это, Шэннон выяснил, что самым правильным будет взять логарифм вероятности получения конкретного сообщения. В конечном итоге он пришел к такому результату: количество информации, содержащееся в сообщении, равно логарифму вероятности того, что сообщение примет данный вид, со знаком минус.

Многое из этого наверняка кажется вам удивительно знакомым, и это не случайность. Больцман связывал энтропию с логарифмом числа микросостояний в определенном макросостоянии. Однако с учетом принципа безразличия число микросостояний в макросостоянии очевидно пропорционально вероятности того, что одно из них будет случайным образом выбрано из всего пространства состояний. Низкоэнтропийное состояние аналогично удивительному, наполненному информацией сообщению, в то время как знание о том, что вы находитесь в высокоэнтропийном состоянии, не дает вам никакой особой информации. С учетом всего вышесказанного, если мы поставим в соответствие «сообщение» и макросостояние, в котором пребывает сейчас система, связь между энтропией и информацией будет очевидной: информация — это разность максимально возможной энтропии и фактической энтропии макросостояния.

 

Есть ли у жизни смысл?

Неудивительно, что идеи о связи между энтропией и информацией приходят на ум сразу же, стоит нам начать рассуждать о взаимоотношениях между термодинамикой и жизнью. Нельзя сказать, что эти взаимоотношения так уж просты и очевидны; хотя в их наличии никто не сомневается, ученые все еще не пришли к общему мнению относительно того, что же такое «жизнь», не говоря уж о том, как все это работает. Эта область исследований находится сейчас в фазе активного развития, объединяя такие направления, как биология, физика, химия, математика, вычислительная техника и изучение сложных систем.

Не пытаясь пока давать точное определение понятию «жизнь», мы можем обсудить вопрос, который логично было бы сформулировать следующим образом: имеет ли смысл такое понятие, как «жизнь», с термодинамической точки зрения? Сразу скажу, что ответ: «да». Но в истории науки можно было услышать и противоположные заявления, хотя, конечно, звучали они из уст не признанных и уважаемых ученых, а креационистов, целью которых было сбросить дарвиновскую теорию естественного отбора с пьедестала единственно верного объяснения эволюции жизни на Земле. Один из их аргументов основывается на неправильном толковании второго начала термодинамики, который они читают как «энтропия всегда увеличивается», делая вывод об универсальной тенденции к увеличению беспорядка и общему угасанию всех естественных процессов. Чем бы ни была жизнь, совершенно очевидно, что это сложная и хорошо организованная штука. Как же в таком случае ее можно увязать с естественной тенденцией к росту беспорядка?

Разумеется, никакого противоречия здесь нет. Из доводов креационистов совершенно четко следует, что и существование холодильников невозможно; следовательно, эти доводы попросту неверны. Второе начало термодинамики не говорит нам, что энтропия всегда увеличивается. Согласно этому закону, энтропия всегда увеличивается (или остается постоянной) в замкнутой системе — системе, которая никак заметно не взаимодействует с внешним миром. Совершенно очевидно, что жизнь не может быть замкнутой системой; живые организмы находятся в непрерывном взаимодействии с внешним миром. Это эталоны открытых систем! Вот, собственно, и всё — на этом вопрос можно закрыть и продолжать жить своей жизнью.

Однако существует и другая, более замысловатая версия этого креационистского аргумента, которая звучит уже совсем не так глупо. Несмотря на то что она также абсолютно неверна, полезно рассмотреть ее, для того чтобы понять, где именно кроется ошибка. Этот изощренный довод базируется на количественных оценках: разумеется, живые существа представляют собой открытые системы, поэтому теоретически они могут где-то уменьшать свою энтропию при условии, что в другом месте она будет увеличиваться. Однако как узнать, что увеличения энтропии во внешнем мире достаточно, чтобы отчитаться за низкую энтропию живых существ?

Рис. 9.3. Мы получаем энергию от Солнца в концентрированной низкоэнтропийной форме, а излучаем обратно во Вселенную в рассеянном, высокоэнтропийном виде. На каждый получаемый Землей высокоэнергетичный фотон приходится 20 излучаемых обратно низкоэнергетичных фотонов

Как я уже упоминал во второй главе, Земля и ее биосфера — это системы, которые находятся очень далеко от термического равновесия. Условие термического равновесия означает, что температура одинакова повсюду, но если мы посмотрим вверх, то увидим очень горячее Солнце на, в целом, весьма холодном небе. Возможностей для увеличения энтропии предостаточно, и это очевидно. Но для наглядности давайте все же проверим реальные цифры.

Энергетический баланс Земли, если рассматривать ее как единую систему, очень прост. Мы получаем энергию излучения Солнца, а затем теряем тот же самый объем энергии. Точно так же, посредством излучения, он уходит в открытый космос. (В действительности эти две величины не совсем равны; такие процессы, как ядерные распады, тоже нагревают Землю и приводят к утечке энергии в космос, а скорость излучения, строго говоря, не постоянна. И все же это весьма точное приближение.) Однако, несмотря на то что энергия остается постоянной, получаемый и отдаваемый потоки энергии кардинальным образом различаются по своим качественным характеристикам. Вспомните, что в добольцмановские времена энтропию понимали как меру полезности определенного объема энергии; низкоэнтропийные формы энергии можно использовать для совершения полезной работы, такой как приведение в действие двигателя или перемалывание зерна в муку, тогда как с высокоэнтропийными формами ничего особенного сделать не получится.

От Солнца мы получаем энергию в низкоэнтропийной, полезной форме, а энтропия энергии, которую мы излучаем обратно в космическое пространство, намного больше. Температура Солнца примерно в 20 раз выше средней температуры Земли. Что касается излучения, то температура — это всего лишь средняя энергия фотонов, из которых оно состоит, поэтому Земле приходится излучать 20 низкоэнергетичных фотонов (с большой длиной волны — инфракрасных) на каждый полученный высокоэнергетичный фотон (с малой длиной волны — в видимом диапазоне). Простые математические расчеты демонстрируют, что «в 20 раз больше фотонов» — это то же самое, что «энтропия в 20 раз больше». Земля излучает тот же объем энергии, что приходит к ней от Солнца, но энтропия этой энергии в 20 раз больше.

Самое сложное здесь — разобраться, что в действительности имеется в виду под «низкоэнтропийностью» жизненных форм здесь, на Земле. Как провести границу? Ответ на этот вопрос существует, и даже не один, но добраться до него совсем непросто. К счастью, можно срезать путь. Рассмотрим всю биомассу Земли — все молекулы, составляющие все существующие живые организмы, к какому бы типу они ни принадлежали. Несложно вычислить максимальную энтропию, которой мог бы обладать этот набор молекул при условии термического равновесия. Подставив реальные значения (биомасса 1015 килограммов; температура Земли 255 кельвинов), получаем ответ: максимальная энтропия равна 1044. Сравним это значение с нулем — минимальной энтропией, которой могла бы обладать биомасса (если бы она находилась в каком-то одном исключительном состоянии).

Таким образом, самое большое потенциальное изменение энтропии, которое может потребоваться для приведения абсолютно беспорядочного набора молекул размером с нашу биомассу к любой другой конфигурации, включая нашу текущую экосистему, равно 1044. Если эволюция жизни происходит в соответствии со вторым началом термодинамики, то за этот период Земля выработала больше энтропии (путем преобразования высокоэнергетичных фотонов в низкоэнергетичные), чем уменьшила в ходе создания жизни. Значение 1044, несомненно, представляет собой более чем щедрую оценку — нам совершенно не нужно производить такой объем энтропии. Однако если мы можем создать столько энтропии, значит, со вторым началом термодинамики все в порядке.

Как много времени потребуется на создание такого объема энтропии путем преобразования полезной солнечной энергии в бесполезную излученную теплоту? Расчеты, принимающие во внимание температуру Солнца и т. п., позволяют дать следующий ответ: около одного года. Если ударно поработать, то за год мы могли бы из неопределенной массы размером со всю биосферу сформировать систему с такой низкой энтропией, какую только можно вообразить. В действительности же эволюция жизни продолжалась миллиарды лет, и общая энтропия системы «Солнце + Земля (включая жизнь) + ушедшее излучение» весьма заметно увеличилась. Таким образом, второе начало термодинамики идеально согласуется с жизнью как мы ее знаем, — хотя, уверен, вы в этом нисколько не сомневались.

 

Жизнь в движении

Приятно осознавать, что жизнь не нарушает второе начало термодинамики. Но также неплохо было бы окончательно разобраться в вопросе, что же такое «жизнь». Ученые пока не пришли к единственно верному определению, тем не менее существует ряд свойств, которые традиционно связывают с живыми организмами: сложность, организация, метаболизм, обработка информации, репродукция, реакция на стимулы, старение. Сложно сформулировать набор критериев, с помощью которого можно было бы безошибочно отделять живых существ — водоросли, земляных червей, домашних кошек — от сложных неживых объектов, таких как лесные пожары, галактики, персональные компьютеры. И все же мы можем проанализировать некоторые характерные признаки того, что принято считать жизнью, рассматривая их в контексте живого и неживого.

Одна из самых знаменитых попыток разложить по полочкам понятие жизни с физической точки зрения была предпринята в книге What Is Life? («Что такое жизнь?») небезызвестного Эрвина Шрёдингера. Шрёдингер считается одним из основоположников квантовой теории; именно его уравнение пришло на смену ньютоновским законам движения для динамического описания мира при переходе от классической механики к квантовой. Также он автор знаменитого мысленного эксперимента под названием «кот Шрёдингера», цель которого — подчеркнуть отличие нашего непосредственного восприятия мира от формальной структуры квантовой теории.

После прихода к власти нацистов Шрёдингеру пришлось покинуть Германию. Однако, несмотря на присужденную в 1933 году Нобелевскую премию, ему оказалось очень непросто найти новое место для постоянного проживания — в основном из-за весьма насыщенной личной жизни (его жена Аннемари знала о наличии у него любовниц, и у нее самой также было несколько романов «на стороне»; в то время Шрёдингер находился в интимных отношениях с Хильде Марх, женой одного из своих помощников, которая впоследствии родила ему ребенка). В конце концов он обосновался в Ирландии, где стал одним из основателей Дублинского института перспективных исследований.

В Ирландии Шрёдингер прочитал курс публичных лекций, которые затем были опубликованы в форме небольшой книги под названием What Is Life?. Феноменом жизни он интересовался с точки зрения ученого-физика, в частности эксперта по квантовой и статистической механике. Вероятно, наиболее примечательной идеей среди высказанных в этой публикации была догадка Шрёдингера о том, что стабильность генетической информации с течением времени легче всего объяснить, постулируя существование некоего «апериодического кристалла», сохраняющего информацию в своей химической структуре. Эта догадка вдохновила Фрэнсиса Крика на смену области деятельности: оставив физику, он занялся молекулярной биологией; ему, а также биологу Джеймсу Уотсону принадлежит слава открытия двойной спирали ДНК.

Также Шрёдингер пытался найти определение «жизни». Он даже высказал вполне конкретное предположение — правда, в довольно небрежном и неформальном стиле, вследствие чего оно не было воспринято с той серьезностью, которой, несомненно, заслуживает:

Что является характерной чертой жизни? Когда мы говорим про кусок материи, что он живой? Когда он продолжает «делать что-либо», двигаться, обмениваться веществами с окружающей средой и т. д., — и все это в течение более долгого времени, чем по нашим ожиданиям мог бы делать неодушевленный кусок материи при подобных же условиях. [163]

Разумеется, это довольно расплывчатое высказывание: что именно подразумевается под «делать что-либо», как долго следует «ожидать», что это действо будет продолжаться, и что считать «подобными же условиями»? Помимо этого, в данном определении ни слова не говорится об организации, сложности, обработке информации или о чем-то подобном.

Тем не менее в идее Шрёдингера содержится важный намек на то, чем жизнь отличается от не-жизни. Где-то в подсознании у него наверняка крутилась версия второго начала термодинамики, сформулированная Клаузиусом: если объекты находятся в тепловом контакте, их температуры усредняются (система стремится к термодинамическому равновесию). Если поместить кубик льда в стакан с теплой водой, он довольно быстро растает. Даже если два объекта сделаны из совершенно разных материалов — скажем, мы кладем в стакан воды пластиковый «кубик льда», их температуры все равно сравняются. Неживые физические объекты вообще стремятся к снижению активности — они хотят лежать и ничего не делать. Во время лавины камень может катиться по склону горы, но вскоре он достигнет подножия, растратив всю энергию на создание шума и тепла, и полностью остановится.

В действительности Шрёдингер имел в виду, что для живых организмов этот процесс перехода к состоянию неподвижности может продолжаться намного дольше, даже быть бесконечным. Представьте себе, что вместо кубика льда мы поместили в стакан с водой золотую рыбку. В отличие от кусочка льда (неважно, сделанного из воды или пластика) золотая рыбка «придет в равновесие» с водой далеко не сразу — точно не в течение нескольких минут или даже часов. Она останется живым существом, которое будет что-то делать, плавать туда и сюда, обмениваясь веществами с окружающей ее средой. Если же мы выпустим рыбку в озеро или аквариум с изобилием пищи, то этот процесс растянется на еще более долгое время.

В этом, по мнению Шрёдингера, и заключается суть жизни: отсрочить естественное стремление прийти к равновесию с окружающей средой. На первый взгляд большинство свойств, которые мы традиционно ассоциируем с жизнью, в этом определении отсутствуют. Однако если мы задумаемся, почему организмы способны делать что-то в течение длительного времени после того, как неживые объекты остановятся и успокоятся, — почему золотая рыбка продолжает плавать, хотя кубик льда давно растаял, то немедленно придем к таким свойствам живых существ, как сложность и способность обрабатывать информацию. Способность организма «что-то делать» на протяжении долгого времени — это внешний признак жизни, однако механизм, стоящий за этой способностью, представляет собой деликатное взаимодействие множества уровней иерархической структуры.

И все же хотелось бы иметь возможность оперировать более конкретными понятиями. Когда мы говорим: «живые существа — это объекты, которые продолжают “что-то делать” намного дольше, чем можно было бы ожидать, а происходит это, потому что они очень сложные», все вроде бы понятно, но в то же время очевидно, что это далеко не конец истории. К сожалению, это чрезвычайно запутанная история, ученые пока до конца в ней не разобрались. Определенно, энтропия играет огромную роль в природе жизни, но существуют и другие важные аспекты, не связанные с энтропией. Энтропия — характеристика состояния в данный момент времени, а основополагающие свойства жизни включают процессы, которые происходят на протяжении какого-то промежутка времени. Само по себе понятие энтропии оказывает лишь грубое влияние на эволюцию с течением времени: она либо возрастает, либо остается неизменной, но никогда не уменьшается. Во втором начале термодинамики ничего не говорится о том, как быстро энтропия будет расти и каким образом она это будет делать, — он посвящен Существующему, а не Возникающему.

Как бы то ни было, даже если забыть о попытках ответить на все возможные вопросы о том, что же считать «жизнью», в существовании одного понятия, играющего важнейшую роль во всем этом, сомнений не остается. Это понятие свободной энергии. Шрёдингер вскользь упоминал о ней в первом издании книги «Что такое жизнь?», а в последующих редакциях добавил примечание, в котором выражал сожаление, что не придал ей большего значения. Идея свободной энергии помогает связать вместе энтропию, второе начало термодинамики, демона Максвелла и способность живых существ продолжать «что-то делать» дольше, чем неживые.

 

Свободная энергия, а не свободный доступ к пивному крану

В последние годы популярность такой научной области, как биологическая физика, значительно возросла. Без сомнения, это очень хорошо: биология важна, и физика важна, и на стыке этих двух наук возникает множество важных и интересных проблем. Однако также неудивительно, что на всем протяжении своего существования эта область оставалась относительно неразвитой. Если взять и сравнить учебники начального уровня по физике и биофизике, вы сразу же заметите, как сильно различается используемая терминология. Учебники по физике для начинающих изобилуют такими словами, как «сила», «импульс» и «сохранение», тогда как для книг по биофизике более характерны термины «энтропия», «информация» и «диссипация».

Различия в терминологии — это лишь отражение абсолютной непохожести двух подходов. С тех самых пор, как Галилей впервые предложил игнорировать сопротивление воздуха при изучении падения объектов в гравитационном поле, физика продолжает исповедовать принцип минимализма, пренебрегая трением, рассеянием, шумом и всем остальным, что способно невзначай отвлечь нас от неприкрытого проявления сути простых микроскопических динамических законов. В биологической физике такой подход недопустим: игнорируя трение, вы игнорируете саму жизнь. Действительно, существует даже заслуживающее серьезного рассмотрения альтернативное определение жизни: «жизнь — это организованное трение».

Вы наверняка думаете, что здесь кроется какая-то ошибка. Ведь жизнь нацелена на поддержание структуры и организации, а трение создает энтропию и беспорядок. На самом деле обе точки зрения в какой-то мере отражают истину. Жизнь занимается тем, что создает энтропию в одних местах, для того чтобы обеспечить структуру и организацию в других. Это урок, который нам преподал демон Максвелла.

Давайте попробуем разобраться, что же это может означать. В главе 2, обсуждая второе начало термодинамики, мы упомянули о различии между «полезной» и «бесполезной» энергией: полезную энергию можно преобразовать в какую-нибудь работу, тогда как бесполезная энергия попросту бесполезна. Одним из вкладов Джозайи Уилларда Гиббса была формализация этих понятий путем ввода новой величины, которую он назвал свободной энергией. Шрёдингер не использовал этот термин в своих лекциях, так как беспокоился о его возможной двусмысленности: то, что энергия «свободна», не означает, что ее можно просто взять и использовать, ничего не отдавая взамен; это означает, что она доступна для преобразования ее в работу и достижения какой-то цели («свобода слова», а не «свободный доступ к пивному крану», как любит говорить гуру свободного программного обеспечения Ричард Столлман). Гиббс понял, что понятие энтропии позволяет точно поделить полный объем энергии на полезную энергию, которую он назвал «свободной», и бесполезную:

полная энергия = свободная энергия + бесполезная (высокоэнтропийная) энергия.

Когда физический процесс создает энтропию в системе с фиксированной полной энергией, он расходует свободную энергию. Как только запасы свободной энергии заканчиваются, устанавливается равновесие.

Это один из способов, как можно представлять себе суть живых организмов: они поддерживают порядок в своем локальном окружении (включая собственные тела), пользуясь преимуществами свободной энергии, и своими действиями превращают свободную энергию в бесполезную. Если поместить золотую рыбку в контейнер с водой, где больше ничего нет, то она сохранит свою структуру (далекую от равновесия с окружающей средой) намного дольше, чем был бы способен кубик льда; однако в конечном итоге она умрет от голода. Однако если мы покормим рыбку, то она проживет еще дольше. С физической точки зрения еда — это банальный источник свободной энергии, которой живой организм может воспользоваться, чтобы поддержать свой метаболизм.

Получается, что демон Максвелла (вместе со своим контейнером с газом) являет собой превосходную парадигму того, как работает жизнь. Рассмотрим чуть более сложную версию истории демона. Возьмем контейнер с газом, разделенный перегородкой, и внедрим его в «среду», которую мы смоделируем в форме сколь угодно большого объема вещества, пребывающего при постоянной температуре, — физики называют это тепловой баней. (Смысл в том, что среда настолько велика, что взаимодействие с интересующей нас маленькой системой, в данном случае с контейнером газа, никак не повлияет на ее собственную температуру.) Несмотря на то что молекулы газа остаются внутри контейнера, тепловая энергия способна передаваться изнутри наружу и снаружи внутрь; следовательно, если демон примется эффективно разделять газ на «холодную половину» и «горячую половину», температура в контейнере немедленно начнет выравниваться из-за взаимодействия с окружающей средой.

Мы считаем, что демон стремится к тому, чтобы в этом конкретном контейнере равновесие не наступило; он прилагает все усилия для сохранения высокой температуры в левой части сосуда и низкой температуры в его правой части (обратите внимание на то, что мы сделали демона главным героем, а не главным злодеем этой истории). Таким образом, он занимается привычной сортировкой молекул в зависимости от их скоростей, но теперь он вынужден заниматься этим постоянно, ведь в противном случае каждая из половин контейнера придет в равновесие с окружающей средой. Мы уже знаем из предыдущего обсуждения, что демон не может выполнять сортировку, не оказывая воздействия на внешний мир; процесс стирания записей в конечном итоге создает энтропию. Следовательно, демону требуется бесконечный источник свободной энергии. Он берет свободную энергию («еду») и использует ее для стирания записей, производя, таким образом, энтропию и превращая свободную энергию в бесполезную. Бесполезная энергия затем выбрасывается в форме тепла (или чего-то еще). Стерев все записи в блокноте, демон снова готов поддерживать в своем контейнере состояние, далекое от равновесного, — по крайней мере, до тех пор, пока блокнот снова не наполнится записями, и тогда цикл опять повторится.

