Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

Кэрролл Шон

Приложение 1

Масса и спин

 

 

Первое, что мы всегда слышим о поле Хиггса, – это то, что оно наделяет массой другие частицы. В этом Приложении мы собираемся несколько более подробно, чем в основном тексте, объяснить, что это значит. Все эти пояснения ни в коей мере не являются необходимыми, но кое-что могут прояснить.

Итак: зачем нам нужно поле, чья функция заключается в том, чтобы дать массу другим частицам? Почему частицы не могут получить массу без него?

Конечно, легко представить, что частицы становятся массивными, вообще не вводя поля Хиггса. Но частицы Стандартной модели – частицы особого типа, и из-за этого такое с ними произойти не может. Есть два различных набора частиц, которые получают массу с помощью поля Хиггса: W– и Z-бозоны – переносчики слабых взаимодействий, и электрически заряженные фермионы (электрон, мюон, тау-частица, и все кварки). Бозоны получают массу немного иначе, чем фермионы, но основной механизм в обоих случаях один и тот же: имеется симметрия, которая, как нам представляется, запрещает вообще иметь какую-любую массу, а поле Хиггса нарушает эту симметрию. Чтобы понять, как это происходит, мы должны поговорить о спине элементарных частиц.

Спин – одна из фундаментальных характеристик частиц в квантовой механике. Термин «квантовая механика», хотя сам по себе и не очень точный, связан с тем, что некоторые величины передаются только определенными, дискретными порциями. Например, энергию электрона, связаного с атомным ядром, можно менять только строго определенными порциями. То же самое верно и для величины, известной как «угловой момент» – он показывает, насколько быстро один объект вращается или двигается вокруг другого объекта. Правила квантовой механики говорят, что угловой момент квантуется, другими словами он может изменяться только на величину, пропорциональную некоторому фундаментальному, строго установленному значению. Минимальная неделимая единица углового момента задается постоянной Планка h – фундаментальной константой природы, деленной на 2π. Эта константа столь важна, что получила собственное название – «приведенная постоянная Планка» и причудливое обозначение h. Постоянную h Планк придумал, когда квантовая механика только нарождалась, но оказалось, что h используется гораздо чаще, так что мы именно ее теперь называем постоянной Планка. Численно h равна примерно 6,58 × 10-16 электронвольт умноженных на секунду.

Представьте, что у вас есть волчок, вращением которого вы можете очень точно управлять. Вы вращаете его все медленнее и медленнее и измеряете его скорость настолько точно, насколько хотите. Вы обнаружите, что, когда вращение сильно замедлится, будут разрешены только дискретные скорости вращения – скорость вращения волчка будет скачком изменяться от одной к другой подобно тому, как секундная стрелка кварцевых часов перепрыгивает с одной секунды на следующую. В конце концов вы дойдете до самого медленного из возможных вращений, при котором полный момент количества движения волчка будет равен h. Причина, по которой вы не замечаете такого скачкообразного изменения скорости вращения олимпийских фигуристов, вращающихся на льду, в том, что минимальное вращение чрезвычайно медленно: чтобы завершить полный оборот, игрушечному волчку с угловым моментом h потребовалось бы время, в сто триллионов раз превышающее возраст Вселенной.

Вращающийся волчок имеет угловой момент, потому что атомы в волчке в буквальном смысле слова вращаются вокруг некоторой центральной оси. Одним из следствий квантовой механики является то, что отдельные частицы также могут иметь «спин», даже если они на самом деле не вращаются вокруг чего-либо. Мы приходим к такому заключению исходя из того, что полный угловой момент должен оставаться постоянным во времени, а мы видим процессы, в которых вращающиеся частицы при взаимодействии превращаются в частицы, которые вообще не вращаются. Поэтому мы делаем вывод, что угловой момент должен перейти в спин частицы. Говоря «спин», мы всегда имеем в виду внутреннее квантовомеханическое «вращение» элементарных частиц, а говоря «угловой момент», мы подразумеваем классическое явление вращения одного объекта вокруг другого (его еще называют «орбитальный» угловой момент).

 

Как устроен спин

Есть несколько важнейших фактов, которые нужно знать о спине частицы. Каждый вид частиц имеет фиксированное значение спина, данное ему раз и навсегда, частицы никогда не начинают крутиться быстрее или медленнее. Если выражать спин в единицах ħ, то спин каждого фотона во Вселенной равен единице, а спин каждого бозона Хиггса – нулю. Спин – неотъемлемая особенность частицы, он не изменяется в процессе ее существования (если только она не превращается в частицу другого вида).

В отличие от обычного орбитального углового момента наименьшая величина спина составляет половину ħ, а не целое ħ. Электрон, так же как и верхний кварк, имеет спин ħ/2. (Для объяснений нужно глубже закопаться в квантовую теорию поля, поэтому просто посчитаем это причудой квантовой теории поля.)

Существует простая связь между спином частицы и ее природой, то есть бозон она или фермион. Каждый бозон имеет спин, который выражается целым числом: 0, 1, 2, и т. д. (здесь и далее мы выражаем спин в единицах ħ). Каждый фермион имеет спин, выражаемый целым числом плюс половина: 1/2, 3/2,5/2, и т. д. Эта связь такая жесткая, что мы часто определяем бозоны как «частицы с целым спином», а фермионы – как «частицы с полуцелым спином». Это не совсем верно – по определению, которое мы дали раньше, бозоны могут «садиться» друг на друга, а фермионам необходимо пространство, и именно в этом истинное различие между этими двумя классами частиц. А знаменитая теорема в физике – «теорема о связи спина со статистикой» (теорема Паули) уже доказывает, что частицы, способные жить друг на друге, должны иметь целочисленные спины, а частицы, требующие места в пространстве, имеют полуцелые спины. По крайней мере это так в четырехмерном пространстве-времени, но мы здесь ни о чем другом говорить не будем.

Все частицы Стандартной модели обладают весьма определенными спинами. Спин всех известных элементарных фермионов – кварков, заряженных лептонов и нейтрино – равен 1/2. Гравитино – гипотетический суперсимметричный партнер гравитона – имел бы спин 3/2, но гравитино пока не нашли. Сам гравитон имеет спин 2, и он в этом отношении не похож на все остальные элементарные частицы. Другие калибровочные бозоны – фотон, глюоны, а также W и Z – все имеют спин 1. (Разница между гравитоном и другими бозонами – переносчиками сил – в конечном счете определяется тем, что симметрия, лежащая в основе гравитации, – симметрия самого пространства – времени, в то время как другие силы живут в пространстве – времени.) Бозон Хиггса, который стоит в стороне от всех остальных, имеет спин 0. Частицы с нулевым спином называются скалярами, а поля, из колебаний которых они возникают, называют скалярными полями.

Важно различать «спин частиц» и «величину спина, измеряемую относительно некоторой оси (проекцию)». Предположим, что вектор углового момента Земли, вращающейся вокруг своей оси, направлен от Южного полюса к Северному и имеет некоторую (большую) величину. Мы можем спросить, каков этот угловой момент по отношению к оси, направленной в противоположном направлении – с севера на юг. Ответом была бы та же величина, но взятая со знаком минус. Сам угловой момент не изменился, мы просто измерили его по отношению к другой оси. Если мы смотрим на исходную ось сверху, то положительный спин означает, что мы видим объект, вращающийся против часовой стрелки, а отрицательный – что объект вращается по часовой стрелке. Земля вращается против часовой стрелки с точки зрения того, кто смотрит вниз с Северного полюса, поэтому она имеет положительный спин. (Это известное «правило правой руки» – если вы согнете пальцы правой руки в направлении вращения – то есть как бы охватите цилиндр, – то большой оттопыренный палец укажет направление, вдоль которого спин положителен).

Разрешенные значения при измерении спина частицы относительно некоторой оси. Безмассовым частицам разрешены только значения, соответствующие закрашенным кружкам, в то время как массивные частицы могут принимать значения, соответствующие как закрашенным, так и незакрашенным кружкам.

Можно даже рассмотреть измерение углового момента по отношению к перпендикулярной оси – скажем, оси, направленной по диаметру экватора. По отношению к этому направлению Земля вообще не «вращается» – Северный и Южный полюса остаются в одном и том же положении по отношению к воображаемой оси, направленной вдоль диаметра экватора. Поэтому мы сказали бы, что спин, измеренный относительно этой оси, равен нулю.

Так как полный спин частицы квантован и равен некоторому целому или полуцелому числу %, величина спина, которую можно измерить, также квантуется. Она должна быть равной либо полному спину со знаком плюс, либо полному спину со знаком минус, либо некоторым числам между этими значениями, отстоящими друг от друга на целое число. Для частиц с нулевым спином единственное возможное значение, которое мы можем получить при измерении спина, – это 0. Для частиц со спином 1/2 мы могли бы получить +1/2 или −1/2, и это все. Для частицы со спином 1 мы могли бы при измерении получить +1, −1 или 0. Если мы при измерении получаем 0, это не значит, что частица не вращается, это означает просто, что ось ее вращения перпендикулярна оси, относительно которой мы измеряем спин. Но ни одно измерение никогда не даст 7/13 или какое-нибудь другое столь же нелепое значение – квантовая механика этого не позволяет.