Рис. 9.4. Демон Максвелла как парадигма жизни. Демон поддерживает порядок — разные температуры в разных половинах контейнера, несмотря на воздействие окружающей среды. С этой целью он обрабатывает информацию посредством преобразования свободной энергии в высокоэнтропийное тепло

Эта прелестная зарисовка, разумеется, не дает полного описания того, что мы подразумеваем под идеей жизни, но все же позволяет уловить суть. Жизнь стремится к поддержанию порядка, несмотря на требования второго начала термодинамики, будь то фактическое тело живого организма, его психическое состояние или деяния Озимандии. Делает она это вполне конкретным образом: уменьшая свободную энергию во внешнем мире. И все это ради того, чтобы держаться как можно дальше от термодинамического равновесия. Как мы уже убедились, эта деятельность тесно связана с идеей обработки информации. Выполняя свою работу, демон преобразует свободную энергию в информацию о молекулах в контейнере, которую затем использует для предотвращения выравнивания температур в двух половинах сосуда. На самом базовом уровне назначение жизни заключается в том, чтобы выжить: организм стремится к обеспечению бесперебойной работы своей сложной структуры. Свободная энергия и информация — это ключи к достижению данной цели.

С точки зрения естественного отбора существует масса причин, почему сложные устойчивые структуры могут оказаться предпочтительны в процессе адаптации; например, глаз — сложная структура, несомненно, вносящая неоценимый вклад в здоровье организма. Однако чем сложнее структуры, тем большие объемы свободной энергии приходится превращать в тепло только для того, чтобы поддерживать их невредимыми и функциональными. Такая картина взаимосвязи энергии с информацией позволяет дать логичный прогноз: чем более сложным будет становиться организм, тем более неэффективно он будет использовать энергию для «рабочих» целей — простых механических операций, таких как бег и прыжки. В то же время он будет тратить много энергии на «профилактику», то есть поддержание механизмов в хорошем рабочем состоянии. Выясняется, что это на самом деле так; что касается реальных биологических организмов, то чем они сложнее, тем менее эффективно расходуют свою энергию.

 

Сложность и время

Взаимосвязь энтропии, информации, жизни и стрелы времени порождает массу интересных тем для исследования, которым, к сожалению, мы не сможем уделить внимание в этой книге: эволюция, смертность, мышление, сознание, социум и бесчисленное множество других. Для того чтобы обсудить все эти вопросы, потребовалась бы отдельная книга, а у нас сейчас иные цели. Однако прежде чем вернуться на относительно твердую почву традиционной статистической механики, давайте рассмотрим еще один гипотетический вопрос. Впрочем, не исключено, что новые исследования в ближайшем будущем смогут пролить на него свет.

По мере развития Вселенной энтропия увеличивается. Это очень простая зависимость: в начале времен, сразу после Большого взрыва, энтропия была очень низкой, но с тех пор она выросла и продолжит расти в будущем. Однако, грубо говоря, помимо энтропии для описания состояния Вселенной в любой момент времени мы можем использовать такую величину, как сложность, — или противоположность сложности, то есть простоту. А изменение сложности со временем происходит совсем не так прямолинейно, как изменение энтропии.

Дать количественную оценку сложности физической ситуации можно разными способами, но одна характеристика завоевала наибольшую популярность: это колмогоровская сложность, или алгоритмическая сложность. Данная величина формализует наше интуитивное представление о том, что простую ситуацию просто описывать, а сложную ситуацию описать сложно. Количественной оценкой сложности описания ситуации может служить длина самой короткой из всех возможных компьютерных программ (на определенном языке программирования), выдающих описание данной ситуации. Колмогоровская сложность представляет собой всего лишь длину такой максимально короткой компьютерной программы.

Рассмотрим две строки, содержащие цифры; длина каждой строки составляет ровно миллион символов. В первой строке место каждого символа занимает восьмерка — другие цифры отсутствуют. Вторая строка представляет собой какую-то последовательность разнообразных цифр, в которой невозможно выделить повторяющийся шаблон:

88888888888888888888…

60462491123396078395…

Первая строка проста, и она характеризуется низкой колмогоровской сложностью. Суть в том, что эту последовательность могла бы сгенерировать программа, состоящая из одной команды: «напечатать цифру 8 миллион раз». С другой стороны, во второй строке мы имеем дело со сложной последовательностью. Любая программа, печатающая данную строку, должна содержать не менее миллиона символов, так как единственный способ описать эту строку — непосредственно указать каждую цифру. Это определение сложности удобно использовать для таких чисел, как π или квадратный корень из двух: на первый взгляд они чрезвычайно сложны, однако в обоих случаях вычислить их с любой желаемой точностью можно с помощью довольно простой программы, так что колмогоровская сложность этих чисел низка.

У ранней Вселенной была низкая сложность, потому что ее очень легко описать. Это было горячее, плотное состояние частиц, крайне однородное на больших масштабах, расширяющееся с определенной скоростью и включающее некоторый (поддающийся простому определению) набор разбросанных тут и там крохотных возмущений плотности. Если не вдаваться в детали, то это и есть полное описание ранней Вселенной, больше о ней сказать особо нечего. В далеком будущем сложность Вселенной снова станет низкой: это будет пустое пространство, содержащее разреженную и продолжающую разрежаться кашицу из отдельных частиц. Но между этими моментами — например, прямо сейчас — все выглядит чрезвычайно сложным. Даже после макроскопического огрубления невозможно найти простой способ описания иерархических структур, которые составляют газ, пыль, звезды, галактики и кластеры, не говоря уже о вещах, происходящих на гораздо более мелком масштабе, таких как наша экосистема здесь, на Земле.

Таким образом, хотя энтропия Вселенной с течением времени всегда только увеличивается, сложность ведет себя намного интереснее: сначала она находилась на низком уровне, затем возросла до относительно высокого, а после этого снова снизится. Но почему так происходит? И какие следствия имеет такой путь эволюции? В голове сразу начинает тесниться масса вопросов. При каких обстоятельствах сложность начинает возрастать и каковы условия ее падения? Всегда ли такое поведение наблюдается при изменении энтропии от низкой до высокой или же другие динамические свойства также играют важную роль? Является ли возникновение сложности (или «жизни») характерной чертой эволюции в присутствии градиентов энтропии? Насколько важен тот факт, что наша ранняя Вселенная была не только простой, но и низкоэнтропийной? Как долго сможет просуществовать жизнь после того, как Вселенная перейдет в простое, но высокоэнтропийное состояние?

Цель науки — давать ответы на сложные вопросы, но также одна из ее задач — находить правильные вопросы. Однако в своих исследованиях проблемы жизни мы даже не можем быть уверены в том, что задаем правильные вопросы. У нас есть целый набор интригующих понятий, которые наверняка должны сыграть более или менее важную роль в поиске окончательного ответа: энтропия, свободная энергия, сложность, информация. И все же пока мы не в состоянии составить из них цельную картину. Ничего страшного; наука — это путешествие, в котором самое интересное происходит в пути, а не по прибытии.

 

Глава 10. Повторяющиеся кошмары

 

В четвертой книге своего труда «Веселая наука», написанного в 1882 году, Фридрих Ницше предлагает мысленный эксперимент. Он просит читателя вообразить такой сценарий, при котором все, что случается во Вселенной, включая мельчайшие детали наших собственных жизней, однажды повторяется, и этот цикл воспроизводится снова и снова на протяжении вечности.

Представь себе, что однажды — днем или ночью — к тебе в твоем полнейшем уединении подкрался демон и говорил тебе: «Ту жизнь, которую ты ведешь теперь и которую прожил, тебе придется повторить еще раз и еще бесчисленное число раз; и не будет ничего нового, но все та же боль, все те же желания и мысли, и вздохи, и все невыразимо малые и великие события твоей жизни пройдут перед тобой в прежнем порядке и прежней последовательности — и этот паук, и этот лунный свет между деревьями, и этот миг, и я сам. Вечные песочные часы бытия будут снова и снова перевертываться, и ты с ними, пылинка из пылинок!» [172]

Интерес Ницше к бесконечно повторяющейся Вселенной носил по большей части этический характер. Он интересовался: как бы вам понравилась мысль о том, что ваша жизнь повторится бессчетное число раз? Погрузились бы вы в пучину тревоги и отчаяния — в тексте даже упоминается скрежетание зубами — от подобной ужасающей перспективы или же возликовали бы? Ницше полагал, что успешной можно назвать такую жизнь, которую вы бы с гордостью проживали в бесконечном цикле.

Труд Ницше, разумеется, ни в коем случае не может считаться первоисточником идеи циклической Вселенной, или «извечного возвращения». Упоминания о ней то тут, то там встречаются во многих древних религиях: в греческой мифологии, индуизме, буддизме, некоторых аборигенных американских культурах. Колесо жизни вращается, история повторяется.

Рис. 10.1. Анри Пуанкаре, пионер топологии, теории относительности и теории хаоса, позднее президент Бюро долгот

Однако вскоре после того, как Ницше предложил своего демона, идея извечного повторения проникла и в физику. В 1890 году Анри Пуанкаре доказал интригующую математическую теорему, в которой утверждается, что определенные физические системы непременно возвращаются к любой своей конфигурации бесконечное число раз — нужно лишь подождать достаточно долго. За этот результат ухватился молодой математик по имени Эрнст Цермело, заявивший, что данная идея несовместима с предложенным Больцманом выводом второго начала термодинамики на основе фундаментальных обратимых законов движения атомов.

В 1870-х годах Больцман сражался с «парадоксом обратимости» Лошмидта. В противоположность этому 1880-е годы были относительно спокойным временем в истории развития статистической механики: Максвелл скончался в 1879 году, а Больцман, помимо продвижения своей научной карьеры, сосредоточил усилия на технических приложениях разработанного им формализма. Однако в 1890-х годах споры разгорелись снова — на этот раз в форме «парадокса повторения» Цермело. По сей день результаты этих споров так до конца и не приняты физиками; многие вопросы, поднятые Больцманом и его современниками, до сих пор остаются предметом жарких дискуссий ученых. В контексте современной космологии вопросы, связанные с парадоксом повторения, все еще остаются нерешенными.

 

Хаос Пуанкаре

Оскар II, король Швеции и Норвегии, родился 21 января 1829 года. В 1887 году шведский математик Гёста Миттаг-Лефлер подал королю идею отметить грядущее шестидесятилетие весьма необычным способом: устроив математическое соревнование, в котором участникам будут предложены на выбор четыре задачи. Приз получит тот, кто найдет самое оригинальное и творческое решение любой из них.

Одной из предложенных задач была «задача трех тел». В этой задаче требуется описать движение трех массивных объектов под влиянием взаимного гравитационного притяжения. (Для двух тел задача решается просто: еще Ньютон доказал, что планеты движутся по эллиптическим орбитам.) За эту задачу взялся Анри Пуанкаре, который в тридцать с небольшим лет уже считался одним из ведущих мировых математиков. Ему не удалось найти решение, однако он предоставил очерк, демонстрирующий одно критически важное свойство: орбиты этих планет стабильны. То есть, даже не зная точного решения, можно быть уверенным в том, что планеты по крайней мере будут вести себя предсказуемо. Метод Пуанкаре оказался настолько остроумным, что премию в итоге присудили именно ему, а его статья была подготовлена для публикации в новом журнале Миттага-Лефлера Acta Mathematica.

Однако возникла небольшая загвоздка: Пуанкаре допустил ошибку. У Эдварда Фрагмена, одного из редакторов журнала, возникли некоторые вопросы относительно статьи, и в процессе поиска ответов Пуанкаре осознал, что при построении своего доказательства упустил один важный случай. Подобные малозаметные ошибки частенько закрадываются в сложные математические работы, и Пуанкаре взялся за исправление своего очерка. Но стоило ему потянуть за одну ниточку, как все доказательство разошлось по швам. В итоге Пуанкаре доказал утверждение, прямо противоположное исходному: орбиты трех тел совсем не были стабильными. Эти орбиты не только не являются периодическими — они даже примерно не описываются никаким регулярным поведением. Сегодня, благодаря существованию компьютеров, способных моделировать любое движение, подобный результат не кажется нам таким уж удивительным, но в то время это был настоящий шок. Начав с попытки доказать стабильность орбит планет, Пуанкаре пришел к чему-то совершенно иному: он изобрел теорию хаоса.

Однако история на этом не заканчивается. Миттаг-Лефлер, уверенный в том, что Пуанкаре без труда исправит свой удостоенный награды очерк, поторопился и напечатал его. К тому времени как Пуанкаре сообщил, что не стоит ждать никаких исправлений, журнал уже был отправлен крупнейшим математикам по всей Европе. Миттаг-Лефлер тут же телеграфировал в Берлин и Париж, приказывая уничтожить все копии журнала. В целом ему это удалось, но не без небольшого скандала в элитных математических кругах по всему континенту.

В ходе пересмотра своего доказательства Пуанкаре пришел к обманчиво простому и мощному результату, который сегодня известен под названием теоремы Пуанкаре о возвращении. Представьте себе, что у вас есть система, все составляющие которой движутся в какой-то ограниченной области пространства, как планеты, вращающиеся вокруг Солнца. Теорема о возвращении гласит, что если начиная с некоторой конфигурации эволюционировать систему в соответствии с законами Ньютона, то она гарантированно вернется к своей первоначальной конфигурации и будет делать это снова и снова, бесконечное число раз в будущем.

Кажется, что это довольно очевидно, и, возможно, никто даже не удивляется этому. Если мы с самого начала предполагаем, что все части нашей системы (планеты, вращающиеся вокруг Солнца, или молекулы, летающие туда и сюда внутри контейнера) связаны в ограниченном объеме, а промежуток времени мы рассматриваем бесконечный, то системе ничего не остается, кроме как возвращаться к одному и тому же состоянию бесчисленное количество раз. А куда ей деваться?

Однако в действительности все немного сложнее. Главная тонкость заключается в том, что число возможных состояний бесконечно, даже если сами объекты не убегают на бесконечность. Круговая орбита заключена в конечном объеме, но сама она содержит бесконечное число точек; точно так же внутри контейнера с газом конечного объема существует бесконечно много точек пространства. В подобных случаях системы обычно не возвращаются в состояние, в точности совпадающее с исходным. Пуанкаре пришел к выводу о том, что в этом случае вполне достаточно «почти полного» совпадения. Если вы заранее объявите, насколько близкими должны быть два состояния, чтобы их можно было считать неразличимыми, то, согласно доказательству Пуанкаре, система будет бесконечно много раз оказываться близко к начальному состоянию.

Рассмотрим три планеты внутренней части Солнечной системы: Меркурий, Венеру и Землю. Венера совершает один оборот вокруг Солнца за 0,61520 года (примерно 225 дней), тогда как Меркурию для этого требуется 0,24085 года (около 88 дней). Взгляните на схему, изображенную на рис. 10.2. Мы начинаем наблюдение с конфигурации, когда все три планеты выстроились в прямую линию. Пройдет 88 дней, и Меркурий вернется к точке старта, однако Венера и Земля в это время будут находиться в каких-то других точках своих орбит. Однако если потратить на ожидание достаточно много времени, то они снова выстроятся в прямую линию — или линию, очень близкую к прямой. Скажем, через 40 лет эти три планеты образуют конфигурацию, почти идентичную той, которую мы наблюдали вначале.

Рис. 10.2. Внутренняя часть Солнечной системы, в которой Меркурий, Венера и Земля находятся на одной линии (внизу), и конфигурация 88 дней спустя (вверху). Меркурий вернулся в исходное положение, а Венера и Земля находятся в других точках своих орбит

Пуанкаре показал, что так себя ведут все связанные механические системы, даже те, в которых количество движущихся частей очень велико. Но необходимо помнить о том, что время ожидания, пока система вернется в состояние, близкое к начальному, по мере увеличения числа частей также увеличивается. Если бы мы захотели увидеть, как в линию выстроятся все девять планет Солнечной системы, нам пришлось бы потратить на ожидание куда больше 40 лет. В какой-то степени это можно оправдать тем, что внешние планеты медленнее вращаются вокруг Солнца, но главная причина в том, что большему количеству объектов требуется больше времени, чтобы общими усилиями воссоздать данную начальную конфигурацию.

Это стоит подчеркнуть: по мере того как число частиц в рассматриваемой системе увеличивается, время, необходимое для возвращения системы в исходное положение или близкое к нему, известное под вполне логичным названием времени возврата, — также возрастает, причем очень быстро, становясь в итоге невообразимо большим. Вернемся еще раз к разделенному перегородкой контейнеру с газом, с которым мы играли в главе 8. В контейнере у отдельных частиц каждую секунду есть небольшой шанс перескочить из одной половины в другую. Очевидно, что если контейнер содержит всего лишь две или три частицы, то системе не потребуется много времени, для того чтобы вернуться в состояние, с которого все началось. Но если взять контейнер хотя бы с шестьюдесятью частицами, мы обнаружим, что время возврата уже становится сопоставимым с текущим возрастом наблюдаемой Вселенной.

В большинстве реальных объектов содержится куда больше частиц. Время возврата типичного макроскопического объекта будет составлять по меньшей мере

101 000 000 000 000 000 000 000 000 секунд.

Это очень много. Для всех частиц в наблюдаемой Вселенной время возврата еще больше — но стоит ли об этом волноваться? Время возврата любого объекта, достаточно большого, чтобы представлять хоть какой-нибудь интерес, слишком велико. Мы попросту не в состоянии оценить его с точки зрения нашего жизненного опыта. Возраст обозримой Вселенной — всего лишь около 1018 секунд. Если найдется физик-экспериментатор, который предложит добавить в чашку кофе ложку молока и подождать время возврата, чтобы увидеть, как молоко снова отделяется от кофе, ему придется здорово попотеть, выбивая финансирование под такой грант.

И все же, если подождать достаточно долго, это случится. Демон Ницше не ошибается; просто он заглядывает далеко вперед.

 

Цермело против Больцмана

В исходной статье Пуанкаре, где доказана теорема о возвращении, ученый в основном рассматривает четкий, предсказуемый мир ньютоновской механики. Однако Пуанкаре также был знаком со статистической механикой, поэтому он очень быстро осознал, что идея вечного возвращения может показаться несовместимой с попытками вывести второе начало термодинамики. В конце концов, второе начало утверждает, что энтропия меняется только в одну сторону: она возрастает. В то же время создается впечатление, что, согласно теореме о возвращении, после того как низкоэнтропийное состояние перейдет в высокоэнтропийное, нужно всего лишь подождать достаточно долго, и оно вернется к своему низкоэнтропийному началу. Это означает, что где-то по пути энтропия должна уменьшиться.

В 1893 году Пуанкаре написал небольшую статью, посвященную исследованию этого очевидного противоречия. Он подчеркнул, что теорема о возвращении действительно подразумевает, что энтропия Вселенной в конечном счете начнет уменьшаться:

Я не знаю, было ли замечено то, что английские кинетические теории не могут выпутаться из указанного противоречия. Согласно этим теориям мир сначала стремится к состоянию, в котором он остается долгое время без заметных изменений, и это согласуется с опытом. Однако он остается в этом состоянии не всегда, если теорема, упомянутая выше, не нарушается; он просто находится в нем чрезвычайно долгое время — время, которое тем больше, чем более многочисленными являются молекулы. Это состояние будет не окончательной смертью Вселенной, а своего рода сном, от которого она пробудится через миллионы миллионов столетий.

Согласно этой теории, для того чтобы наблюдать переход тепла от холодного тела к горячему, вовсе не обязательно обладать острым зрением, разумом и проворством «демона» Максвелла — для этого достаточно иметь лишь немного терпения. [178]

Под «английскими кинетическими теориями» Пуанкаре предположительно понимал работы Максвелла, Томсона и других — никакого упоминания о Больцмане (или, если уж на то пошло, Гиббсе). По этой ли причине или просто потому, что данная статья не попалась ему на глаза, но Больцман так никогда и не ответил Пуанкаре напрямую.

Однако идея не была забыта. В 1896 году Цермело выдвинул простое возражение (ссылаясь именно на длинную статью Пуанкаре 1890 года, где формулировалась теорема о возвращении, а не на его более короткую статью 1893 года), которое теперь носит название возражения Цермело о возвращении. Несмотря на известность Больцмана, в конце XIX века атомная теория и статистическая механика в немецкоговорящем мире были далеко не так популярны, как в англоязычных странах. Как и многие другие немецкие ученые, Цермело считал второе начало термодинамики абсолютным законом природы; энтропия замкнутой системы всегда, а не просто большую часть времени увеличивается или остается постоянной. Но теорема о возвращении недвусмысленно предполагает, что если энтропия сначала увеличивается, то со временем, когда система вернется к исходной конфигурации, ей непременно придется уменьшиться. Вывод, который из этого сделал Цермело, заключался в том, что система взглядов статистической механики в корне неверна; поведение теплоты и энтропии невозможно свести к движению молекул, подчиняющихся законам Ньютона.

Позднее Цермело завоюет славу в математическом сообществе как один из основателей теории множеств, но в то время он был студентом, постигающим науку под руководством Макса Планка, и Больцман не принял всерьез возражения юного выскочки. Он снизошел до ответа, не проявив, впрочем, особой терпимости:

Работа Цермело показывает, что мои статьи были поняты неправильно; тем не менее мне доставляет удовлетворение ее появление, поскольку она, по-видимому, является первым свидетельством того, что эти статьи вообще обратили на себя какое-то внимание в Германии.

Теорема Пуанкаре, которую Цермело разъясняет в начале своей работы, вне всякого сомнения, правильна, однако применение им этой теоремы к теории теплоты является неверным. [180]

Вот оно как! В ответ Цермело написал еще одну статью, и на нее Больцман также дал ответ. Но в действительности эти двое говорили о разных вещах, так что к выводу, одинаково устраивающему обе стороны, им прийти так и не удалось.

В то время Больцман полностью разделял идею о том, что второе начало термодинамики — по своей природе статистический закон, но никак не абсолютный. Основная мысль его ответа Цермело заключалась в том, что необходимо отделить теорию от практики. В теории, Вселенная может брать начало в низкоэнтропийном состоянии, доходить до термического равновесия, а затем, повторяя свое развитие в обратную сторону, снова возвращаться к состоянию с низкой энтропией. Это следует из теоремы Пуанкаре, и Больцман не отрицал этого. Но фактическое время ожидания было бы невероятно долгим, намного больше, чем «возраст Вселенной», как мы понимаем его сегодня, и, определенно, выходящим далеко за рамки любых временных интервалов, которые рассматривались учеными XIX столетия. Больцман утверждал, что выводы из теоремы о возвращении следует считать забавным математическим курьезом, который тем не менее никоим образом не может быть применим к реальному миру.

 

Проблемы вечной Вселенной

В главе 8 мы обсуждали возражение Лошмидта об обратимости, высказанное им в ответ на H-теорему Больцмана: невозможно с помощью обратимых законов физики прийти к необратимым результатам. Другими словами, существует столько же высокоэнтропийных состояний, энтропия которых будет уменьшаться, сколько и низкоэнтропийных, энтропия которых будет возрастать, так как соответствующие траектории получаются всего лишь изменением направления времени. (К слову, количество ни тех ни других не может сравниться с числом высокоэнтропийных состояний, которые сохранят свою высокую энтропию.) Правильным ответом на данное возражение, по крайней мере в нашей наблюдаемой Вселенной, является принятие гипотезы о прошлом, то есть дополнительного постулата, доминирующего над динамическими законами природы и утверждающего, что ранняя Вселенная обладала чрезвычайно низкой энтропией.

К тому времени, когда началось их противостояние с Цермело, Больцман и сам уже пришел к осознанию этого. Он назвал свою версию гипотезы о прошлом «предположением A» и писал о нем так:

Второе начало будет объяснено на уровне механики с помощью предположения A (разумеется, недоказуемого) о том, что Вселенная, если рассматривать ее как механическую систему, — или, по крайней мере, очень большая часть ее, окружающая нас, — началась с чрезвычайно маловероятного состояния и до сих пор находится в чрезвычайно маловероятном состоянии. [182]

В этом коротком отрывке слова Больцмана выглядят весьма решительно и однозначно, но в действительности в контексте данной статьи он предлагает несколько разных объяснений, почему энтропия вокруг нас увеличивается, и это всего лишь одно из них. К тому же обратите внимание на то, как он осторожен: не только заранее соглашается, что предположение недоказуемо, но и не берется рассматривать всю Вселенную, ограничиваясь лишь «очень большой частью [Вселенной], окружающей нас».

К сожалению, эта стратегия не очень эффективна. Возражение Цермело о возвращении тесно связано с возражением об обратимости, и все же между ними существует важное различие. Возражение об обратимости всего лишь указывает на существование равного количества эволюций с увеличением энтропии и с уменьшением энтропии; в возражении о возвращении же говорится, что процессы с уменьшением энтропии в конечном счете будут происходить когда-то в будущем. Это означает, что энтропия системы не просто может уменьшаться: если подождать достаточно долго, то такое развитие событий гарантировано! Это более сильное утверждение, и если мы хотим ответить на него, то нам потребуются намного более сильные аргументы.

Для защиты от проблем, порождаемых возвращением, гипотеза о прошлом нам не помощник. Предположим, мы согласны, что в какой-то момент недавнего прошлого — возможно, миллиарды лет назад, но не так давно, чтобы это время было сравнимо со временем возврата, — Вселенная обнаружила себя в состоянии чрезвычайно низкой энтропии. После этого, как учит Больцман, энтропия должна начать увеличиваться, и на это уйдет время, намного меньшее времени возврата. Однако если Вселенная действительно вечна, то это не должно играть никакой роли. В конце концов, энтропия обязательно начнет уменьшаться, пусть нам и не посчастливится наблюдать это своими глазами. Таким образом, возникает вопрос: почему же так сложилось, что мы живем именно на этом конкретном отрезке истории Вселенной, в относительно небольшой окрестности низкоэнтропийного состояния? Почему не в каком-то более «естественном» периоде жизни Вселенной?

Последний вопрос, особенно слово «естественный», открывает настоящий ящик Пандоры. Главная проблема заключается в том, что, согласно постулатам ньютоновской физики, у Вселенной нет «начала» или «конца». Нам, жителям XXI века, с нашими пост-эйнштейновскими взглядами, идея о том, что Вселенная началась с Большого взрыва, знакома и привычна. Но Больцман и Цермело, а также их современники, не знали об общей теории относительности и не слышали о расширении Вселенной. С их точки зрения пространство и время были абсолютными, а Вселенная существовала всегда. У них не было возможности замять эти неудобные вопросы, прикрывшись Большим взрывом.

Здесь и кроется проблема. Если Вселенная действительно вечна и не имеет ни начала, ни конца, то какой в этом случае смысл несет гипотеза о прошлом? Раньше, в прошлом, был какой-то момент, когда энтропия была невелика. А что было до того? Она оставалась на этом низком уровне бесконечно долгое время, пока не произошел какой-то процесс, заставивший энтропию расти? Или раньше энтропия уже когда-то была велика? Однако в таком случае как объяснить наличие этого особого, низкоэнтропийного момента посередине истории Вселенной? Похоже, мы попали в тупик: если Вселенная вечна, а предположения, лежащие в основе теоремы о возвращении, верны, то энтропия не может увеличиваться бесконечно; по завершении периода возрастания она должна пойти вниз, и так снова и снова в бесконечном цикле.

Существует по меньшей мере три способа разрешения этой дилеммы, и все они были упомянуты Больцманом. (Он был убежден в своей правоте, но никак не мог остановиться на одном-единственном обосновании, постоянно изменяя свое мнение.)

Во-первых, у Вселенной действительно могло быть «начало», включающее низкоэнтропийное граничное условие. По всей видимости, именно это Больцман подразумевал в контексте упомянутого выше «предположения A», хотя в явном виде никогда не формулировал. Но на тот момент утверждение о том, что у времени есть начало, было бы сродни революции, так как это было отклонение от основных физических законов в том виде, как их заложил Ньютон. Сегодня подобное отклонение присутствует в нашем инструментарии в форме общей теории относительности и Большого взрыва, но ученым 1890-х годов эти идеи были недоступны. Насколько мне известно, никто из современников Больцмана не отнесся к проблеме низкой энтропии в начале Вселенной достаточно серьезно, чтобы сделать явное предположение о существовании начала времен и о том, что что-то вроде Большого взрыва действительно могло произойти.

Во-вторых, предположения, лежащие в основе теоремы Пуанкаре о возвращении, могут попросту не соответствовать условиям реального мира. В частности, Пуанкаре предполагал, что пространство состояний каким-то образом ограничено и что частицы не могут улетать в бесконечность. Это звучит как техническое предположение, но почему бы глубокой истине не скрываться под личиной технического предположения? Больцман также считает это одной из возможных лазеек:

Если сначала принять число молекул равным бесконечности и позволить времени движения становиться очень большим, то в подавляющем большинстве случаев получается кривая [для энтропии как функции времени], которая асимптотически приближается к оси абсцисс. Как легко видеть, теорема Пуанкаре в этом случае неприменима. [184]

Однако на самом деле он не принимал этот вариант всерьез. Да и не должен был, так как в данном случае подвергается сомнению строгое следствие из теоремы о возвращении, а не ее базовая суть. Если средняя плотность частиц в пространстве отлична от нуля, то в нем будут встречаться всевозможные маловероятные флуктуации, включая низкоэнтропийные состояния; просто в флуктуациях в разные моменты времени обычно участвуют разные наборы частиц, поэтому возвращения, строго говоря, не происходит. Для этого сценария характерны все проблемы истинно возвратной системы.

Третий вариант ответа на возражение о возвращении — это даже не побег, это полная капитуляция. Мы признаем, что Вселенная вечна и что возвращение происходит, то есть во Вселенной наблюдаются периоды, когда энтропия возрастает, и периоды, когда она убывает. И мы просто говорим: да, это та Вселенная, в которой мы живем.

Давайте теперь рассмотрим все три возможности в контексте современного мышления. Многие современные космологи, хотя зачастую и неявно, подписываются под одной из разновидностей первого варианта, объединяя загадку низкоэнтропийных начальных условий с загадкой Большого взрыва. Это вполне жизнеспособная перспектива, хотя в ней слегка разочаровывает необходимость мириться с тем фактом, что состояние Вселенной в начале времен выходит за рамки физических законов. Второй вариант — во Вселенной бесконечное множество частиц, а теорема о возвращении попросту не работает — позволяет отвертеться от технических условий теоремы, но не помогает понять, почему наша Вселенная именно такая, какой она выглядит сейчас. Можно было бы рассмотреть вариацию данного подхода, где во Вселенной существует лишь конечное множество частиц, но есть тем не менее бесконечное пространство для эволюции. Тогда возвращения действительно отсутствовали бы, а энтропия бы увеличивалась, не зная границ, далеко в прошлое и далеко в будущее. Это несколько напоминает сценарий Мультиленной, о котором я выскажусь чуть далее. Однако, насколько мне известно, ни Больцман, ни его современники не придерживались такой точки зрения.

Третий вариант — что возвращения действительно происходят во Вселенной, где мы живем, — не может быть верен, в чем мы скоро убедимся. Ошибки, доказывающие его несостоятельность, позволяют извлечь несколько ценных уроков.

 

Флуктуации вокруг равновесия

Вспомните контейнер с перегородкой, который мы рассматривали в главе 8. В перегородке есть отверстие, позволяющее молекулам газа периодически пролетать с одной стороны на другую. Для того чтобы смоделировать эволюцию неизвестного микросостояния каждой частицы, мы допускали, что у каждой молекулы есть небольшой фиксированный шанс перелететь на другую сторону. Формула Больцмана для энтропии помогла нам продемонстрировать, как энтропия будет меняться с течением времени; она имеет ярко выраженную тенденцию к увеличению, по крайней мере если в начале эксперимента вручную создать в системе состояние низкой энтропии, когда большая часть молекул располагается по одну сторону перегородки. Система естественным образом стремится к равновесию, то есть к состоянию, в котором количество молекул по обе стороны перегородки примерно одинаково. В этом случае энтропия достигает максимального значения, помеченного «1» на вертикальной оси графика 10.3.

Однако что, если вначале система не будет находиться в низкоэнтропийном состоянии? Что, если начать рассматривать ее в состоянии равновесия? Если второе начало термодинамики абсолютно истинно и энтропия никогда не уменьшается, то по достижении состояния равновесия система остается в нем навсегда. Но в вероятностном мире Больцмана это не совсем верно. С высокой вероятностью система, пришедшая к равновесию, действительно продолжит пребывать в этом равновесном состоянии или в состоянии, близком к нему. Однако если подождать достаточно долго, то мы непременно заметим случайные отклонения от этого состояния. И если время ожидания будет очень большим, то мы неминуемо увидим и чрезвычайно большие флуктуации.

Рис. 10.3. Изменение энтропии в перегороженном контейнере с газом, начиная с состояния равновесия. Большую часть времени удерживается состояние, близкое к максимальной энтропии, но периодически можно заметить небольшие флуктуации в сторону более низкоэнтропийных состояний. Обратите внимание на сильно увеличенный масштаб по вертикальной оси; типичные флуктуации очень малы. Стрелкой с буквой x указан возврат к равновесному состоянию после относительно крупной флуктуации

На рис. 10.3 представлена эволюция энтропии в перегороженном контейнере с газом, содержащем 2000 частиц, но на этот раз — в более поздний период времени, после достижения равновесного состояния. Обратите внимание на то, что теперь мы рассматриваем изменения энтропии в огромном приближении: если графики в главе 8 демонстрировали изменение энтропии в диапазоне значений от 0,75 до 1, то здесь мы рассматриваем диапазон от 0,997 до 1.

То, что мы видим, — это небольшие отклонения от равновесного значения, в котором энтропия максимальна, а молекул примерно поровну в обеих половинах контейнера. И это совершенно логично, учитывая условия эксперимента: большую часть времени справа и слева от перегородки находится равное число частиц, но иногда может возникать небольшой перекос в ту или в другую сторону, соответствующий чуть меньшему значению энтропии. Абсолютно так же ситуация выглядит и при подбрасывании монеты: в среднем в длинной последовательности подбрасываний орел и решка выпадают одинаковое число раз, но если подождать достаточно долго, то нам будут встречаться подпоследовательности, в которых монета приземлялась на одну сторону много раз подряд.

Отклонения, которые мы здесь видим, очень малы, но, с другой стороны, мы не так уж долго ждали. Если растянуть эксперимент на более длительный период — и здесь имеется в виду гораздо более длительный период, то энтропия в конечном итоге уменьшится до исходного значения, соответствующего конфигурации, при которой 80 % частиц находилось с одной стороны от перегородки, а 20 % частиц — с другой. Также не забывайте о том, что этот график иллюстрирует поведение энтропии для системы с 2000 частиц; в реальном мире, где любой макроскопический объект содержит намного больше частиц, флуктуации энтропии соответственно намного меньше и встречаются реже. Тем не менее они обязательно присутствуют. Их не может не быть — это неизбежное следствие вероятностной природы энтропии.

Таким образом, мы подошли к финальному предположению Больцмана: возможно, Вселенная именно такова. Возможно, время вечно и фундаментальные физические законы — ньютоновы и обратимы, и предположения, лежащие в основе теоремы о возвращении, верны. И, следовательно, вполне можно допустить, что график изменения энтропии во времени, показанный на рис. 10.3, показывает, как на самом деле изменяется энтропия реальной Вселенной.

 

Антропный принцип

Однако, скажете вы, такого не может быть. На этом графике энтропия половину времени возрастает, а половину времени убывает. В реальном мире все совсем не так; насколько мы можем видеть, энтропия у нас только возрастает.

Что же, отвечает Больцман, вам следует взглянуть на ситуацию шире. На этом графике показаны всего лишь крохотные флуктуации за относительно короткий период времени. Мы же, говоря о Вселенной, с очевидностью имеем в виду огромную флуктуацию энтропии, вероятность появления которой крайне мала, а длительность, наоборот, чрезвычайно велика. В целом, график энтропии Вселенной очень похож на тот, что изображен на рис. 10.3, а энтропия нашей локальной наблюдаемой части Вселенной соответствует лишь небольшому его участку — рядом с точкой, обозначенной x, где наблюдается процесс возвращения обратно к равновесному состоянию после флуктуации. Если здесь помещается вся история изведанной Вселенной, то нет ничего странного в том, что на своем веку мы наблюдаем второе начало термодинамики в действии. В то же время, если рассматривать сверхдлинные периоды, то окажется, что энтропия всего лишь немного колеблется около максимального значения.

Но, снова возразите вы, не готовые сдаваться без боя, почему мы живем именно на этом конкретном участке кривой, в период, непосредственно следующий за гигантской флуктуацией энтропии? Мы уже согласились с тем, что подобные флуктуации неимоверно редки. Не было бы логичнее оказаться в каком-то более типичном, среднестатистическом периоде истории Вселенной, где все, по сути, находится в равновесии?

Разумеется, Больцман предвидел это ваше возражение. И в этот момент он совершает поразительно современный ход — апеллирует к антропному принципу. По сути, антропный принцип — это идея о том, что любое разумное описание Вселенной вокруг нас должно учитывать тот факт, что мы существуем. Оно может принимать множество разных форм: от бесполезно слабого «тот факт, что жизнь существует, диктует нам, что законы физики должны быть совместны с существованием жизни» до смехотворно сильного «законы физики должны были принять ту форму, в которой мы их знаем, потому что существование жизни — необходимое условие». Споры вокруг статуса антропного принципа: есть ли в нем смысл? можно ли считать его научным? — разгораются весьма нешуточные, но редко приводят к каким бы то ни было полезным выводам или результатам.

К счастью, нас (и Больцмана) вполне устраивает благоразумная усредненная версия антропного принципа. А именно представьте себе, что реальная Вселенная намного больше (в пространственном измерении, во временном или в обоих) той части, которую мы в состоянии непосредственно наблюдать. Помимо этого, вообразите, что условия в разных фрагментах этой глобальной Вселенной очень сильно различаются. Например, в них наблюдается разная плотность вещества, а может быть, доходит даже до того, что действуют разные локальные физические законы. Каждую из таких областей можно назвать «Вселенной», а весь набор — «Мультиленной». Разные Вселенные в пределах Мультиленной могут быть физически связаны, а могут не иметь точек соприкосновения; для наших текущих целей это неважно. Наконец, представьте себе, что часть этих областей обладает благоприятными условиями для существования жизни, а часть — нет. (В этом месте всегда неизбежно возникает определенное недопонимание, поскольку в глобальном контексте мы знаем о «жизни» не так уж много.) Тогда — и этот довод выглядит совершенно безукоризненно — как ни крути, мы находимся в одной из тех частей Вселенной, где существование жизни допускается, но не в других, враждебных нам частях. Кажется, что это утверждение не несет смысла, но это не так. Оно иллюстрирует эффект выбора, искажающий наш взгляд на Вселенную в целом: мы не видим картины целиком; нашему восприятию доступен только один фрагмент, который вполне может оказаться абсолютно нерепрезентативным.

Больцман апеллирует к такой же точно логике. Он просит нас представить Вселенную, состоящую из некоторого набора частиц, движущихся сквозь абсолютное ньютоновское пространство—время, существующее на протяжении вечности. Чего в этом случае следует ожидать?

Тогда во Вселенной, которая в общем везде находится в тепловом равновесии, то есть мертва, то тут, то там должны существовать сравнительно небольшие области (назовем их единичными мирами), которые в течение довольно короткого времени по сравнению с вечностью значительно отклоняются от теплового равновесия, причем одинаково часты такие, в которых вероятность состояния [энтропия] увеличивается, и такие, в которых она уменьшается. Следовательно, для Вселенной оба направления времени неразличимы, так же как в пространстве не существует верха и низа. Но так же, как в определенной точке земной поверхности направление к центру Земли является направлением «вниз», живое существо, находящееся в определенной эпохе такого мира, будет определять направление времени как направление от менее вероятных состояний к более вероятным (первые будут называться «прошлым», вторые — «будущим»), и в соответствии с таким определением для него эта небольшая, изолированная от Вселенной область «сначала» всегда находится в маловероятном состоянии. [186]

Это весьма примечательный абзац, и после небольшой корректировки лексикона он абсолютно органично смотрелся бы в любом современном космологическом обсуждении. Больцман полагал, что Вселенная (или, если хотите, Мультиленная), по сути, представляет собой бесконечный контейнер с газом. Большая часть газа равномерно распределена по этому бескрайнему пространству и имеет постоянную температуру, то есть пребывает в тепловом равновесии. Проблема в том, что жить при тепловом равновесии мы не способны — это «мертвое» состояние, как без обиняков выразился Больцман. Но время от времени в этом бескрайнем контейнере возникают случайные флуктуации, и в конце концов одна из них создает нечто похожее на Вселенную, которую мы наблюдаем вокруг себя. (Больцман называет ее «наша галактика», что в то время считалось синонимом «наблюдаемой Вселенной».) А поскольку мы можем существовать исключительно в подобных условиях — в случайных далеких от равновесия флуктуациях, то нет ничего удивительного в том, что мы обнаруживаем себя в одной из них.

И разумеется, в период флуктуации энтропия увеличивается лишь половину времени: вторую половину она уменьшается, переходя от равновесного значения к временному минимальному значению. Однако об «увеличении» или «уменьшении» энтропии можно говорить лишь по отношению к какой-то заранее выбранной временной координате, которая, как мы обсуждали в предыдущей главе, сама по себе не поддается непосредственному наблюдению.

Рис. 10.4. «Мультиленная» Больцмана. Большую часть пространства составляет множество частиц, находящихся в равновесии, но также можно заметить редкие локальные флуктуации к низкоэнтропийным состояниям (обратите внимание на то, что масштаб совершенно не соблюдается). Мы живем в период, последовавший за одной исключительно крупной флуктуацией

Как верно подмечает Больцман, важно лишь то, что текущая Вселенная находится в процессе перехода между низкоэнтропийным состоянием и состоянием теплового равновесия. И пока этот переход происходит, любое живое существо всегда будет считать направление в сторону более низкого значения энтропии «прошлым», а направление к высокой энтропии — «будущим».