 

Степени свободы

Теперь мы должны провести различие между массивными частицами и безмассовыми (и посмотреть, как это будет связано с полем Хиггса). Оказывается, при измерении спина безмассовой частицы (с ненулевым спином), можно получить только два результата: плюс собственный спин или минус собственный спин. Другими словами, независимо от того, какую ось вы выбрали, при измерении спина безмассовой частицы со спином 1 (например, фотона), вы получите либо +1, либо −1, и никогда – ноль. Для частиц со спином 0 или 1/2 это ограничение не имеет значения, поскольку и так нет никаких промежуточных значений. Но для частиц с большими значениями спина оно важно. Когда мы измеряем спин фотона или гравитона, есть только два возможных значения, но когда мы измеряем спин W– или Z-бозона, существуют три различных значения, так как появляется еще одна возможность – получить при измерении 0. На рисунке выше темные (закрашенные) кружки представляют результаты измерений спина безмассовой частицы, в то время как спин массивной частицы дает нам любой из результатов, изображенных как темными, так и светлыми кружками.

Причина, почему этот факт столь важен, в том, что каждое из разрешенных спиновых измерений представляет собой новую «степень свободы». Если перейти с физического языка на обыденный, это означает, что «это событие может произойдет независимо от других происходящих событий». Поскольку мы на самом деле здесь говорим о квантовых полях, каждая степень свободы представляет собой определенный способ, в соответствии с которым поле может колебаться. Для поля со спином 0 – такого, как поле Хиггса – есть только один вид колебаний. Для поля со спином ½ – такого как поле электрона – может быть два вида колебаний, включающих в себя вращение по часовой стрелке или против часовой стрелки, какую бы ось ни выбрали. Безмассовая частица со спином 1 – такая как фотон – также имеет только два вида колебаний. А вот массивная частица со спином 1 – такая как Z-бозон – имеет уже три вида колебаний: по отношению к некоторой оси она может вращаться по часовой стрелке, против часовой стрелки или не вращаться вообще.

Все это похоже на полный бардак, но, вернувшись к обсуждению механизма Хиггса (глава 11), мы поймем, что происходит, когда спонтанно нарушается локальная симметрия. Помните, что в Стандартной модели мы начинаем (до нарушения симметрии) с трех безмассовых калибровочных бозонов и четырех скалярных бозонов Хиггса. Подсчитайте количество степеней свободы: по два для трех безмассовых калибровочных бозонов, по одному для скаляров, что даст 2 × 3 + 4 = 10. После нарушения симметрии три скалярных бозона «съедаются» калибровочными бозонами, которые становятся массивными, оставляя один массивный скаляр, который мы и считаем физическим бозоном Хиггса. Теперь подсчитаем число степеней свободы в этом случае: по три для каждого массивного калибровочного бозона, плюс один для оставшегося скалярного, что в сумме дает 3 × 3 + 1 = 10. Количество степеней свободы до нарушения симметрии и после совпадает. Спонтанное нарушение симметрии не создает новых и не уничтожает старые степени свободы, оно просто перемешивает их.

Подсчет степеней свободы помогает объяснить, почему калибровочные бозоны не имеют массы без поля Хиггса. Они существуют в первую очередь потому, что существует локальная симметрия – что-то делается независимо в каждой точке пространства, и мы должны определить поля, связывающие операции симметрии в различных точках. Можно показать, что для определения этого вида поля необходимы именно две степени свободы. (Поверьте мне на слово, трудно придумать разумное объяснение, не используя сложнейшую математику.) Когда у вас есть частица со спином 1 или 2 и всего лишь две степени свободы – эта частица обязательно безмассовая. Поле Хиггса – это совершенно независимая степень свободы. Когда она «поедается» калибровочными бозонами, те становятся массивными. Не будь поблизости никаких дополнительных степеней свободы, калибровочные бозоны неизбежно остались бы безмассовыми, и другие известные силы не помогли бы.

Надеюсь, вышеизложенное помогло вам понять, почему задолго до обнаружения поля Хиггса физики были так уверены, что нечто ему подобное обязательно должно существовать. В некотором смысле это нечто уже было обнаружено раньше – три из четырех скалярных бозонов: массивные W– и Z-бозоны с нулевым спином. Все, что оставалось сделать – найти четвертый.

 

Почему без поля Хиггса фермионы не обладают массой

Давайте посмотрим, почему в первую очередь требуется объяснить наличие массы у фермионов. Аргумент со степенями свободы, который мы использовали для калибровочных бозонов, тут не годится – у фермиона со спином 1/2 два возможных значения спина вне зависимости от того, есть у него масса или нет.