Эта картина Вселенной довольно провокационна. Если смотреть крупномасштабно, то вещество практически всегда находится в состоянии крайне разреженного газа при определенной температуре. Но время от времени на протяжении миллиардов лет последовательности случайных событий складываются так, что в результате появляются области аномально низкой энтропии, которые затем возвращаются обратно к равновесию. Вы и я, и вся суетливая деятельность, которую мы наблюдаем вокруг, — это побочные явления, которым повезло оседлать волну энтропии, которая откатывается назад после случайного путешествия в чрезвычайно маловероятное состояние.

Так как же выглядит типичная флуктуация в период движения энтропии вниз? Ответ очевиден: в точности как инвертированная во времени типичная эволюция по направлению от низкоэнтропийного состояния к высокоэнтропийному. Вся Вселенная — все это бескрайнее море невероятно разреженного газа — не превратится внезапно, за считанные минуты, в высокоплотное состояние, соответствующее Большому взрыву. То тут, то там, растянутые во времени на миллиарды лет, будут возникать последовательности маловероятных событий, каждое из которых способно сделать энтропию лишь незначительно меньше. Звезды и галактики могут распадаться, омлеты — превращаться в яйца, предметы, находящиеся в равновесии, — спонтанно демонстрировать значительные перепады температуры. Все эти события абсолютно независимы, каждое из них по отдельности маловероятно, а все вместе они составляют фантастически маловероятную комбинацию. Но если вы на самом деле способны потратить вечность на ожидание, то убедитесь, что даже самые невероятные вещи в конце концов случаются.

 

Отклонение в древние времена

В действительности Больцман не был первым, кто озвучивал подобные мысли. Не менее Больцмана пониманием мира в терминах атомов были озабочены его предки в античной Греции и Риме. Самым знаменитым последователем теории атомизма считается Демокрит (около 400 года до н. э.), но впервые предложил эту идею, вероятно, его учитель Левкипп. Оба они были материалистами, пытающимися объяснять мир в терминах объектов, подчиняющихся правилам, а не с точки зрения следования некоей глубинной «цели». В частности, они с интересом откликнулись на вызов, брошенный Парменидом, считавшим, что любые перемены — это лишь иллюзия. Теория атомов, в неизменном виде движущихся сквозь пустоту, должна была объяснить возможность движения без формирования понятия о возникновении чего-то из ничего.

Одна из основных сложностей, с которыми сталкивались древние последователи теории атомизма, заключалась в необходимости объяснять, почему мир вокруг так сложен и запутан. Атомы, полагали они, в основном демонстрируют тенденцию к падению вертикально вниз; из них не получилось бы состряпать такую уж интересную Вселенную. Лишь греческий мыслитель Эпикур (около 300 года до н. э.) наконец-то предложил для этой головоломки решение в форме идеи, которую он назвал «отклонение» (clinamen). В сущности, Эпикур предположил, что в дополнение к базовому стремлению атомов двигаться вдоль прямых линий в их движении присутствует случайный компонент, время от времени бросающий их то в одну сторону, то в другую. Это отдаленно напоминает современную квантовую механику, хотя, разумеется, не стоит увлекаться настолько близкими сравнениями (Эпикур ничего не знал об излучении абсолютно черного тела, атомных спектрах, фотоэлектрическом эффекте и любых других экспериментальных результатах, послуживших причиной развития квантовой механики). Вводя в употребление свое «отклонение», Эпикур, помимо прочего, руководствовался желанием оставить пространство для свободной воли — по сути, предлагал избавиться от демона Лапласа задолго до того, как зловредное чудовище впервые подняло свою уродливую голову. Однако еще одним мотивом было стремление объяснить, как так получается, что индивидуальные атомы собираются вместе и формируют макроскопические объекты, вместо того чтобы просто падать на Землю.

Римский поэт и философ Лукреций (около 50 года до н. э.) был ярым приверженцем теории атомизма и верным последователем Эпикура; он стал главным вдохновителем поэзии Вергилия. Его поэма «О природе вещей» (De Rerum Natura) — величайшее произведение, разъясняющее эпикурейскую философию и применяющее ее к всевозможным аспектам существования, от космологии до повседневной жизни. Среди его основных интересов было развенчивание суеверий; представьте себе Карла Сагана, пишущего строки в латинском гекзаметре. Знаменитый фрагмент «О природе вещей» учит не бояться смерти, которую Лукреций полагает всего лишь промежуточным состоянием в бесконечной игре атомов.

Лукреций применил теорию атомизма, и в частности идею отклонения, к вопросу происхождения Вселенной. Вот как, по его мнению, это случилось:

Первоначала вещей, разумеется, вовсе невольно

Все остроумно в таком разместилися стройном порядке

И о движеньях своих не условились раньше, конечно,

Но многократно свои положения в мире меняя,

От бесконечных времен постоянным толчкам подвергаясь,

Всякие виды пройдя сочетаний и разных движений,

В расположенья они, наконец, попадают, из коих

Вся совокупность вещей получилась в теперешнем виде. [189]

Первые строки следует читать с определенной долей сарказма. Лукреций высмеивает идею о том, что атомы каким-то образом могли сговориться и создать космос; на самом деле они просто-напросто хаотично летают туда-сюда. Однако, несмотря на случайный характер движения, мы тем не менее увидим зарождение Вселенной, если потратим на ожидание достаточно много времени.

Схожесть со сценарием Больцмана по-настоящему поражает. Тем не менее не следует забываться и приписывать античным философам понимание современных научных взглядов. Они жили в иные времена, по-иному смотрели на жизнь и работали исходя из иных предпосылок, отличных от тех, с которыми приходится иметь дело нам сегодня. И все же схожесть сценариев сотворения, предложенных Лукрецием и Больцманом, — не просто совпадение. В обоих случаях стояла задача объяснить возникновение очевидно чрезвычайно сложного окружающего мира, не ссылаясь на общий замысел, а отталкиваясь исключительно от случайного движения атомов. Неудивительно, что они пришли к практически идентичным выводам. А идею о том, что наша наблюдаемая Вселенная — это случайная флуктуация в вечном космосе, абсолютно справедливо будет называть «сценарием Больцмана—Лукреция» происхождения Вселенной.

Однако может ли реальный мир действительно быть таким? Правда ли, что мы живем в вечной Вселенной, которая большую часть времени пребывает в равновесии и лишь изредка демонстрирует отклонения, выглядящие как мир вокруг нас? Здесь нам приходится полагаться на математический формализм, разработанный Больцманом и его коллегами, к которому у Лукреция доступа не было.

 

Собирая яйцо из осколков

Проблема сценария Больцмана—Лукреция не в том, что невозможно создать Вселенную подобным образом; в контексте ньютоновского пространства—времени (с бессмертными атомами, сталкивающимися друг с другом и периодически порождающими случайные флуктуации, уменьшающие значение энтропии), если подождать достаточно долго, область именно того размера и формы, которыми обладает наша Вселенная, совершенно точно однажды появится.

Проблема в том, что числа не складываются. Определенно, возможна флуктуация в нечто, что выглядит как наша Вселенная. Но при этом возможны и другие флуктуации во множество других конфигураций. И эти другие конфигурации выигрывают за счет очевидного численного перевеса.

Вместо того чтобы пытаться уложить в голове идею о невообразимо огромном наборе частиц, случайным образом складывающихся в нечто вроде окружающей нас Вселенной (или хотя бы галактики), давайте немного упростим сюжет и рассмотрим один из наших любимых примеров, показывающих действие энтропии, — яйцо. Целое, неразбитое яйцо довольно упорядоченно и обладает очень низкой энтропией. Если же мы разобьем яйцо, то энтропия возрастет, а если в дополнение к этому мы взобьем его ингредиенты, то энтропия увеличится еще больше. Состоянием с максимальной энтропией будет суп из отдельных молекул; детали конфигурации будут зависеть от температуры, наличия гравитационного поля и т. д., но все это не важно для наших текущих целей. Смысл в том, что конечное состояние не будет иметь ничего общего с неразбитым яйцом.

Представьте себе, что мы берем такое яйцо и запечатываем его в абсолютно непроницаемый контейнер, способный просуществовать целую вечность, не будучи потревоженным остальной Вселенной. Для удобства мы помещаем яйцо-в-контейнере в межзвездное пространство, вдали от любых гравитационных или внешних сил, и воображаем, что на протяжении вечности оно спокойно парит, не подвергаясь никакому внешнему воздействию. Что будет происходить внутри контейнера?

Даже если изначально мы положили в контейнер неразбитое яйцо, в конце концов оно разобьется — просто вследствие случайных перемещений его молекул. Какое-то время оно проведет в форме неподвижного разбитого яйца, разделенного на желток, белок и скорлупу. Но если мы подождем достаточно долго, то дальнейшие случайные перемещения постепенно приведут к разрушению и смешиванию желтка и белка и даже скорлупы, и в итоге у нас получится истинно высокоэнтропийное состояние единообразных молекул яйца. Это равновесие, и оно продлится необычайно долгое время.

Однако если мы еще подождем, то те же случайные перемещения, которые изначально заставили яйцо разбиться, продолжат передвигать молекулы, образуя состояния с более низкой энтропией. Например, все молекулы могут скопиться у одной стенки контейнера. И по прошествии очень большого времени случайные перемещения приведут к воссозданию объекта, выглядящего в точности как разбитое яйцо (скорлупа, желток и белок) или даже как неразбитое яйцо! Это заявление кажется абсурдным, но оно непосредственно следует из теоремы о возвращении Пуанкаре и полностью удовлетворяет идее о случайных флуктуациях на протяжении невероятно продолжительных периодов времени.

По большей части процесс формирования яйца посредством случайных перемещений составляющих его молекул будет выглядеть как обратная перемотка во времени процесса превращения целого яйца в высокоэнтропийную однородную массу: сначала мы увидим, как из массы формируется разбитое яйцо, а потом осколки разбитого яйца случайным образом собираются так, что в результате получается целое яйцо. Это всего лишь следствие симметрии относительно обращения времени; наиболее распространенные варианты эволюции из высокой энтропии в низкую выглядят как отражения во времени наиболее распространенных вариантов эволюции из низкой энтропии в высокую.

Рис. 10.5. Яйцо, навечно запечатанное в непроницаемый контейнер. Большую часть времени в контейнере будут находиться молекулы яйца в высокоэнтропийном равновесном состоянии. Изредка они будут переходить в конфигурацию с небольшой энтропией, напоминающую разбитое яйцо, как в верхнем ряду. Еще реже эта система будет опускаться до нижней отметки энтропии и образовывать неразбитое яйцо, а затем опять возвращаться к высокоэнтропийному состоянию, как в нижнем ряду

Однако это и есть камень преткновения. Предположим, что такое яйцо, запечатанное в непроницаемый контейнер, существует, и мы заглядываем внутрь контейнера по прошествии абсурдно долгого времени — намного больше времени возврата, в течение которого яйцо было предоставлено само себе. Наиболее вероятно, что перед нашими глазами предстанет картина, очень близкая к равновесному состоянию: однородная смесь из молекул яйца. Но предположим также, что нам необычайно повезло и в контейнере обнаруживается нечто, напоминающее разбитое яйцо: состояние со средней энтропией, в котором осколки скорлупы и желток плавают в лужице белка. Другими словами, мы видим яйцо в том виде, каким оно должно быть, если совсем недавно оно было целым и по каким-то причинам внезапно разбилось.

Имеем ли мы право, видя такое разбитое яйцо, уверенно делать вывод о том, что совсем недавно в контейнере находилось яйцо в целом, нетронутом состоянии? Вовсе нет. Вспомните обсуждение в конце главы 8. Если дана конфигурация со средней энтропией и при этом отсутствуют какие-либо знания о микроскопическом состоянии или предположения вроде гипотезы о прошлом (которая, очевидно, неприменима в контексте этого древнего запечатанного контейнера), можно сделать только один вывод: с подавляющей вероятностью это состояние стало следствием высокоэнтропийного прошлого и также с подавляющей вероятностью оно развивается в сторону высокоэнтропийного будущего. Иными словами, у разбитого яйца не больше шансов стать результатом эволюции целого яйца, чем эволюционировать далее в целое яйцо. Таким образом, это вообще очень маловероятно.

 

Мозг Больцмана

Пример с яйцом в контейнере иллюстрирует фундаментальную проблему сценария Больцмана—Лукреция: невозможно апеллировать к гипотезе о прошлом, заявляющей о существовании низкоэнтропийного состояния в прошлом, потому что Вселенная (или яйцо) просто проходит циклически через все возможные для нее конфигурации, делая это с предсказуемой частотой. Во Вселенной, существующей вечно, нет такого понятия, как «начальное состояние».

Идея о том, что Вселенная большую часть времени пребывает в термодинамическом равновесии, но мы все же можем апеллировать к антропному принципу, чтобы объяснить, почему наше локальное окружение не находится в равновесии, позволяет сделать уверенное предсказание — и это предсказание, тем не менее, уверенно опровергается реальными данными. Это предсказание заключается всего лишь в том, что мы должны находиться как можно ближе к состоянию равновесия, при условии, что у нас (при каком-то допустимом определении того, кто такие «мы»), в принципе, должна быть возможность существовать. Флуктуации случаются, но крупные флуктуации (такие, как образование неразбитого яйца) происходят куда реже, чем мелкие (такие, как образование разбитого яйца). Это хорошо видно на рис. 10.3, где кривая показывает множество мелких флуктуаций и всего лишь пару больших. А Вселенная, которую мы наблюдаем вокруг себя, не может не быть поистине гигантской флуктуацией.

Мы могли бы еще точнее описать, как выглядела бы Вселенная, если бы она представляла собой вечную систему, колеблющуюся вокруг равновесия. Для объяснения, почему мы не обнаруживаем себя в одной из более обыденных для нее равновесных фаз, Больцман обращался к антропному принципу (хотя и не называл его этими словами): в равновесии жизнь существовать не может. Очевидно, что нам необходимо найти во Вселенной наиболее типичные условия, являющиеся при этом благоприятными для жизни. Или же, если быть немного точнее, нам следует искать условия, благоприятные не просто для жизни, но для определенного вида разумной и сознательной жизни, к которому мы себя причисляем.

Может быть, это и есть искомый ответ? Возможно, могли бы рассуждать мы, для появления такой продвинутой научной цивилизации, как наша, требуется «система поддержки» в форме целой Вселенной, наполненной звездами и галактиками и к тому же рожденной в определенных начальных условиях, характеризующихся сверхнизкой энтропией? Возможно, это могло бы объяснить, почему вокруг себя мы наблюдаем такую расточительную Вселенную.

Но нет. Вот как надо играть в эту игру. Вы называете мне конкретный объект, необходимость существования которого во Вселенной объясняется антропными причинами: Солнечная система, планета, определенная экосистема, тип сложной жизни, комната, в которой вы сейчас находитесь, — все что угодно. А затем мы спрашиваем: «С учетом этого требования, каково наиболее вероятное состояние оставшейся части Вселенной в сценарии Больцмана—Лукреция в дополнение к конкретному объекту, про который мы спрашиваем?»

Ответ всегда будет одним и тем же: наиболее вероятное состояние оставшейся части Вселенной — равновесие. Если мы спросим: «По какому пути бесконечный контейнер с газом, находящийся в равновесии, с наибольшей вероятностью может перейти в состояние, включающее тыквенный пирог?», то ответом будет: «Через флуктуацию в состояние, содержащее тыквенный пирог, одиноко плавающий в контейнере с газом, однородным везде, кроме этого пирога». Добавление чего угодно к этой картине как в пространстве, так и во времени — печи, пекаря, ранее существовавшей грядки с тыквами — всего лишь делает сценарий менее вероятным, так как для его воплощения энтропии пришлось бы упасть еще ниже. Получается, что самый простой способ получить в этом контексте тыквенный пирог — подождать, пока он сам по себе постепенно не сформируется из окружающего хаоса из-за флуктуаций.

Артур Эддингтон в своей лекции 1931 года рассматривал абсолютно допустимый антропный критерий:

Вселенная, содержащая физиков-математиков [при таких предположениях], в любую заданную дату будет находиться в состоянии максимальной дезорганизации, не противоречащей существованию подобных существ. [192]

Эддингтон предполагает, что для создания качественной Вселенной обязательно требуется физик-математик. К сожалению, если Вселенная — это подверженный вечным колебаниям набор молекул, то чаще всего в ней будут встречаться физики-математики, одиноко существующие сами по себе в окружении хаоса.

Доведем эти рассуждения до логического конца. Если нам требуется всего лишь одна планета, то мы, определенно, не испытываем необходимости в сотнях миллиардов галактик с сотней миллиардов звезд в каждой. И если нам нужен один человек, то нет никакого смысла в целой планете. А если речь идет на самом деле об одном-единственном разуме, способном размышлять о мире, то отпадает необходимость даже в целом человеке — достаточно всего лишь его или ее мозга.

Таким образом, доведя данный сценарий до абсурда, мы заключаем, что подавляющее большинство разумов в этой Мультиленной будут представлять собой одинокие, не связанные ни с какими телами мозги, которые постепенно, за счет флуктуаций, появляются из окружающего хаоса и так же неторопливо растворяются в нем. Подобные печальные создания с легкой руки Андреаса Альбрехта и Лоренцо Сорбо получили название «больцмановские мозги». Вы и я — не больцмановские мозги. Нас можно было бы назвать «обычными наблюдателями», которые не вылупились самостоятельно из окружающего равновесия, а постепенно эволюционировали из существовавшего ранее состояния с очень низкой энтропией. Таким образом, гипотеза о том, что наша Вселенная — это случайная флуктуация из состояния равновесия в вечном пространстве—времени, похоже, опровергнута.

Нам ничто не мешало спокойно следовать этой линии рассуждений, когда речь шла всего лишь о яйце, но стоит начать сравнивать количество бестелесных мозгов с количеством обычных наблюдателей, и мы сразу же дергаем стоп-кран. Тем не менее и в том и в другом случае логика одна и та же, если (и это очень важное «если»!) мы рассматриваем вечную Вселенную, полную совершающих случайные колебания частиц. В такой Вселенной мы знаем, какие типы флуктуаций случаются и как часто это происходит; чем сильнее изменяется энтропия, тем менее вероятна соответствующая флуктуация. Неважно, как много обычных наблюдателей существует сегодня в нашей Вселенной — их число совершенно ничтожно по сравнению с тем, сколько больцмановских мозгов появится в будущем. Любой наблюдатель — это, по сути, набор частиц в определенном состоянии, и данное состояние будет встречаться бесконечно часто. А ситуации, когда этот набор частиц будет окружен высокоэнтропийным хаосом, будут возникать намного чаще, чем ситуации, когда ему удастся выступить в роли одной из составляющих частей «обычной» Вселенной.

Теперь, просто чтобы ничего не упустить: а вы точно уверены, что вы не больцмановский мозг? Вероятно, сейчас вы возразите, что прекрасно чувствуете остальные части своего тела, видите другие объекты вокруг себя и, если уж на то пошло, у вас есть воспоминания о низкоэнтропийном прошлом: все эти вещи несовместимы с идеей о том, что вы в действительности — бестелесный мозг, недавно выделившийся из окружающих молекул. Однако проблема в том, что на самом деле любые подобные утверждения о предполагаемом состоянии внешнего мира — это утверждения о состоянии вашего мозга. Ваши чувства, ваше зрительное восприятие, ваши воспоминания — все это определяется состоянием мозга. Мы вполне можем вообразить, что мозг, обладающий в точности такими же ощущениями, взял и выделился из окружающего хаоса. И, как мы уже говорили выше, вероятность того, что в результате какой-то флуктуации появится одинокий мозг, гораздо выше вероятности появления такого же мозга, но в составе гигантской Вселенной. В сценарии Больцмана—Лукреция у нас нет возможности обратиться за помощью к гипотезе о прошлом, поэтому весьма высока вероятность того, что все наши воспоминания фальшивы.

Тем не менее можно с легким сердцем отмести эту возможность, всего лишь подойдя со всей строгостью к заявлению, которое мы пытаемся сделать. Неправильно говорить: «Я знаю, что я не больцмановский мозг, следовательно, Вселенная не может быть случайной флуктуацией». Правильно говорить: «Если бы я был больцмановским мозгом, то существовало бы надежное предсказание: все остальные составляющие Вселенной должны находиться в равновесии. Но это не так. Следовательно, Вселенная не может быть случайной флуктуацией». Если же придерживаться скептического настроя, то мы можем дополнительно задаться вопросом: а вдруг не только наше текущее ментальное состояние, но и все дополнительные сенсорные данные, которые мы, очевидно, аккумулируем, представляют собой всего лишь какую-то случайную флуктуацию, а вовсе не точное описание нашего реального окружения? Строго говоря, такое тоже вполне вероятно, но это весьма шаткое заявление с когнитивной точки зрения по причинам, которые мы обсуждали в предыдущей главе. В этом случае просто не существует осмысленных понятий жизни, и мышления, и действия, поэтому нет никаких причин считать его истинным. Лучше принимать окружающую нас Вселенную такой, какой она (по большей части) кажется.

Эту идею в своем фирменном простом и доступном стиле изложил Ричард Фейнман в знаменитых Фейнмановских лекциях по физике:

…из гипотезы, что мир — это флуктуация, следует, что когда мы взглянем на часть мира, прежде нами не виденную, мы должны обнаружить в ней смесь, беспорядок, — в отличие от известного нам прежде мира. Если весь наш порядок есть флуктуация, выброс, мы не смеем надеяться на порядок где-либо сверх того, где он уже обнаружен…

Из этого мы заключаем, что Вселенная — не флуктуация и что наш порядок — это память о тех временах, когда все только начиналось. Мы не говорим, что нам понятна логика этого. По каким-то причинам Вселенная когда-то имела очень малую для своего энергосодержания энтропию, и с той поры энтропия возросла. Это путь по направлению в будущее. В этом начало всех необратимостей. Именно это порождает процессы роста и распада. Именно из-за этого мы вспоминаем не будущее, а прошлое, вспоминаем события, которые ближе к тому моменту в истории мира, когда было больше порядка, чем сейчас. Именно поэтому мы не способны вспомнить события того времени, когда больше беспорядка, чем сейчас, — мы называем это время будущим. [194]

 

Кто мы такие в Мультиленной?

Нам осталось разделаться с последней лазейкой, и дверь в сценарий Больцмана—Лукреция будет окончательно запечатана. Для начала мы соглашаемся со следствиями из традиционной статистической механики: небольшие флуктуации энтропии случаются намного чаще крупных, а подавляющее большинство разумных наблюдателей во Вселенной, бесконечно колеблющейся вокруг равновесия, будут обнаруживать себя в полном одиночестве в высокоэнтропийном окружении, а не эволюционирующими естественным образом из более ранней конфигурации, обладавшей невероятно низкой энтропией.

Кто-то может спросить: ну и что? Почему меня должно волновать то, что большинство наблюдателей (при любом возможном определении «наблюдателя») так же одиноки, как монструозные флуктуации на высокоэнтропийной сцене? Меня волнует исключительно то, кто я такой, а не то, на что похоже большинство наблюдателей. И раз на извечном жизненном пути мира в целом (каким бы он ни был) существует тот единственный экземпляр Вселенной, который я вижу вокруг себя, я могу смело заявлять: наблюдаемая картина соответствует данным.

Другими словами, использование аргументации, основанной на больцмановском мозге, соответствует явному предположению о том, что мы каким-то образом стали «типичными наблюдателями» во Вселенной и, следовательно, должны строить прогнозы исходя из вопроса, какая картина предстанет перед взором большинства наблюдателей. Звучит довольно безобидно, даже скромно. Но если приглядеться получше, станет очевидно, что эта цепочка рассуждений ведет к куда более серьезным заключениям, чем мы в состоянии обосновать.

Представьте себе, что у нас есть две теории Вселенной, идентичные по всем показателям, за исключением того, что, согласно первой, некая похожая на Землю планета, вращающаяся вокруг звезды Тау Кита, служит домом для расы из десяти триллионов разумных ящероподобных созданий, в то время как другая предсказывает, что в системе Тау Кита не существует вообще никакой разумной жизни. Большинство из нас не будут возражать, что мы не обладаем в настоящее время достаточной информацией, чтобы согласиться с одной или другой теорией. Но если мы действительно являемся типичными наблюдателями во Вселенной, то из первой теории решительно следует, что, скорее всего, мы и есть те самые ящеры на планете, вращающейся вокруг Тау Кита, а вовсе не люди здесь, на Земле, просто потому, что ящеров намного больше, чем людей. Однако это предсказание неверно; то есть мы, очевидно, исключили саму возможность существования такого числа наблюдателей, даже не прикладывая усилий к сбору реальных данных о том, что в действительности творится в системе Тау Кита.

Предположение о нашей с вами типичности может показаться простой демонстрацией нашей скромности, но на самом деле из него вытекает чрезвычайно сильное заявление о том, что должно происходить в оставшейся части Вселенной. Не просто «мы являемся типичными наблюдателями», но «типичные наблюдатели должны быть похожи на нас». В такой формулировке это выглядит куда серьезнее, чем мы вправе предполагать (в литературе это известно под названием «проблемы самонадеянного философа»). Таким образом, наверное, вообще не следует заниматься сравнением числа разных типов наблюдателей во Вселенной; мы должны лишь спрашивать, предсказывает ли данная теория существование наблюдателей, подобных нам, хоть где-либо. И если такие наблюдатели существуют, то можно соглашаться, что теория соответствует данным. Если бы этот путь мышления был верным, то у нас не было бы причин отбрасывать сценарий Больцмана—Лукреция. Несмотря на то что большинство наблюдателей останутся одинокими во Вселенной, некоторые обнаружат себя в таких областях, как наша, а значит, теория продемонстрирует полное совпадение с практическим опытом.

Проблема такого минималистского подхода в том, что он предлагает не слишком много, а слишком мало инструментов для предсказания событий, которые могут или не могут случиться во Вселенной. Статистическая механика полагается на принцип безразличия — предположение о том, что все микросостояния, соответствующие нашему текущему макросостоянию, одинаково вероятны, по крайней мере если речь идет о предсказании будущего. По сути, это и есть предположение о типичности: наше микросостояние, скорее всего, представляет собой типичную составляющую нашего макросостояния. Если у нас нет возможности делать подобные предположения, то любые виды статистической аргументации нам также недоступны. Мы не можем утверждать, что кубик льда растает в стакане теплой воды, потому что в вечной Вселенной время от времени встречаются периоды, когда происходит ровно противоположное. Похоже, в своем беспокойстве о типичности мы зашли слишком далеко.

Вместо этого нам следует ставить себе целью некое разумное среднее. Претензия на то, чтобы называть себя типичными среди множества наблюдателей во Вселенной, слишком дерзка, так как содержит очень сильное заявление о состоянии множества фрагментов Вселенной, которых мы даже никогда не видели. Тем не менее мы можем смело заявлять, что мы — типичные представители наблюдателей, в точности подобных нам, то есть наблюдателей с такой же, как у нас, базовой физиологией и тем же набором воспоминаний, а также аналогичным, в первом приближении, опытом жизни во Вселенной. Такое предположение не позволяет делать никакие необоснованные выводы о возможном существовании других видов разумных существ где-то еще во Вселенной. Но его более чем достаточно, чтобы опровергнуть сценарий Больцмана—Лукреция. Если Вселенная колеблется вокруг теплового равновесия на протяжении вечности, то появляться в полном одиночестве из окружающего хаоса будет не просто большинство наблюдателей; точно так же от хаоса будет отпочковываться подмножество наблюдателей, обладающих в точности такими же характеристиками, как у меня или у вас, в том числе с нашими предполагаемыми воспоминаниями о прошлом. Подобные воспоминания будут в большинстве случаев ложными, и флуктуация в описываемые ими условия очень маловероятна, но более вероятна, чем флуктуация, порождающая целую Вселенную. Даже этого минимально необходимого условия для выполнения статистических рассуждений: мы выбраны случайным образом из множества всех наблюдателей, в точности идентичных нам, — более чем достаточно, чтобы отмести сценарий Больцмана—Лукреция.

Наблюдаемая нами Вселенная не флуктуация, вернее, она как минимум не может быть статистической флуктуацией в вечной Вселенной, которая большую часть времени проводит в равновесии. Итак, мы поняли, чем наша Вселенная не является. Что же она тогда такое на самом деле, нам еще предстоит выяснить.

 

Финал

Вечером 5 сентября 1906 года Людвиг Больцман взял кусок шнура, привязал его к карнизу в гостиничном номере в Италии, куда он приехал на отдых с семьей, и повесился. Тело было обнаружено его дочерью Эммой, когда она тем вечером вернулась в гостиницу. Больцману было шестьдесят два года.

Причины самоубийства Больцмана по сей день остаются неясными. Некоторые предполагают, что он был подавлен вследствие непопулярности его идей, связанных с атомной теорией. Тем не менее, хотя многие немецкие ученые того времени к атомной теории действительно относились скептически, кинетическая теория превратилась в общемировой стандарт, и статус Больцмана как крупнейшего ученого не ставился под сомнение ни в Австрии, ни в Германии. Больцман страдал от проблем со здоровьем и был склонен к приступам депрессии; до этого он уже совершал попытки самоубийства.

Однако его депрессия носила перемежающийся характер; всего лишь за несколько месяцев до смерти он написал и разослал друзьям увлекательный и полный энтузиазма отчет о совершенной годом ранее поездке в Америку с целью прочесть лекцию в Калифорнийском университете в Беркли. Больцман называл Калифорнию «Эльдорадо», но находил американскую воду непригодной для питья, поэтому пил только пиво и вино. Это вызывало определенные сложности, так как в то время в Америке было очень сильно движение трезвенников, и в Беркли, в частности, было не купить алкогольных напитков. В своем отчете Больцман припоминает множество попыток тайком пронести вино в разные заведения, где оно было запрещено. Мы, вероятно, так никогда и не узнаем, какая комбинация слабого здоровья, депрессии и научных противоречий подтолкнула его сделать последний шаг.

Что касается вопроса существования атомов и их пригодности для понимания свойств макроскопических объектов, то все оставшиеся сомнения в правоте Больцмана были развеяны вскоре после его смерти. В одной из своих работ, сделанных в его «чудесном» 1905 году, Альберт Эйнштейн объясняет броуновское движение (кажущиеся случайными перемещения крохотных частиц, находящихся в воздухе) в терминах столкновений с отдельными атомами; этому труду удалось одержать победу над скептицизмом, оставшимся в кругах физиков.

Разумеется, нам еще предстоит дать ответы на множество вопросов о природе энтропии и втором начале термодинамики. Когда речь заходит об объяснении низкой энтропии ранней Вселенной, мы не можем сказать «Больцман был прав», так как он предложил целый набор разнообразных возможностей, так и не выбрав среди них единственный, по его мнению, верный вариант. Однако он определил направления дальнейших дискуссий и споров, и мы все еще скрещиваем копья над вопросами, над которыми он ломал голову более века назад.

 

Глава 11. Квантовое время

 

Многие из тех, кто в университете прослушал начальный курс физики, могут не согласиться с заявлением о том, что ньютоновскую механику мы понимаем на интуитивном уровне. Единственная ассоциация, которую вызывает у них этот предмет, — это безумная карусель блоков, векторов и наклонных плоскостей, и им никогда бы даже в голову не пришло назвать его «интуитивно понятным».

Однако хотя сам процесс выполнения расчетов в рамках ньютоновской механики — решение домашнего задания или отправка астронавтов на Луну — может быть невыносимо сложным, лежащие в его основе понятия на самом деле довольно просты. Мир сделан из осязаемых вещей, которые мы можем видеть и распознавать: бильярдных шаров, планет, подъемных блоков. Эти вещи оказывают воздействие или сталкиваются друг с другом, и под влиянием подобных воздействий направление и скорость их движения меняются. Если бы демону Лапласа были известны положения и импульсы всех частиц во Вселенной, он мог бы абсолютно точно предсказывать прошлое и будущее. Мы знаем, что это за пределами наших возможностей, однако вполне в наших силах вообразить, что нам известны положения и импульсы нескольких бильярдных шаров на лишенном трения столе, и, по крайней мере в принципе, мы можем представить выполнение соответствующих математических расчетов. После этого дело остается за экстраполяцией и отвагой, и мы сможем объять всю Вселенную.

Физики, желающие подчеркнуть, что это не просто набор каких-то законов, сформулированных Ньютоном, называют ньютоновскую механику «классической» механикой. Классическая механика — это способ мышления о глубинной структуре мира. Разные типы объектов — бейсбольные мячи, молекулы газа, электромагнитные волны — подчиняются разным правилам, но все эти правила по своей структуре однотипны. Суть сходства в том, что у любого объекта есть определенного рода «положение» и определенного рода «импульс», и на основе этой информации можно предсказывать, что будет происходить дальше.

Подобная структура повторяется во множестве контекстов: собственная теория гравитации Ньютона, разработанная Максвеллом теория XIX века об электричестве и магнетизме и общая теория относительности Эйнштейна вписываются в рамки этого шаблона. Классическую механику нельзя назвать еще одной теорией; это парадигма, способ концептуализации сути физической теории, продемонстрировавший поразительный масштаб успеха при применении на эмпирическом уровне. После публикации Ньютоном в 1687 году его шедевра Philosophiæ Naturalis Principia Mathematica («Математические начала натуральной философии») стало практически невозможно вообразить, что физикой можно заниматься как-то по-другому. Мир сделан из тел, характеризующихся положениями и импульсами, которые перемещаются под воздействием определенных наборов сил; задачей физики было классифицировать эти тела по типам и выяснить, что за силы на них действуют. На этом ее работа должна была быть закончена.

Тем не менее мы с вами уже знаем, что не все так просто и классическая механика неверна. В первые десятилетия XX века физикам, пытающимся разобраться в поведении материи в микроскопических масштабах, пришлось постепенно смириться с мыслью о том, что старые правила придется объявить недействительными и заменить чем-то еще. Этим чем-то еще стала квантовая механика — возможно, величайший триумф человеческого разума и воображения за всю историю. Квантовая механика предлагает картину мира, радикально отличающуюся от картины, создаваемой классической механикой, и ученые никогда всерьез не задумались бы о ней, если бы экспериментальные данные не исключали любые другие варианты. Сегодня квантовая механика наслаждается статусом, который с гордостью носила классическая механика на заре XX века: она с успехом прошла множество эмпирических проверок, и большинство исследователей согласны, что окончательные законы физики должны быть квантово-механическими по природе.

Однако, несмотря на такой триумф, квантовая механика остается чрезвычайно загадочным предметом. Физики полностью доверяют квантовой механике в смысле практического применения: они строят теории, делают предсказания и экспериментально проверяют теоретические результаты, не встречая на этом пути никаких двусмысленностей или неопределенностей. Тем не менее мы до сих пор не можем быть до конца уверены, знаем ли мы, что такое в действительности квантовая механика. Есть одно солидное направление интеллектуальной деятельности, на которое тратят свои силы и время немало талантливых ученых и философов. Это направление известно под названием «интерпретация квантовой механики». Столетие назад не было никакой «интерпретации классической механики» — классическая механика достаточно проста и понятна, для того чтобы ее интерпретация не требовала особых усилий. Но что касается квантовой механики, нам пока неясно, как же правильно думать и говорить о ней.

Эта озабоченность интерпретациями порождается единственным базовым отличием между квантовой механикой и классической механикой, одновременно и кажущимся банальным, и имеющим поистине сокрушительные последствия.

Согласно квантовой механике, то, что мы способны наблюдать в окружающем мире, представляет собой лишь крохотное подмножество того, что на самом деле существует.

Попытки объяснить данный принцип зачастую всего лишь размывают его до полной неузнаваемости. «Это как тот ваш друг с чудесной улыбкой, которого как ни сфотографируешь — улыбка куда-то пропадает». В действительности квантовая механика намного содержательнее. В классическом мире могут возникать сложности с тем, чтобы точно измерить какую-то величину; необходимо соблюдать крайнюю осторожность, чтобы не потревожить изучаемую систему. Однако ничто в классической физике не запрещает нам проявлять такую осторожность. В квантовой механике, с другой стороны, существует непреодолимое препятствие, из-за которого полные и при этом неразрушающие наблюдения физической системы нам недоступны. Это попросту в общем случае невозможно. Что именно происходит, когда вы пытаетесь пронаблюдать за каким-то объектом или системой, и что можно считать фактическим «измерением» — вот основные вопросы. Эта загадка носит крайне полезное название «проблемы измерения» (с тем же успехом «проблемой с машиной» можно было бы назвать ситуацию, когда автомобиль падает с утеса и, пролетая несколько сотен футов, разбивается о скалы на мелкие кусочки). В успешных физических теориях не должно существовать подобных неопределенностей; четкие определения — это главное, что нас в них интересует. Квантовая механика, несмотря на ее несомненную успешность, пока что такого уровня ясности не достигла.

Тем не менее это вовсе не означает, что наука пошла вразнос или что загадками квантовой механики можно оправдывать любые свои убеждения. В частности, квантовая механика не утверждает, что вы способны менять реальность, просто думая о ней, или что современная физика всего лишь заново открыла мудрость древних буддистов. Правила существуют, и мы знаем, как они действуют в условиях, представляющих интерес для нашей повседневной жизни. Однако нам хотелось бы понимать, как эти правила работают в любых ситуациях, какие только можно себе представить.

Большинство современных физиков расправляются с проблемами интерпретации квантовой механики с помощью проверенной веками стратегии «отрицания». Они знают, как правила работают в интересующих их случаях, они могут заставить квантовую механику работать в определенных обстоятельствах и добиться поразительного согласия с экспериментальными данными, и им совершенно не хочется забивать себе голову досадными вопросами о том, что это все означает и можно ли назвать эту теорию абсолютно корректной. Подобная стратегия по большей части вполне отвечает нашим целям в этой книге. Проблема стрелы времени стояла перед Больцманом и его коллегами еще до изобретения квантовой механики, и мы также можем долго и продуктивно рассуждать об энтропии и космологии, не беспокоясь о деталях квантовой механики.

И все же в определенный момент нам придется взглянуть проблеме в лицо. В конце концов, стрела времени — это фундаментальная загадка, и весьма вероятно, что квантовая механика сыграет решающую роль в поиске ответа на нее. Однако есть нечто, представляющее для нас еще больший интерес: тот самый процесс измерения, являющийся средоточием всей интерпретационной неразберихи, обладает примечательным свойством, а именно необратимостью. Один-единственный в толпе общепризнанных и всем известных законов физики, процесс квантового измерения определяет стрелу времени. Однажды выполнив его, вы уже не сможете отменить содеянное. В этом и кроется загадка.

Возможно, эта загадочная необратимость по своей природе аналогична загадочной термодинамической необратимости, описываемой вторым началом: ее создают приближения и отбрасывание информации, тогда как сами по себе фундаментальные физические процессы обратимы. В этой главе я буду отстаивать данную точку зрения. Тем не менее среди экспертов единого мнения по этому вопросу до сих пор нет. Единственное, что не вызывает сомнений, так это необходимость всерьез заниматься проблемой измерений, если нас интересует стрела времени.

 

Квантовая кошка

Благодаря мысленным экспериментам Эрвина Шрёдингера в научной среде надежно укоренилась традиция при обсуждении квантовой механики ставить опыты на кошках. Кот Шрёдингера был призван иллюстрировать сложности, связанные с проблемой измерения, однако прежде чем углубляться в тонкости, мы потратим немного времени на изучение основ теории. И в наших мысленных экспериментах ни одно животное не пострадает.

Представьте себе, что у вашей кошки Китти два любимых места в доме: на диване и под столом в гостиной. В реальном мире существует бесконечно много положений, которые может занять такой физический объект, как кошка; точно существует бесконечно много значений ее импульса, даже если ваша кошка обычно перемещается по квартире довольно неспешно. Для того чтобы добраться до сути квантовой механики, мы будем все очень сильно упрощать. Так что вообразите, что мы можем полностью описать состояние Китти, как принято в классической механике, просто указав, находится она на диване или под столом. Мы отбрасываем всю информацию о ее скорости, не принимаем во внимание, на какой именно части дивана она лежит, и вообще не учитываем никакие другие положения, не подпадающие под определение «дивана» и «стола». С классической точки зрения мы упрощаем Китти до системы с двумя состояниями. (Системы с двумя состояниями существуют в реальном мире; например, спин электрона или фотона может быть направлен либо вверх, либо вниз. Квантовое состояние системы с двумя состояниями описывается «кубитом» (квантовым битом).)

И здесь мы встречаемся с первым крупным отличием квантовой механики от классической механики: в квантовой механике нет такого понятия, как «местоположение кошки». Классическая механика допускает, что нам не известно, где находится Китти, поэтому мы вправе делать заявления вроде: «Думаю, с вероятностью 75 % она сидит под столом». Однако это всего лишь заявление о нашей неосведомленности, а не о состоянии мира; тот факт, что кошка пребывает в одном из возможных местоположений, неоспорим, и это никак не зависит от того, известно нам об этом или нет.

В квантовой механике не бывает неоспоримых фактов, свидетельствующих о пребывании Китти (или чего угодно еще) в каком-то конкретном месте. Просто-напросто пространство состояний в квантовой механике так не работает. Вместо этого для указания состояний используется штука, известная под названием волновой функции. И волновая функция не дает результатов вроде: «кошка лежит на диване» или «кошка лежит под столом». Она способна сообщать лишь вещи вроде: «если мы поищем, то с вероятностью 75 % обнаружим кошку под столом, а с вероятностью 25 % обнаружим ее на диване».

Отличие «неполного знания» от «фундаментальной квантовой неопределенности» стоит того, чтобы покопаться в нем подольше. Если волновая функция утверждает, что с 75-процентной вероятностью мы найдем кошку под столом, а с 25-процентной — на диване, то значит ли это, что с вероятностью 75 % кошка находится под столом, а с вероятностью 25 % она находится на диване? Нет, такого понятия, как «кошка находится там-то», не существует. Ее квантовое состояние описывается суперпозицией двух разных положений, с которыми мы могли бы работать в классической механике. Суть даже не в том, что оба утверждения одновременно истинны, а в том, что единственно «истинного» местоположения, в котором пребывает кошка, попросту нет. Волновая функция — это лучшее описание реальности кошки, какое только мы в состоянии построить.