Начнем с размышлений о массивной частице со спином 1/2, такой как электрон. Представим себе, что он движется прямо от нас, и мы измерили его спин, который оказался равным +1/2 вдоль направления его движения. А теперь мы увеличим свою собственную скорость до такой степени, что начнем догонять электрон – теперь он как бы движется на нас. Ничего в самом электроне мы не изменили, в том числе и его спин, но скорость его по отношению к нам изменилась. Определим величину, называемую спиральностью частицы – это проекция спина на ось, определяемую направлением ее движения. В нашем примере спиральность электрона изменилась с +1/2 на −1/2, при этом все, что мы сделали – изменили свое собственное движение, электрона мы не касались вообще. Очевидно, что спиральность не является внутренней характеристикой частицы и зависит от того, как мы на нее смотрим.

Теперь рассмотрим безмассовый фермион со спином 1/2 (например, электрон, до спонтанного нарушения симметрии). Пусть он летит от нас, мы измеряем его спин, и этот спин равен +1/2 вдоль оси, совпадающей с направлением его движения, так что его спиральность тоже равна +1/2. Такой фермион должен двигаться со скоростью света (все безмассовые частицы так делают). Поэтому мы не будем даже пытаться догнать его и изменить его кажущееся направление движения только за счет своего ускорения. Для каждого наблюдателя во Вселенной эта безмассовая частица будет имеет одно и то же значение своей спиральности. Другими словами, в отличие от массивных частиц, для безмассовых частиц спиральность является хорошо определенной величиной, не зависящей от того, кто ее измеряет. Частица с положительной спиральностью называется «правшой» (вращается против часовой стрелки при движении к нам), а частица с отрицательной спиральностью – «левшой» (вращается по часовой стрелке при движении к нам).

Почему все это имеет значение? Причина в том, что в слабых взаимодействиях участвуют фермионы только одной спиральности. В частности, перед тем, как появляется поле Хиггса и нарушает симметрию, безмассовые калибровочные бозоны слабых взаимодействий чувствуют левозакрученные фермионы и не чувствуют правозакрученных, кроме того они взаимодействуют с правозакрученными антифермионами и не чувствуют левозакрученных. Не спрашивайте почему – природа устроена так, а не иначе. Сильное взаимодействие, гравитация, и электромагнетизм – все они одинаково хорошо относятся и к лево– и правозакрученным частицам. А в слабом взаимодействии участвуют частицы только одной спиральности, а другие отдыхают. Это объясняет, почему слабые взаимодействия нарушают четность: если смотреть на мир в зеркало, правое меняется на левое.

Предположение о наличии воздействий на частицы одной спиральности и отсутствии воздействий на другую, очевидно, не имеет смысла, если спиральности различны для наблюдателей, движущихся с разными скоростями. Либо «слабая» сила действует на некоторую частицу, либо нет. Если слабое взаимодействие оказывает влияние только на левозакрученные частицы и правозакрученные античастицы, то такие частицы должны иметь определенную спиральность раз и навсегда. А это может произойти, только если они движутся со скоростью света. Из чего, наконец, следует, что они должны иметь нулевую массу.

Это помогает понять (если, конечно, вы сумели «переварить» сказанное), смысл некоторых отступлений и аналогий, которые мы делали, когда впервые формулировали основы Стандартной модели. Мы сказали, что известные нам фермионы рождаются парами, которые были бы симметричны, если бы в пустом пространстве не пряталось поле Хиггса. Пары образуют верхний и нижний кварки, электрон и электронное нейтрино и другие. Но в действительности только левозакрученные верхний и нижний кварки образуют симметричную пару. Нет локальной симметрии, связывающей правозакрученные верхние кварки с правозакрученными нижними кварками, то же самое относится к электрону и его нейтрино. (В первоначальной версии Стандартной модели нейтрино считались безмассовыми, а правозакрученные нейтрино вовсе не существовали. Сейчас мы знаем, что нейтрино имеют небольшую массу, но существование правозакрученных нейтрино по-прежнему под вопросом.) Если поле Хиггса заполняет пространство, то слабая симметрия нарушается, и наблюдаемые кварки и заряженные лептоны становятся массивными, и после этого правая и левая спиральности уже разрешены.

Теперь мы видим, почему для того, чтобы фермионы Стандартной модели имели массу, нужно поле Хиггса. Если бы симметрия слабого взаимодействия не нарушалась, спиральность была бы фиксированным свойством каждого фермиона, а это значит, что все они были бы безмассовыми частицами, движущимися со скоростью света. И все это потому, что слабые взаимодействия различают левое и правое. Если бы было равноправие, фермионы беспрепятственно получили бы массу, с полем Хиггса или без него. В действительности, поле Хиггса само по себе – скалярное поле, обладающее массой, но оно не дает массу самому себе – поле Хиггса имеет массу, поскольку у него нет никаких причин ее не иметь.