Понятно, что согласиться с подобными утверждениями, впервые столкнувшись с ними, очень сложно. И если уж откровенно, наш мир совершенно не кажется нам таким. Когда мы смотрим вокруг, мы видим кошек и планеты и даже электроны, занимающие определенные положения, а не в суперпозициях различных положений, описываемых волновыми функциями. Но в этом и кроется секрет волшебства квантовой механики: то, что мы видим, вовсе не обязательно совпадает с реальностью. Волновая функция действительно существует, но мы не в состоянии ее увидеть; мы видим вещи так, словно они находятся в определенных заурядных классических конфигурациях.

Однако это совершенно не означает, что мы не можем полагаться на классическую физику в таких делах, как игра в баскетбол или запуск спутников на орбиту. В квантовой механике не существует «классического предела», в котором объекты ведут себя так, как если бы Ньютон всегда был прав, и этот предел включает в себя весь наш каждодневный опыт. Мы никогда не обнаруживаем объекты макроскопических размеров, такие как кошки, в суперпозициях в форме «75 % здесь, 25 % там»; для них всегда верно «99,9999999 процента (или больше) здесь, 0,0000001 процента (или намного меньше) там». Классическая механика — это приблизительное описание работы макроскопического мира, и это очень хорошее приближение. Реальный мир живет по правилам квантовой механики, однако классической механики более чем достаточно для повседневной жизни. Лишь начав рассматривать атомы и элементарные частицы, мы в полной мере сталкиваемся со следствиями квантовой механики и понимаем, что теперь без нее никуда.

 

Как работают волновые функции

Вы можете задаваться вопросом: а откуда мы знаем, что написанное выше — правда? В конце концов, какая разница между «существует 75-процентная вероятность увидеть кошку под столом» и «существует 75-процентная вероятность того, что кошка находится под столом». Трудно вообразить эксперимент, который мог бы провести различие между этими вероятностями; в конце концов, единственный способ узнать, где кошка, — посмотреть в ее любимых местах. Однако существует критически важное явление, благодаря которому суть различия становится очевидной. Это квантовая интерференция. Чтобы понять, что это значит, придется запастись терпением и углубиться в детали того, как в действительности работают волновые функции.

В классической механике, где для описания состояния частицы указывают ее положение и импульс, об этом состоянии можно думать как о наборе чисел. Для одной частицы в обычном трехмерном пространстве необходимо указать шесть чисел: положение в каждом из трех направлений и импульс в каждом из трех направлений. В квантовой механике состояние описывается волновой функцией, которую также можно представлять себе как набор чисел. Задача этих чисел — сообщать нам для любого наблюдения или измерения, которое нам только вздумается выполнить, какова вероятность того, что мы получим определенный результат. Таким образом, казалось бы, совершенно естественно полагать, что необходимые нам числа — это самые обыкновенные вероятности: вероятность того, что мы увидим Китти на диване, вероятность того, что мы увидим Китти под столом, и т. д.

Выясняется, однако, что это работает совсем не так. Волновые функции на самом деле схожи с волнами: типичная волновая функция колеблется в пространстве и времени подобно волне на поверхности пруда. Это не совсем очевидно в нашем простом примере, предусматривающем только два возможных результата наблюдений: «на диване» и «под столом». Но если рассмотреть наблюдения с непрерывным множеством возможных исходов, например наблюдение за положением реальной кошки в реальной комнате, то многое сразу же прояснится. Волновая функция похожа на волну на поверхности пруда; единственная разница в том, что это волна в пространстве всех возможных результатов наблюдения: например, всех возможных положений в комнате.

Когда мы видим реальную волну, то замечаем, что относительно поверхности пруда в спокойном состоянии высота воды в волне в разных местах разная. Где-то она выше уровня спокойной воды, а где-то она опускается ниже. Для того чтобы описать волну математически, мы могли бы с каждой точкой пруда связать амплитуду — уровень воды относительно поверхности непотревоженной водной глади. В одних местах амплитуда будет положительной, в других — отрицательной. Волновые функции в квантовой механике работают точно так же. С каждым возможным результатом наблюдения волновая функция связывает число, которое мы называем амплитудой и которое может быть положительным или отрицательным. Полная волновая функция состоит из определенной амплитуды для каждого возможного результата наблюдения; это и есть числа, описывающие состояние в квантовой механике аналогично положениям и импульсам, которые описывают состояние в классической механике. Существует амплитуда, соответствующая пребыванию Китти под столом, и еще одна амплитуда, соответствующая нахождению ее на диване.

При таких условиях у нас остается только одна нерешенная проблема: мы говорим о вероятностях, а вероятность наступления какого-то события никогда не может быть отрицательным числом. Таким образом, нельзя утверждать, что амплитуда, связанная с определенным результатом наблюдения, дает вероятность наступления этого результата; вместо этого должен существовать способ вычисления вероятности, основанный на известном значении амплитуды. К счастью, расчет очень прост! Для того чтобы получить вероятность, нужно взять амплитуду и возвести ее в квадрат:

(вероятность увидеть X) = (амплитуда, связанная с X) 2 .

Таким образом, если волновая функция Китти связывает амплитуду 0,5 с возможностью увидеть кошку на диване, вероятность на самом деле увидеть ее там равняется (0,5)2 = 0,25, или 25 %. Принципиально важно то, что значение амплитуды могло бы быть отрицательным, то есть –0,5, и мы все равно получили бы тот же самый ответ: (–0,5)2 = 0,25. Это может казаться бессмысленным излишеством — две разные амплитуды соответствуют одной и той же физической ситуации, однако выясняется, что наличие положительных и отрицательных значений играет ключевую роль в эволюции состояний в квантовой механике.

 

Интерференция

Теперь, когда нам известно, что волновые функции могут связывать отрицательные амплитуды с возможными результатами наблюдений, можно вернуться к вопросу, почему мы вообще заговорили о волновых функциях и суперпозициях, вместо того чтобы просто приписать вероятности разным исходам. Причина кроется в интерференции, и эти отрицательные значения необходимы для того, чтобы разобраться, откуда она берется. Мы можем сложить две (отличные от нуля) амплитуды и получить нуль, что было бы невозможно, если бы амплитуды никогда не принимали отрицательные значения.

Для того чтобы понять, как это работает, давайте немного усложним нашу модель кошачьей динамики. Представьте себе, что мы видим, как Китти выходит из спальни на втором этаже. Благодаря нашим предыдущим наблюдениям за ее перемещениями по дому мы собрали достаточно много сведений о том, как действует эта квантовая кошка. Мы знаем, что, стоит ей спуститься на первый этаж, она неминуемо окажется либо на диване, либо под столом и нигде больше (то есть ее конечное состояние представляет собой волновую функцию, описывающую суперпозицию пребывания на диване и пребывания под столом). Однако предположим также, что нам известно о существовании двух возможных путей, ведущих от кровати на втором этаже до одного из мест отдыха на первом этаже: Китти сделает остановку либо у миски с кормом, чтобы подкрепиться, либо у когтеточки, чтобы поточить когти. В реальном мире для описания всех этих возможностей достаточно классической механики, но в нашем идеализированном мире мысленного эксперимента мы считаем, что квантовые эффекты играют важную роль.

Теперь посмотрим, какие результаты в действительности дает наше наблюдение. Мы проведем эксперимент двумя разными способами. Во-первых, увидев Китти на первом этаже, мы будем тихонечко следовать за ней, для того чтобы увидеть, по какому маршруту она пойдет: мимо миски с кормом или мимо когтеточки. Вообще-то у нее есть волновая функция, описывающая суперпозицию обеих возможностей, но когда мы проводим фактический эксперимент, мы всегда получаем конкретный результат. Мы ведем себя тише воды ниже травы, и кошка нас совсем не замечает; если хотите, можете даже вообразить, что мы оснастили весь дом шпионскими камерами или лазерными датчиками. Совершенно не важно, с помощью какой технологии мы выясняем, подходит Китти к миске или к когтеточке; главное, что мы пронаблюдали это действие.

Мы обнаруживаем, что Китти останавливается у миски ровно в половине случаев и точно так же в половине случаев делает остановку у когтеточки (для того чтобы максимально упростить условия, мы предполагаем, что на своем пути к месту отдыха она посещает либо одно место, либо другое, но никогда оба). Ни одно наблюдение, разумеется, само по себе не выявляет волновую функцию; оно позволяет лишь сказать, что в этот конкретный раз мы увидели кошку либо у когтеточки, либо у миски. Но представьте себе, что мы повторяем этот эксперимент очень много раз, и это дает нам возможность делать обоснованные выводы относительно вероятностей этих двух событий.

Однако мы не останавливаемся на этом. Мы позволяем Китти продолжить путь либо на диван, либо под стол, и после того как она устраивается на отдых, мы снова смотрим, какое же место она выбрала. Этот эксперимент мы также повторяем достаточное количество раз, для того чтобы определить вероятности. Теперь мы обнаруживаем, что совершенно неважно, останавливалась она у когтеточки или у миски с кормом; в обоих ситуациях мы видим, что ровно в половине случаев она в итоге приходит на диван, а в половине — под стол, и выбор итогового места отдыха абсолютно не зависит от того, шла она к нему через миску с едой или когтеточку. Очевидно, промежуточный шаг на этом маршруте не играет особой роли; вне зависимости от того, где кошка делает остановку в пути, волновая функция в конце дает равные вероятности для дивана и для стола.

А теперь начинается самое интересное. На этот раз мы вообще не будем смотреть, какой промежуточный шаг Китти делает на своем пути к дивану или столу; нам неинтересно, останавливается она у когтеточки или у миски с кормом. Мы просто ждем, когда она устроится на диване или под столом, а затем проверяем, где она, восстанавливая итоговые вероятности, полученные из волновой функции. Какого результата следует ожидать?

В мире, где царит классическая механика, мы знаем, что должны увидеть. Когда мы шпионили за кошкой, мы были очень осторожны, чтобы наше наблюдение не повлияло на ее действия, и в половине случаев мы обнаруживали ее на диване, а в половине — под столом, независимо от того, по какому маршруту она двигалась. Очевидно, что даже если мы не видим, чем она занимается по пути, это не должно играть никакой роли: в любом случае на последнем шаге у нас есть два исхода с равными вероятностями. Таким образом, даже не наблюдая за промежуточным этапом, мы все равно должны получать одинаковые значения вероятности.

Однако все совсем не так. Это не то, что мы видим в нашем идеализированном мире мысленного эксперимента, где кошка — это настоящий квантовый объект. Когда мы решаем не смотреть, останавливается Китти по пути у миски с едой или у когтеточки, оказывается, что в 100 % случаев в конце она устраивается на отдых на диване! Мы никогда не обнаруживаем ее под столом, то есть финальная волновая функция связывает с этим возможным результатом нулевую амплитуду. Очевидно, что если все это правда, то именно наличие шпионских камер кардинальным образом изменило волновую функцию кошки. Возможные варианты перечислены в таблице ниже.

По какому маршруту идет Китти | Итоговые вероятности

Мимо когтеточки | 50 % диван, 50 % стол

Мимо миски с кормом | 50 % диван, 50 % стол

Мы не смотрим | 100 % диван, 0 % стол

И это вовсе не исключительно мысленный эксперимент; такой опыт действительно проводился. Не на настоящих кошках, которые, несомненно, относятся к макроскопическим объектам и хорошо описываются в классическом пределе, а на отдельных фотонах в ходе эксперимента, известного под названием «эксперимент с двойной щелью». Есть две щели, через которые может пролететь фотон, и если мы не наблюдаем, через какую щель он пролетает, то получаем одну волновую функцию, а если наблюдаем, то совершенно другую, независимо от того, насколько осторожным и ненавязчивым был контроль.

Вот как это все объясняется. Представим себе, что мы решили проследить, где Китти делает остановку — у миски или у когтеточки, и видим, что она остановилась у когтеточки. Завершив свои дела у когтеточки, она эволюционирует в суперпозицию, где пребывание на диване и пребывание под столом равновероятны. В частности, вследствие особенностей начального состояния Китти и определенных аспектов квантовой кошачьей динамики итоговая волновая функция связывает равные положительные амплитуды с «диваном» и «столом». Теперь рассмотрим другой вариант промежуточного этапа, когда мы видим, что кошка останавливается у миски с едой. В данном случае итоговая волновая функция связывает отрицательную амплитуду со столом, а положительную с диваном — это равные, хотя и противоположные по знаку значения, и, следовательно, соответствующие вероятности абсолютно одинаковы.

Однако если мы не наблюдаем за кошкой и не видим ее на промежуточном этапе — у когтеточки или миски, тогда (в соответствии с природой нашего эксперимента) на этом промежуточном шаге она находится в суперпозиции двух возможностей. В такой ситуации правила квантовой механики предписывают нам сложить два возможных вклада в итоговую волновую функцию: один для маршрута, где Китти останавливается у когтеточки, и второй для маршрута, включающего миску с едой. В обоих случаях амплитуды, соответствующие завершению маршрута на диване, имели положительные значения; таким образом, они усиливают друг друга. Но амплитуды для маршрутов, заканчивающихся под столом, были противоположными по знаку в зависимости от промежуточного шага. То есть при сложении они сокращают друг друга. По отдельности маршруты с любым из двух возможных промежуточных шагов давали нам ненулевую вероятность того, что в конце пути Китти устроится на отдых под столом, но когда одновременно допустимы оба пути (потому что мы не смотрим, по какому она решила пойти), амплитуды интерферируют.

Рис. 11.1. Альтернативные пути эволюции волновой функции Китти. На верхней картинке мы видим, что она остановилась у когтеточки, после чего пойдет либо под стол, либо на диван — у обеих этих возможностей положительные амплитуды. На картинке в центре мы видим, что она подошла к миске с кормом, а оттуда также может отправиться либо под стол, либо на диван, но на этот раз со столом связана отрицательная амплитуда (хотя вероятность все так же больше нуля). Нижняя картинка соответствует ситуации, когда мы не отслеживаем промежуточный шаг ее маршрута, поэтому складываем амплитуды двух допустимых возможностей. В результате мы получаем нулевую амплитуду для стола (так как положительный и отрицательный вклады сокращают друг друга) и положительную амплитуду для дивана

Вот почему волновые функции должны включать отрицательные значения и вот откуда мы знаем, что волновые функции — это «реальные» вещи, а не просто какие-то бухгалтерские инструменты для отслеживания вероятностей. Мы рассмотрели явный случай, когда все вероятности положительны, но итоговая волновая функция получает вклады от двух разных промежуточных шагов, которые сокращают друг друга.

Давайте остановимся на секунду и насладимся тем, насколько глубокомысленно все это выглядит с нашей традиционной точки зрения, зараженной предубеждениями классической механики. Для каждой конкретной реализации эксперимента нам кажется логичным задать вопрос: так где же Китти сделала остановку — у миски с кормом или у когтеточки? Единственный допустимый ответ на этот вопрос — нигде. Она не останавливалась ни там, ни там. Она находилась в суперпозиции обеих возможностей, и нам это известно, потому что обе возможности оказали значительное влияние на амплитуду окончательного ответа.

Реальные кошки — это суетливые макроскопические объекты, состоящие из очень большого числа молекул, и их волновые функции обычно резко локализуются вокруг того, что очень напоминает наше классическое понятие «положения в пространстве». Но на микроскопическом уровне все эти разговоры о волновых функциях, суперпозициях и интерференции становятся до предела наглядными. Квантовая механика поначалу кажется чем-то жутко непонятным, но это самая суть того, как работают механизмы Природы.

 

Коллапс волновой функции

Во всех подобных обсуждениях есть одна вещь, очень часто сбивающая людей с толку и заставляющая — хотя и из лучших побуждений — пойти по ложному следу. Это ключевая роль, выпавшая на долю наблюдений. Когда мы наблюдали за тем, какой выбор кошка делала на пересечении дорожек, ведущих к когтеточке и миске, то получали один ответ для конечного состояния, когда же не делали никаких наблюдений, то совершенно иной. Но физика не должна так работать! Мир должен эволюционировать согласно законам Природы, и неважно, наблюдаем мы за этим процессом или нет. Да и вообще, что можно считать «наблюдением»? Что, если мы установим везде камеры наблюдения, но никогда не будем просматривать пленки? Будет ли это считаться наблюдением? (Да, будет.) И что именно происходит, когда мы наблюдаем за экспериментом?

Это очень важные вопросы, ответы на которые не совсем очевидны. В научном сообществе физиков не существует единого мнения ни относительно того, что можно считать наблюдением (или «измерением») в квантовой механике, ни относительно того, что происходит, когда наблюдение осуществляется. Это так называемая проблема измерения, попытки решить которую — основное занятие множества людей, проводящих время в размышлениях об интерпретации квантовой механики. Подобных интерпретаций существует уже немало, но мы с вами обсудим только две из них: более или менее стандартную картину, известную под названием «копенгагенская интерпретация», и взгляд, кажущийся (мне) заслуживающим большего уважения и лучше отражающим реальное положение вещей, который носит пугающее название «многомировая интерпретация». Давайте сперва познакомимся с копенгагенской интерпретацией.

Такое название эта интерпретация носит потому, что Нильс Бор, ученый, который во многих отношениях может считаться крестным отцом квантовой механики, помогал в ее разработке в своем институте в Копенгагене в 1920-е годы. Настоящая история этой точки зрения сложна, и точно известно, что огромный вклад в ее развитие внес Вернер Гейзенберг, еще один пионер квантовой механики. Но нас сейчас интересует не столько история, сколько статус копенгагенской интерпретации как некоего эталона, как он подается во всевозможных учебниках. Каждому физику приходится сначала познакомиться с этой точкой зрения, и лишь затем ему выпадает возможность рассмотреть альтернативы (или отказаться от их рассмотрения — бывает по-разному).

Копенгагенская интерпретация квантовой механики настолько же проста в формулировке, насколько сложна в понимании: когда квантовая система подвергается измерению, ее волновая функция коллапсирует. То есть волновая функция мгновенно изменяется, превращаясь из описания суперпозиции различных возможных результатов наблюдения в совершенно другую волновую функцию, которая отвечает 100-процентной вероятности результата, который был получен при фактическом измерении, и 0-процентной вероятности каких-либо других результатов. Такой тип волновой функции, полностью сконцентрированной на единственном возможном результате наблюдения, называется «собственным состоянием». Стоит системе перейти в собственное состояние, и, продолжая выполнять те же наблюдения, вы будете получать тот же самый ответ (если только что-то не выбьет систему из собственного состояния в другую суперпозицию). Невозможно точно сказать, в какое собственное состояние система перейдет в момент наблюдения; это процесс, стохастический по своей природе, и максимум, что мы можем сделать, — это присвоить вероятности разным результатам.

Применим эту идею к нашей истории с Китти. Согласно копенгагенской интерпретации, наше решение пронаблюдать, остановится она у миски с кормом или у когтеточки, оказывает решающее влияние на волновую функцию, как бы незаметно мы ни старались следить за кошкой. Когда мы не смотрим, Китти находится в суперпозиции двух возможностей с равными амплитудами; после того как она доходит до дивана или стола, мы складываем составляющие, соответствующие каждому из промежуточных шагов, и обнаруживаем, что происходит интерференция. Но когда мы решаем пронаблюдать за тем, какую она выберет дорогу, это заставляет ее волновую функцию сколлапсировать. Предположим, мы увидели, что Китти останавливается у когтеточки; как только это наблюдение было выполнено, состояние кошки перестало быть суперпозицией: она на 100 % находилась у когтеточки и на 0 % у миски. То же самое произошло бы, если бы мы увидели ее у миски с кормом, но с противоположными амплитудами. В любом случае возможностей для интерференции не остается, и ее волновая функция так или иначе эволюционирует в состояние, обеспечивающее равные вероятности оказаться в конце путешествия на диване и под столом.

В связи с этим у нас есть хорошая новость и плохая. Хорошая новость заключается в том, что это соответствует экспериментальным данным. Если считать, что волновые функции коллапсируют каждый раз, когда мы выполняем наблюдение, какую бы ненавязчивую стратегию наблюдения мы ни выбрали, превращаясь в собственные состояния, связывающие 100-процентную вероятность с увиденным нами результатом, то мы можем с уверенностью заявлять, что способны объяснить любые квантовые явления, известные физикам.

Плохая же новость такова: в этом нет смысла. Что можно считать «наблюдением»? Может ли сама кошка совершить наблюдение? А неживой объект? Определенно, мы не хотим верить в то, что такое явление, как сознание, каким-то образом может играть ключевую роль в фундаментальных законах физики? (Не хотим и не будем!) И действительно ли предполагаемый коллапс происходит мгновенно, — или все же постепенно, но просто очень быстро?

 

Необратимость

По сути, больше всего в копенгагенской интерпретации квантовой механики нас беспокоит то, что «наблюдение» здесь рассматривается как совершенно особый тип природного явления, требующий отдельного закона природы. В классической механике все происходящее вокруг нас может быть объяснено с помощью систем, эволюционирующих согласно законам Ньютона. Однако если мы учитываем коллапс волновой функции как он описан выше, в квантовой механике система эволюционирует согласно правилам двух совершенно разных типов.

   1. Когда мы не смотрим, волновая функция эволюционирует гладко и предсказуемо. Роль, которую в классической механике играют ньютоновские законы, в квантовой механике отводится уравнению Шрёдингера, действующему по абсолютно аналогичному сценарию. Зная состояние системы в любой момент времени, мы можем применить уравнение Шрёдингера, для того чтобы достоверно спрогнозировать ее развитие как по направлению в будущее, так и по направлению в прошлое. Эволюция сохраняет информацию и полностью обратима.

   2. Когда мы выполняем наблюдение, волновая функция коллапсирует. Коллапс происходит не гладко, он непредсказуем, и информация при этом не сохраняется. Значение амплитуды (в квадрате), присвоенное каждому конкретному результату, сообщает нам вероятность того, что волновая функция перейдет в состояние, полностью сконцентрированное на этом результате. Две разные волновые функции могут запросто сколлапсировать в одно и то же состояние при условии, что наблюдение осуществляется; следовательно, коллапс волновой функции необратим.

Безумие! Но это работает. В копенгагенской интерпретации мы берем понятия, кажущиеся простым приближением к некоей глубинной базисной истине, — проводя различие между «системой», представляющей собой истинно квантовый механизм, и «наблюдателем», не выходящим за рамки классической механики, — и воображаем, будто эти категории играют критическую роль в фундаментальной структуре реальности. Большинство физиков, даже те, кто ежедневно применяет квантовую механику в своих исследованиях, прекрасно понимают друг друга, разговаривая на языке копенгагенской интерпретации, и совершенно не беспокоятся о неловких вопросах, которые она поднимает. Другие, особенно те, кто серьезно задумывается об основах квантовой механики, убеждены, что нам необходимо нечто более совершенное. К сожалению, единого мнения относительно того, как могло бы выглядеть это более совершенное толкование, пока не выработано.

Для многих людей самое проблемное свойство квантовой механики — это как раз крах безупречной предсказуемости (Эйнштейн один из них; именно с этим связано его знаменитое высказывание о том, что «Бог не играет в кости со Вселенной»). Если копенгагенская интерпретация верна, то в квантовом мире не может существовать такого явления, как демон Лапласа; во всяком случае, пока этот мир включает наблюдателей. Акт наблюдения привносит в эволюцию мира элемент истинной случайности. Не полностью случайный (волновая функция может обеспечивать очень высокую вероятность увидеть один какой-то результат и очень низкую — любые другие). Но непреодолимо случайный, в том смысле, что не существует такой утерянной информации, которая, попади она к нам в руки, позволила бы точно прогнозировать результаты. Великолепие и слава классической механики — это отчасти следствие ее железобетонной надежности: даже если демон Лапласа в действительности не существует, мы знаем, что, в принципе, он может существовать. Квантовая механика разрушает эту надежду. Людям потребовалось немало времени для того, чтобы привыкнуть к мысли о вероятности как о еще одной неотъемлемой фундаментальной характеристике законов физики, и многим это понятие по сей день причиняет огромный душевный дискомфорт.

Один из вопросов, которые мы задавали о стреле времени, — каким образом нам примирить между собой необратимость макроскопических систем, описываемых статистической механикой, с несомненной обратимостью микроскопических законов физики. Однако сейчас, когда мы узнали о квантовой механике, создается впечатление, что микроскопические законы физики вполне могут оказаться необратимыми. Коллапс волновой функции — это процесс, привносящий собственную стрелу времени в физические законы: волновые функции коллапсируют, но расколлапсировать они не в состоянии. Если мы наблюдаем за Китти и видим, что она на диване, то сразу же после выполнения этого измерения мы понимаем, что она пребывает в собственном состоянии (100 % на диване). Но нам неизвестно, в каком состоянии она была до того, как мы провели измерение. Очевидно, что это информация была уничтожена. Мы знаем лишь, что для того, чтобы кошка оказалась на диване, волновая функция когда-то должна была иметь ненулевую амплитуду, — но мы не можем сказать, каково было значение амплитуды, а также какие амплитуды соответствовали другим возможным исходам, если таковые были.

Итак, коллапс волновой функции — если это действительно верная интерпретация квантовой механики — определяет собственную стрелу времени. Можно ли на ее основании как-то объяснить «главную» стрелу времени — термодинамическую стрелу, присутствующую во втором начале термодинамики, которую мы обвинили во всевозможных макроскопических отличиях прошлого от будущего?

Вероятно, нет. Несмотря на то что необратимость — ключевая характеристика стрелы времени, не все необратимости одинаковы. И совершенно непонятно, как один тот факт, что волновые функции коллапсируют, может объяснить гипотезу о прошлом. Вспомните, о чем мы говорили: нетрудно понять, почему энтропия увеличивается; трудно понять, почему она вообще когда-то была низкой. Коллапс волновой функции не предлагает никакой помощи в понимании этого вопроса.

С другой стороны, квантовая механика наверняка сыграет определенную роль в окончательном объяснении стрелы времени, даже если внутренняя необратимость коллапса волновой функции сама по себе напрямую проблему не решает. В конце концов, мы верим, что законы физики по своей сути квантово-механические. Именно квантовая механика устанавливает правила и диктует нам, что разрешено, а что запрещено в нашем мире. Абсолютно естественно ожидать, что эти правила включатся в действие, когда мы, наконец-то, начнем понимать, почему у нашей Вселенной была такая низкая энтропия сразу после Большого взрыва. Нам пока неизвестно наверняка, куда приведет нас это путешествие, но мы достаточно сообразительны, для того чтобы предсказать, какие инструменты точно пригодятся нам в дороге.

 

Неопределенность

В своем обсуждении волновых функций мы обходили молчанием одно критически важное свойство. Мы сказали, что волновые функции связывают амплитуду со всеми возможными результатами любого наблюдения, которое только нам вздумается провести. В нашем мысленном эксперименте мы ограничились только одним типом наблюдения — проверкой местоположения кошки — и только двумя возможными результатами в каждый из интересующих нас моментов времени. У реальной же кошки, или элементарной частицы, или яйца, или любого другого объекта бесконечное число возможных положений, и соответствующая волновая функция в каждом случае связывает амплитуду с любой из этих возможностей.

Еще важнее то, что мы можем измерять и другие вещи помимо положения. Вспомнив свой опыт с классической механикой, мы можем предложить пронаблюдать за импульсом, а не за положением кошки. И это также вполне допустимо; состояние кошки описывается волновой функцией, которая присваивает амплитуду каждому возможному значению импульса, которое мы можем получить в процессе измерения. Когда мы выполняем такое измерение и получаем ответ, волновая функция коллапсирует в «собственное состояние импульса», соответствующее ненулевой амплитуде только для одного определенного значения импульса, — того самого, что мы только что фактически измерили.

Однако, можете подумать вы, если это верно, то что мешает нам поместить кошку в состояние, в котором и ее положение и импульс определяются абсолютно точно, то есть в обыкновенное классическое состояние? Другими словами, почему мы не можем взять кошку с произвольной волновой функцией, измерить ее положение, для того чтобы оно приняло одно определенное значение, а затем измерить ее импульс, чтобы он также сколлапсировал в определенное значение? В таком случае мы получим полностью определенное классическое состояние и все неопределенности будут отсутствовать.

Это невозможно, а причина в том, что не существует волновых функций, одновременно сконцентрированных и вокруг одного-единственного значения положения, и вокруг одного-единственного значения импульса. Действительно, попытка найти такое состояние обречена на провал: если волновая функция сконцентрирована около определенного значения положения, то амплитуды будут максимально рассредоточены по всем возможным значениям импульса. И наоборот: если волновая функция сконцентрирована около определенного импульса, она рассредоточена по всем возможным положениям. Получается, что когда мы наблюдаем за положением объекта, мы теряем любую информацию о его импульсе, и наоборот. (Если же мы измеряем положение лишь приблизительно, а не точно, то мы можем сохранить некоторые сведения об импульсе; именно это происходит при макроскопических измерениях, выполняемых в реальном мире.)

В этом заключается истинный смысл принципа неопределенности Гейзенберга. В квантовой механике можно «точно знать» положение частицы — более того, частица может находиться в собственном состоянии, то есть может быть известно, что вероятность обнаружить ее в определенном положении равна 100 %. Точно так же можно «точно знать» импульс частицы. Но невозможно одновременно обладать информацией и о положении, и об импульсе. Таким образом, измеряя величины, которыми система описывается в классической механике, — одновременно и положение и импульс, — мы никогда не можем заранее знать, каким будет результат. Это и есть принцип неопределенности.

Принцип неопределенности подразумевает, что волновая функция должна быть рассредоточена по возможным значениям либо положения, либо импульса, либо (и чаще всего бывает именно так) обеих этих величин. Неважно, какую систему мы рассматриваем, — проявление квантовой непредсказуемости при попытке измерить ее свойства неизбежно. Две измеряемые величины дополняют друг друга: когда волновая функция сконцентрирована вокруг положения, она рассредоточена по импульсу, и наоборот. Реальные макроскопические системы, хорошо поддающиеся описанию в классическом пределе квантовой механики, находятся в компромиссных состояниях, характеризующихся небольшими неопределенностями как положений, так и импульсов. Для достаточно больших систем эта неопределенность относительно мала, поэтому мы ее совершенно не замечаем.

Помните, что в действительности таких вещей, как «положение объекта» или «импульс объекта», не существует — только волновая функция, назначающая определенные амплитуды возможным результатам наблюдения. Тем не менее очень часто мы поддаемся соблазну перейти на язык квантовых флуктуаций — мы говорим, что не можем связать объект с одним конкретным положением, потому что принцип неопределенности заставляет его немного флуктуировать вокруг. Это неизбежный лингвистический огрех, но мы не слишком уж чопорны и будем иногда позволять себе эту слабость, помня, однако, что эта формулировка не способна в точности отразить действительность. Смысл не в том, что существуют положение и импульс и каждая из этих величин немного колеблется, а в том, что существует волновая функция, которая не может быть одновременно локализована и в положении, и в импульсе.

В следующих главах мы познакомимся с приложениями квантовой механики в намного более величественных системах, чем отдельные частицы или даже отдельные кошки: с квантовой теорией поля, а также с квантовой гравитацией. Тем не менее базовый каркас квантовой механики в любом случае останется неизменным. Квантовая теория поля — это союз квантовой механики со специальной теорией относительности, описывающий частицы, которые мы видим вокруг себя, — как наблюдаемые свойства более глубокой фундаментальной структуры — квантовых полей. Принцип неопределенности не позволит нам точно определить положение и импульс каждой частицы и даже точное число частиц. Он же служит первоисточником «виртуальных частиц», которые появляются и исчезают даже в пустом пространстве, и в конечном итоге приводит к хокинговскому излучению черных дыр.

А квантовая гравитация — это штука, которую мы вообще не понимаем. Общая теория относительности предлагает чрезвычайно успешное описание гравитации в том виде, как мы ее воспринимаем по ее воздействию на окружающий мир, но эта теория построена на классическом фундаменте. Гравитация — это искривление пространства—времени, и, в принципе, в наших силах измерить искривление пространства—времени с любой степенью точности. Практически никто не сомневается, что это всего лишь приближение к более полной теории квантовой гравитации, в которой само пространство—время описывается волновой функцией, связывающей разные амплитуды с разными значениями искривления. Возможно даже, что целые вселенные появляются и исчезают в точности как виртуальные частицы. Но в попытках сконструировать полную теорию квантовой гравитации мы натыкаемся на трудно преодолимые препятствия — как технические, так и философские. Преодоление этих препятствий — ежедневный труд большого числа физиков.

 

Волновая функция Вселенной

Существует один довольно прямолинейный способ расправляться с концептуальными вопросами, связанными с коллапсом волновой функции: просто отрицайте, что это происходит, и настаивайте на том, что обычной непрерывной эволюции волновой функции достаточно для объяснения всего, что нам известно о мире. Этот подход — великолепный в своей простоте и приводящий к серьезным следствиям — носит название многомировой интерпретации квантовой механики и является основным конкурентом копенгагенской интерпретации. Для того чтобы понять, как он работает, необходимо совершить погружение, вероятно, в самое трудное для понимания свойство квантовой механики — запутывание.

Когда мы впервые ввели понятие волновой функции, мы рассматривали очень минималистическую физическую систему, состоящую из одного объекта (кошки). Определенно, нам хотелось бы вырваться из этих рамок и начать рассматривать системы из множества частей, например кошки и собаки. В классической механике это не представляет проблемы; если состояние одного объекта описывается его положением и импульсом, то состояние двух объектов — это всего лишь состояние обоих объектов по отдельности, то есть два положения и два импульса. Сразу же возникает вполне естественное желание заявить, что правильное квантово-механическое описание кошки и собаки будет представлять собой две волновые функции: одна для кошки и одна для собаки.

Однако так это не работает. В квантовой механике, сколько бы индивидуальных объектов ни составляли интересующую нас систему, волновая функция всегда только одна. Даже если мы рассматриваем всю Вселенную и все, что есть внутри нее, волновая функция все равно одна — иногда ее излишне высокопарно называют «волновой функцией Вселенной». Люди порой опасаются использовать подобные обороты из боязни проявить излишнюю претенциозность, но, по сути, так работает квантовая механика — ни больше, ни меньше. (А некоторым, наоборот, претенциозность нравится.)

Давайте посмотрим, как все это реализуется в системе, состоящей из кошки и пса — Китти и Дога. Как и раньше, мы считаем, что Китти можно найти только в двух местах: на диване или под столом. Также представим, что Дога тоже можно пронаблюдать только в двух местах: в гостиной или в саду. Согласно первоначальному (хоть и ошибочному) предположению о том, что у каждого объекта есть своя собственная волновая функция, местоположение Китти описывается как суперпозиция вариантов «под столом» и «на диване», а местоположение Дога отдельно описывается как суперпозиция «в гостиной» и «в саду».

Однако на самом деле квантовая механика диктует, что нам следует рассмотреть все возможные альтернативы для системы целиком — кошка плюс собака — и назначить амплитуды каждому из возможных результатов. В нашей объединенной системе у вопроса: «Что мы видим, когда проверяем местоположения кошки и собаки?» — четыре возможных ответа. Их можно обобщить следующим образом:

(стол, гостиная)

(стол, сад)

(диван, гостиная)

(диван, сад)

Здесь первое слово сообщает нам местонахождение Китти, а второе — где мы видим Дога. Согласно квантовой механике, волновая функция Вселенной привязывает к каждой из этих четырех возможностей свою амплитуду, значение которой необходимо возвести в квадрат, для того чтобы узнать вероятность увидеть именно эту альтернативу.

Возможно, вы задаетесь вопросом, в чем разница между привязкой амплитуд к местоположениям кошки и собаки по отдельности и привязкой амплитуд к перечисленным выше парам местоположений. Ответ кроется в запутанности: свойства любого конкретного подмножества целого могут быть сильно скоррелированы со свойствами других подмножеств.

 

Запутывание

Представим себе, что волновая функция системы, состоящей из кошки и собаки, связывает нулевую амплитуду как с результатом (стол, сад), так и с результатом (диван, гостиная). Схематически это означает, что состояние системы имеет вид

(стол, гостиная) + (диван, сад).

Таким образом, ненулевая амплитуда связана с ситуацией, когда кошка находится под столом, а собака — в гостиной, и еще одна ненулевая амплитуда относится к ситуации, когда кошка находится на диване, а собака — в саду. Кроме этих двух возможностей, никакие другие варианты в данном состоянии недопустимы. Предположим, что у них равные амплитуды.

Теперь зададим вопрос: что мы ожидаем увидеть, если ищем только Китти? Наблюдение коллапсирует волновую функцию в одну из двух возможностей — (стол, гостиная) или (диван, сад) — с равной вероятностью, 50 % каждая. Если нам вообще все равно, чем занимается Дог, то мы могли бы сказать, что существуют равные вероятности увидеть Китти под столом и на диване. В этом смысле справедливо говорить, что до того, как мы начинаем поиск, у нас нет ни малейшего представления о том, где нам в итоге посчастливится найти Китти.

Теперь давайте представим себе, что вместо Китти мы ищем Дога. И снова существует 50-процентная вероятность получения каждого из двух возможных результатов: (стол, гостиная) и (диван, сад). Таким образом, если нас не интересует, чем занимается Китти, справедливо говорить, что до того, как мы начинаем поиск, у нас нет ни малейшего представления о том, где нам в итоге посчастливится найти Дога.

Однако вот в чем соль: хотя до начала наблюдения мы не имеем никакого представления о том, где окажется Дог, но если мы решаем проверить, где находится Китти, то как только это измерение сделано, мы получаем точную информацию, где проводит время Дог, несмотря на то что вообще этим не интересовались! Это магия запутывания. Предположим, мы увидели Китти на диване. Это означает, что волновая функция, учитывая ее вид, сколлапсировала в волновую функцию (диван, сад). Следовательно, мы можем утверждать (предполагая, что не ошиблись в определении первоначальной волновой функции), что, заглянув в сад, мы обязательно найдем Дога там. Мы сколлапсировали волновую функцию Дога, даже не взглянув на него. Или, если точнее, мы сколлапсировали волновую функцию Вселенной, которая важна для определения местоположения Дога, вообще напрямую с ним не взаимодействуя.

Не знаю, удивил ли вас такой результат. Надеюсь, я достаточно понятно и убедительно рассказал о сути волновых функций, для того чтобы феномен запутанности не показался вам чем-то выдающимся. Так и должно быть; это неотъемлемая часть инструментария квантовой механики, и множество хитроумных экспериментов подтвердили его достоверность в реальном мире. Тем не менее запутанность может привести к следствиям, которые — если воспринимать их буквально — кажутся несовместимыми как минимум с духом теории относительности, если не с буквой закона. Подчеркну еще раз: между квантовой механикой и специальной теорией относительности (общая теория относительности, где в игру вступает гравитация, — это совсем другая история) нет никаких явных несоответствий. Однако некое напряжение между ними существует, и это заставляет людей нервничать. В частности, создается впечатление, что некоторые события происходят со скоростью быстрее скорости света. Но если копнуть поглубже и попытаться понять, что же это за «события» и что означает «происходят», то окажется, что в действительности ничего плохого не происходит: ничто не движется быстрее света, и никакая конкретная информация не передается за пределами чьего-либо светового конуса. И все же это вызывает какое-то подспудное раздражение.

 

ЭПР-парадокс

Вернемся снова к нашей паре, кошке с собакой, и представим, что они пребывают в описанном выше квантовом состоянии, то есть суперпозиции (стол, гостиная) и (диван, сад). Но на этот раз вообразим, что если Дог оказывается в саду, он не остается просто сидеть там, а куда-то убегает. Кроме того, он любит приключения и живет в будущем, где полеты на ракете и космическая колония на Марсе — обычное дело. Дог — в том варианте, где его путь начинается в саду, а не в гостиной, — убегает в космопорт, прячется на космическом корабле и летит на Марс, и абсолютно никто его все это время не замечает. Лишь когда он вылезает из корабля и прыгает на руки своему старому другу Билли, который после окончания университета вступил в Космический корпус и отправился с миссией на Красную планету, состояние Дога фактически кто-то наблюдает, коллапсируя, таким образом, волновую функцию.

Другими словами, мы представляем, что волновая функция, описывающая систему кошка/собака, непрерывно эволюционировала согласно уравнению Шрёдингера из

(стол, гостиная) + (диван, сад)

в

(стол, гостиная) + (диван, Марс).

Ничего невозможного в этом нет — возможно, звучит это слегка неправдоподобно, но если никто не выполнял наблюдений в течение всего периода эволюции, то в результате мы получаем волновую функцию именно в такой суперпозиции.

Однако следствия такой ситуации весьма удивительны. Когда ничего не подозревающий Билли видит Дога, выпрыгивающего из космического корабля на Марсе, он выполняет измерение и коллапсирует волновую функцию. Если он заранее знает, как выглядит волновая функция — то самое запутанное состояние, описывающее местоположения и кошки и собаки, то он немедленно понимает, что Китти находится на диване, а не под столом. Волновая функция сколлапсировала до возможности (диван, Марс). Мы не только узнаем состояние Китти, никак не взаимодействуя с ней, — мы узнаем его моментально, несмотря на то что даже при движении со скоростью света путешествие с Марса на Землю занимает по меньшей мере несколько минут.

Это свойство запутанности — тот факт, что состояние Вселенной, как его описывает квантовая волновая функция, «моментально» меняется в пространстве, хотя специальная теория относительности учит нас, что не существует уникального определения того, что означает «моментально», — выводит из себя множество людей. Определенно, это раздражало Альберта Эйнштейна, который в 1935 году объединился с Борисом Подольским и Натаном Розеном, для того чтобы написать статью и акцентировать внимание на этой странной ситуации, известной сегодня под названием «ЭПР-парадокса». Однако в действительности это вовсе не «парадокс»; он может бросать вызов нашему интуитивному пониманию реальности, но не экспериментальным или теоретическим требованиям.

Важное свойство мгновенного коллапса волновой функции, рассредоточенной на огромные расстояния, заключается в том, что это явление невозможно использовать для передачи какой-либо информации со скоростью, превышающей скорость света. Нам не дает покоя то, что до того, как Билли увидел собаку, Китти здесь, на Земле, не занимала какое-то определенное положение: с вероятностью 50 % мы могли увидеть ее или на диване, а с вероятностью 50 % — под столом. Однако как только Билли увидел Дога, мы со 100-процентной вероятностью наблюдаем кошку на диване. Ну и что? На самом деле мы не знаем, выполнил ли Билли наблюдение; насколько нам известно, если мы поищем Дога, то имеем шанс обнаружить его в гостиной. Для того чтобы внезапное открытие Билли что-то изменило в нашей картине мира, ему пришлось бы прийти и рассказать нам эту историю или хотя бы отправить радиограмму. Так или иначе, он должен связаться с нами с помощью традиционных инструментов, работающих медленнее скорости света.

Запутанность двух находящихся на большом расстоянии друг от друга подсистем кажется нам чем-то непостижимым, потому что она нарушает наше интуитивное понимание «локальности»: объекты должны быть в состоянии влиять напрямую лишь на близлежащие объекты, но не на те, которые находятся на произвольно большом расстоянии. Волновые функции работают не так; существует одна волновая функция, описывающая всю Вселенную разом, и на этом история заканчивается. Наблюдаемый нами мир тем временем все так же соблюдает определенный тип локальности: даже если волновая функция моментально коллапсирует во всем пространстве, мы не в состоянии воспользоваться этим свойством для того, чтобы отправить сигналы со скоростью, превышающей скорость света. Другими словами, вещи, с которыми вы сталкиваетесь в своей жизни и которые влияют на вашу жизнь, по-прежнему должны находиться прямо рядом с вами, а не где-то далеко.

С другой стороны, не следует ожидать, что даже такое слабое определение локальности может считаться подлинно священным принципом. В следующей главе мы немного поговорим о квантовой гравитации, когда волновая функция применяется к разным конфигурациям самого пространства—времени. В этом контексте идея вроде «объекты могут воздействовать друг на друга, только если они находятся поблизости» вообще перестает нести какой-либо смысл. Пространство—время перестает быть абсолютным, оно может находиться в разных конфигурациях, с каждой из которых связана своя амплитуда, поэтому само понятие «расстояния между объектами» слегка размывается. Нам еще только предстоит полностью осознать подобные идеи, но в окончательной теории всего на свете нелокальность, скорее всего, будет играть грандиозную роль.

 

Много миров, много умов

Главный соперник копенгагенского представления квантовой механики — так называемая многомировая интерпретация. «Множественные миры» — пугающее и вводящее в заблуждение название идеи, которая сама по себе довольно проста. Она заключается в том, что такого явления, как «коллапс волновой функции», не существует. Эволюция состояний в квантовой механике работает точно так же, как в классической механике; она подчиняется детерминистическому правилу — уравнению Шрёдингера, позволяющему предсказывать будущее и прошлое любого конкретного состояния с идеальной точностью. Вот и все.

Проблема с этим заявлением в том, что нам кажется, будто мы постоянно видим коллапс волновых функций или, по крайней мере, наблюдаем следствия таких процессов. Мы можем представить Китти в квантовом состоянии, в котором одинаковые амплитуды связаны с возможностью обнаружить ее на диване и под столом; затем мы идем искать ее и видим нашу кошку под столом. Если мы сразу же после этого взглянем еще раз, то увидим ее под столом в 100 % случаев; исходное наблюдение (в привычном понимании того, как следует рассуждать о подобных вещах) сколлапсировало волновую функцию в собственное состояние, связанное со столом. Следствия такого способа мышления легко проверяются на опыте, что успешно доказано множеством реальных экспериментов.

Ответ сторонников многомировой интерпретации таков: вы просто-напросто неправильно мыслите. В частности, вы ошибочно идентифицируете себя в волновой функции Вселенной. В конце концов, вы часть физического мира, и, следовательно, на вас также распространяются правила квантовой механики. Невозможно отделиться от нее, объявив себя неким объективным классическим инструментом наблюдения; следовательно, в волновой функции мы также должны учитывать собственное состояние.

Итак, в этой новой истории мы не должны исходить из волновой функции, описывающей Китти как суперпозицию (дивана) и (стола); следует включить в описание и собственную конфигурацию. В частности, здесь важна такая характеристика нашего описания, которая показывает, выполнили ли мы уже наблюдение Китти и знаем ли о ее местоположении. Мы можем быть в одном из трех возможных состояний: мы увидели кошку на диване, мы увидели кошку под столом или же мы еще не смотрели, где кошка. В самом начале волновая функция Вселенной (или, по крайней мере, та ее часть, которую мы здесь описываем) назначает Китти равные амплитуды для состояний «на диване» и «под столом», в то время как мы однозначно находимся в состоянии «еще не смотрели». Схематически это можно изобразить так:

(диван, мы еще не смотрели) + (стол, мы еще не смотрели).

Теперь мы проверяем местоположение кошки. В копенгагенской интерпретации мы бы сказали, что волновая функция коллапсирует. Но в многомировой интерпретации мы говорим, что наше собственное состояние переплетается с состоянием Китти, и объединенная система эволюционирует в суперпозицию:

(диван, мы видим кошку на диване) + (стол, мы видим кошку под столом).

Коллапса не происходит; волновая функция эволюционирует гладко, и процесс «наблюдения» не привносит никаких особенностей. Более того, вся эта процедура обратима: зная конечное состояние, с помощью уравнения Шрёдингера мы можем однозначно восстановить исходное состояние. Никакой внутренней квантово-механической стрелы времени в этой интерпретации нет. По многим причинам это намного более элегантная и приемлемая картина мира, чем та, которую предлагает нам копенгагенская интерпретация.

Проблема тем не менее должна быть очевидна: в конечном состоянии мы находимся в суперпозиции двух разных результатов. Сложность в том, что мы, разумеется, не чувствуем себя так, будто находимся в подобной суперпозиции. Если мы фактически измерили систему, которая пребывала в квантовой суперпозиции, по выполнении наблюдения мы всегда уверены, что увидели какой-то конкретный результат. Другими словами, недостаток многомировой интерпретации в том, что она не соответствует нашим впечатлениям от реального мира.

Однако не будем торопиться с выводами. Кто такие «мы», о которых мы здесь рассуждаем? Многомировая интерпретация утверждает, что волновая функция Вселенной эволюционирует в суперпозицию, показанную выше, содержащую амплитуду того, что мы видим кошку на диване, и амплитуду того, что мы видим ее под столом. Вот в чем соль: те «мы», которые видят, воспринимают и верят, — это не озвученная выше суперпозиция. То есть «мы» — это одна из альтернатив, та или иная. Таким образом, теперь у нас есть два разных «мы»: те мы, которые увидели Китти на диване, и вторые мы, которые увидели ее под столом, и оба экземпляра честно существуют в волновой функции. У них общие предыдущие воспоминания и опыт — до того, как они измерили местоположение кошки, они по всем параметрам были одним и тем же человеком — но теперь они разделились на две разные «ветви волновой функции», и никакие взаимодействия между ними впредь невозможны.

Это те самые «множественные миры», на которых основывается интерпретация, хотя очевидно, что название немного дезориентирует. Иногда выдвигается возражение, суть которого в том, что многомировая интерпретация просто-напросто слишком экстравагантна и ее невозможно принимать всерьез: все это бесконечное разнообразие «параллельных реальностей», нужных только для того, чтобы избавиться от коллапса волновой функции. Но это смешно. До того как мы выполнили наблюдение, Вселенная описывалась одной волновой функцией, которая связывала определенную амплитуду с каждым возможным результатом наблюдения; после наблюдения Вселенная описывается одной волновой функцией, связывающей определенную амплитуду с каждым возможным результатом наблюдения. До и после волновая функция Вселенной — это всего лишь конкретная точка в пространстве состояний, описывающих Вселенную, и это пространство состояний не увеличивается и не уменьшается. Никакие новые «миры» не создаются; волновая функция содержит один и тот же объем информации (в конце концов, в этой интерпретации ее эволюция обратима). Она просто эволюционировала так, что теперь различных подмножеств волновой функции, описывающей индивидуальных разумных существ, таких как мы, стало больше. Многомировая интерпретация квантовой механики может быть правильной или неправильной, но опровергать ее, предъявляя возражения в стиле: «Да ну, слишком много миров!» — абсолютно недопустимо.

Автор первой формулировки многомировой интерпретации — это не Бор, не Гейзенберг, не Шрёдингер и не один из других ученых, которые почитались как столпы науки на заре квантовой механики. Она была предложена в 1957 году Хью Эвереттом III, аспирантом, работавшим совместно с Джоном Уилером в Принстоне. В то время (и на протяжении десятилетий спустя) превалирующей точкой зрения была копенгагенская интерпретация, поэтому Уилер сделал самый очевидный шаг: он отправил Эверетта в командировку в Копенгаген, для того чтобы тот обсудил свою новаторскую идею с Нильсом Бором и другими. Но поездка не увенчалась успехом: Бор был абсолютно не впечатлен, да и остальные члены физического сообщества не продемонстрировали особого интереса к идеям Эверетта. Он оставил научную работу ради должности в министерстве обороны, а позднее основал собственную компьютерную фирму. В 1970 году физик-теоретик Брайс Девитт (один из пионеров, помимо Уилера, применения квантовой механики к гравитации) подхватил знамя многомировой интерпретации и помог популяризовать ее среди физиков. Эверетту довелось при жизни увидеть возрождение интереса к его идеям в физическом сообществе, но к активным исследованиям он так и не вернулся; он скоропостижно скончался от сердечного приступа в 1982 году, в возрасте пятидесяти одного года.

 

Декогеренция

Несмотря на все ее преимущества, многомировая интерпретация квантовой механики — далеко не готовый продукт. Многие вопросы еще остаются без ответа: от глубоких и концептуальных: почему разумные наблюдатели идентифицируются с отдельными ветвями волновой функции, а не с суперпозициями — до исключительно технических: как в этом формализме оправдать правило о том, что «вероятности равны квадратам амплитуд»? Это реальные вопросы, ответы на которые совсем не очевидны, и это одна из причин, почему многомировая интерпретация пока не получила всеобщего одобрения и поддержки. Однако за последние несколько десятилетий был достигнут большой прогресс, особенно в вопросах, связанных с таким исконно квантово-механическим явлением, как декогеренция. Многие ученые (хотя и не все, и до достижения единства мнений пока еще далеко) выражают надежду на то, что это явление поможет нам разобраться, почему кажется, что волновые функции коллапсируют, хотя в многомировой интерпретации явно утверждается, что этот коллапс мнимый.

Декогеренция возникает, когда состояние какого-то крошечного фрагмента Вселенной — например, вашего мозга — так сильно перепутывается с частями глобального окружения, что больше не испытывает интерференции — явление, которое, в сущности, и определяет свойство «квантовости». Для того чтобы понять, как это работает, вернемся к примеру с запутанным состоянием Китти и Дога. Существуют две альтернативы с равными амплитудами: кошка находится под столом, а собака — в гостиной и кошка находится на диване, а собака — в саду:

(стол, гостиная) + (диван, сад).

Мы уже видели, как в ситуации, когда кто-то наблюдает состояние Дога, волновая функция (на копенгагенском языке) коллапсирует, оставляя Китти в некотором конкретном состоянии.

Но давайте теперь проделаем другой фокус: представьте себе, что никто не проверяет состояние Дога, все просто игнорируют его. По сути, мы отбрасываем любую информацию о запутанности между Китти и Догом и просто спрашиваем себя: каково состояние у Китти самой по себе?

Можно было бы предположить, что в данном случае ответом будет суперпозиция в форме (стол)+(диван), как раньше, до привнесения в ситуацию собачьих сложностей. Но это не совсем верно. Проблема в том, что интерференция — явление, благодаря которому мы, если уж на то пошло, убедились в том, что квантовые амплитуды необходимо принимать всерьез, — теперь невозможна.

В нашем исходном примере, где мы впервые познакомились с интерференцией, у амплитуды Китти, соответствующей нахождению под столом, было две составляющие: одна из варианта, где кошка останавливается у миски с кормом, а вторая — из варианта, где она останавливается у когтеточки. При этом критически важно было то, что эти две составляющие, которые в конечном итоге отменяли друг друга, вели к одному и тому же итоговому результату («Китти находится под столом»). Две составляющие конечной волновой функции интерферируют только в том случае, если они действительно приводят к одной и той же альтернативе для всего во Вселенной; если же они способствуют разным альтернативам, то интерференция между ними невозможна, даже если различия относятся ко всему прочему во Вселенной, за исключением самой Китти.

Таким образом, если состояние Китти запутано с состоянием Дога, интерференция между альтернативами, меняющими состояние Китти, невозможна без соответствующих изменений состояния Дога. Никакой добавок к волновой функции не может интерферировать с альтернативой «Китти находится под столом», потому что данная альтернатива — не полное описание того, что мы можем увидеть. Интерференция возможна только с альтернативами «Китти находится под столом, а Дог — в гостиной», которые действительно представлены в волновой функции.

Следовательно, если Китти запутана с внешним миром, но нам неизвестны детали этого запутывания, неправильно считать ее состояние квантовой суперпозицией. На самом деле следует рассматривать его как обычное классическое распределение различных альтернатив. Как только мы отбрасываем любую информацию о том, с чем запутана наша кошка, состояние Китти перестает быть истинной суперпозицией; в любых мыслимых экспериментах Китти находится либо в одном состоянии, либо в другом, даже если мы не знаем, в каком конкретно. Интерференция невозможна.

Это декогеренция. В классической механике каждый объект находится в определенном положении, даже если нам неизвестно, каково в точности его положение, и все, что мы можем сделать, — это приписать вероятности различным альтернативам. Волшебство квантовой механики состоит в том, что такого понятия, как «где находится объект», больше не существует; объекты пребывают в одновременной суперпозиции возможных альтернатив, и мы знаем, что это должно быть правдой, потому что это подтверждается экспериментами, демонстрирующими реальность интерференции. Однако если квантовое состояние, описывающее объект, запутано с чем-то еще во внешнем мире, интерференция становится невозможной, и мы возвращаемся к традиционному классическому взгляду на вещи. С нашей точки зрения объект находится в том состоянии или в ином, и кроме как присвоить вероятности различным альтернативам, мы ничего больше сделать не можем: вероятности отражают наше неведение, а не глубинную реальность. Если квантовое состояние какого-то конкретного подмножества Вселенной представляет истинную суперпозицию, не запутанную с окружающим миром, мы говорим, что оно «когерентно»; если суперпозиция нарушена из-за запутывания с чем-то еще за пределами рассматриваемого подмножества, мы говорим, что она становится «декогерентной». (Вот почему в многомировой интерпретации установка камер слежения считается актом наблюдения; между состоянием кошки и состоянием камер появляется запутанность.)

 

Коллапс волновой функции и стрела времени

Очевидно, что в многомировой интерпретации декогеренция играет критически важную роль в процессе предполагаемого коллапса волновых функций. Суть не в том, что в «разумности» или в «наблюдателях» есть что-то особенное (за исключением того, что это сложные макроскопические объекты). А в том, что любой сложный макроскопический объект неизбежно взаимодействует (и следовательно, запутывается) с внешним миром, и пытаться отследить точный вид этого запутывания — дело абсолютно безнадежное. Крохотную микроскопическую систему, например отдельный электрон, можно изолировать и поместить в истинно квантовую суперпозицию, не запутанную с состояниями других частиц. Однако для такой сложной системы, как человек (или скрытая камера наблюдения, если уж на то пошло), это попросту невозможно.

В этом случае наша простая картина, где состояние нашего сознания запутывается с состоянием Китти, становится чрезмерным упрощением. На самом деле главную роль в этой истории играет наша запутанность с внешним миром. Представим, что вначале Китти находится в истинно квантовой суперпозиции, не запутанная ни с чем в окружающем мире; но мы, будучи чрезвычайно сложными созданиями, тесно запутаны с окружающим миром массой разнообразных способов, которые при всем желании не смогли бы перечислить. Волновая функция Вселенной связывает разные амплитуды с альтернативными конфигурациями сложной системы, состоящей из Китти, нас и внешнего мира. После того как мы проверяем местоположение Китти, волновая функция эволюционирует в такую форму:

(диван, мы видим ее на диване, мир 1 ) + + (стол, мы видим ее под столом, мир 2 ),

где третья составляющая описывает (неизвестную) конфигурацию внешнего мира, разную для каждого из этих двух случаев.

Поскольку мы ничего не знаем об этом состоянии, то просто игнорируем запутанность с окружающим миром, но сохраняем знание о местоположении Китти и о нашем сознании. Очевидно, что две эти вещи тесно связаны: если кошка на диване, то мы уверены, что видели ее на диване, и так далее. Однако отбрасывание сведений о конфигурации внешнего мира означает, что мы более не находимся в реальной квантовой суперпозиции. Вместо этого у нас на руках оказываются две во всех отношениях классические альтернативы: Китти находится на диване и мы видели ее на диване или же она находится под столом и мы видели ее под столом.

Именно это мы имеем в виду, когда говорим о разветвлении волновой функции в разные «миры». Какая-то небольшая система в истинно квантовой суперпозиции наблюдается макроскопическим измерительным инструментом, но данный инструмент запутан с внешним миром; если мы игнорируем состояние внешнего мира, то у нас на руках остаются две классические альтернативы. С точки зрения любой из этих классических альтернатив волновая функция «сколлапсировала», но с гипотетической более масштабной точки зрения, где мы сохранили всю информацию в волновой функции Вселенной, никаких внезапных изменений состояния не произошло — всего лишь гладкая эволюция в соответствии с уравнением Шрёдингера.

Все эти фокусы с отбрасыванием информации могут вызывать у вас смутную тревогу, но согласитесь, что это звучит знакомо. То, чем мы здесь занимались, — это в действительности простое огрубление, то же самое, которое мы применяли при обсуждении статистической (классической) механики для определения макросостояний, соответствующих различным микросостояниям. Информация о нашей запутанности с беспорядочной внешней средой аналогична информации о положении и импульсе каждой молекулы в контейнере с газом: нам она не нужна, и на практике отслеживать ее невозможно, поэтому мы создаем феноменологическое описание, основываясь исключительно на макроскопических переменных.

В этом смысле необратимость, проявляющуюся при коллапсе волновой функции, можно считать прямым аналогом необратимости традиционной термодинамики. Базовые законы все так же обратимы, но в беспорядочном реальном мире мы постоянно отбрасываем огромное количество информации, и в результате нам кажется, что мы наблюдаем необратимое поведение даже в макроскопических масштабах. Когда мы проверяем местоположение кошки и наше собственное состояние запутывается с ее состоянием, для того чтобы воспроизвести процесс в обратную сторону, нам потребовалось бы знать точное состояние внешнего мира, с которым мы также тесно связаны, однако мы эту информацию отбросили. Это полная аналогия того, что происходит при размешивании ложки молока в чашке кофе; в принципе, мы могли бы обратить процесс, если бы следили за положениями и импульсами каждой молекулы смеси, но на практике мы следим только за макроскопическими переменными, утрачивая обратимость.

В обсуждении декогеренции критическую роль играла наша способность изолировать наблюдаемую систему (Китти или какую-то элементарную частицу) от остального мира в истинно квантовой суперпозиции. Однако очевидно, что это очень специфический тип состояния, похожий на низкоэнтропийные состояния, с которых все начинается, как мы предполагали при рассмотрении второго начала термодинамики. В состоянии общего вида всевозможные варианты запутывания нашей маленькой системы и внешнего окружения будут существовать с самого начала.

Разумеется, ничто из написанного выше не должно вселять в вас уверенность в том, что добавление декогеренции к многомировой интерпретации позволит одним махом разделаться со всеми проблемами толкования квантовой механики. И все же это кажется шагом в правильном направлении; кроме того, подчеркивается важная взаимосвязь между макроскопической стрелой времени, известной нам еще по статистической механике, и другой макроскопической стрелой времени, проявляющейся при коллапсе волновой функции. Возможно, самое главное преимущество декогеренции заключается в том, что она позволяет отбросить такие плохо определенные понятия, как «разумный наблюдатель», из словаря, с помощью которого мы описываем этот мир.

Хорошенько запомнив все это, впредь мы продолжим в своих рассуждениях опираться на тот факт, что фундаментальные законы физики полностью обратимы на микроскопических масштабах. Это не неопровержимое утверждение, но за ним стоит очень сильная аргументация; к тому же оно позволяет нам сохранять объективность при изучении следствий данной конкретной точки зрения. И это приводит нас туда же, откуда все началось: к задаче объяснения очевидного отсутствия обратимости на макроскопических масштабах с помощью выбора особых условий вблизи Большого взрыва. Для того чтобы всерьез приняться за решение этой проблемы, необходимо для начала поговорить о гравитации и эволюции Вселенной.