Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

Кэрролл Шон

Приложение 2

Частицы Стандартной модели

 

 

На протяжении всей книги мы говорили о различных частицах Стандартной модели, а сейчас мы их систематизируем и кратко опишем их свойства.

Есть два типа элементарных частиц: фермионы и бозоны. Фермионы занимают место в пространстве, то есть вы не можете усадить два одинаковых фермиона в одинаковых конфигурациях в одно и то же место. Фермионы служат в качестве основы для построения твердых предметов – от нейтронных звезд до столов. Бозоны можно усаживать один на другой сколько угодно. Они создают поля макроскопических сил, например электромагнитное и гравитационное поле.

 

Фермионы

В первую очередь рассмотрим фермионы. В Стандартной модели есть двенадцать фермионов, разбитые на несколько групп. Фермионы, чувствующие сильное ядерное взаимодействие, – это кварки, а те, которые не чувствуют, – лептоны. Существует шесть типов кварков и столько же лептонов, построенных попарно в три пары, а каждая пара формирует поколение. Существует правило: спин фермиона равен целому числу плюс половина, и все известные элементарные фермионы имеют спин 1/2.

Существуют три кварка верхнего типа с электрическим зарядом +2/3 у каждого. В порядке увеличения массы, они образуют последовательность: верхний кварк, очарованный кварк и истинный кварк. Имеется также три кварка нижнего типа с зарядом −1/3 каждый: нижний кварк, странный кварк и прелестный кварк.

Существуют кварки трех цветов. Совершенно логично было бы считать кварки каждого цвета самостоятельным видом частиц (в этом случае было бы не шесть, а восемнадцать типов кварков), но поскольку все цвета связаны ненарушенной симметрией сильных взаимодействий, мы обычно этого не делаем. Все цветные частицы собираются в бесцветные комбинации, называемые адронами. Есть два простых типа адронов: мезоны, состоящие из кварка и антикварка, и барионы, состоящие из трех кварков, по одному каждого из трех цветов: красного, зеленого и синего. Барионы – это протоны (два верхних и один нижний кварк) и нейтроны (два нижних и один верхний кварк). Пример мезона – пион, который существует в трех видах: один с положительным зарядом (верхний кварк плюс нижний антикварк), другой – с отрицательным зарядом (нижний кварк плюс верхний антикварк), и третий – нейтральный (комбинация верхних кварка-антикварка и нижних кварка-антикварка).

Элементарные фермионы, их электрические заряды и приблизительные значения масс. Массы нейтрино еще точно не измерены, но все они меньше массы электрона. Приведенные значения масс кварков также приблизительны – их трудно измерить, поскольку кварки заперты внутри адронов.

В отличие от кварков лептоны никто не удерживает, и каждый из них может двигаться сам по себе в пространстве. Шесть лептонов также представлены в трех поколениях, в каждом есть одна нейтральная частица и одна частица с зарядом −1. Заряженные лептоны – это электрон, мюон и тау-частица. Нейтральные лептоны – нейтрино (электронное нейтрино, мюонное нейтрино и тау-нейтрино). Массы нейтрино недостаточно хорошо измерены, и способ их получения иной, чем у других фермионов Стандартной модели, поэтому мы их почти не касаемся в этой книге. Известно, что они небольшие (менее одного электронвольта), но не равны нулю.

12 различных фермионов должны рассматриваться как 6 различных связанных между собой пар частиц. Каждый заряженный лептон рождается в паре с соответствующим ему нейтрино, пары также образуют верхний и нижний кварки, очарованный и странный кварки и истинный и прелестный кварки. Вот пример этой парности: когда W−-бозон распадается на электрон и антинейтрино, это всегда – электронное антинейтрино. А когда W−-бозон превращается в мюон, этот распад всегда сопровождается испусканием мюонного антинейтрино, и так далее. (Хотелось бы сказать то же самое и о кварках, но они на самом деле группируются более сложными способами.) Частицы внутри каждой пары обладали бы совсем одинаковыми свойствами, если бы не один немаловажный фактор – маскирующееся под фон вездесущее поле Хиггса. В реальном мире мы видим, что частицы внутри каждой пары имеют разные массы и различные электрические заряды, но это только потому, что поле Хиггса скрывает присущую им симметричную природу.

Возможно ли, чтобы кварки и лептоны в действительности не являлись элементарными частицами, а были составлены из еще меньших частиц? Конечно, да. У физиков нет никакого корыстного интереса считать известные частицы по-настоящему элементарными. Наоборот, они хотели бы, чтобы те скрывали как можно больше тайн, и потому тратят массу времени, изобретая теоретические модели, основанные на предположении о неэлементарности элементарных частиц, а также проверяя модели экспериментально. Гипотетические частицы, из которых могли бы состоять кварки и лептоны, даже имеют название – «преоны». Однако сегодня мы не имеем ни экспериментального доказательства их существования, ни какой-либо убедительной теории на их счет. Все более или менее сходятся на том, что гораздо вероятнее, что кварки и лептоны элементарны, чем то, что они состоят из каких-либо других частиц. Хотя всегда можно ожидать появления новых данных, которые заставят нас пересмотреть наши взгляды.

 

Бозоны

Теперь обратимся к бозонам, всегда имеющим целые спины. Стандартная модель включает в себя четыре типа калибровочных бозонов, каждый из которых порождается локальной симметрией природы и соответствует определенному взаимодействию.

Фотоны – переносчики электромагнитного взаимодействия – безмассовые, нейтральные и имеют спин, равный 1. Глюоны – переносчики сильного ядерного взаимодействия – также безмассовые, нейтральные, и имеют спин единицу. Основное различие в том, что глюоны обладают цветом и заперты внутри адронов, как кварки. Из-за этих цветов реально есть восемь различных видов глюонов, но в очередной раз подчеркиваем, что они связаны отношениями ненарушенной симметрией, так что нам не нужно даже присваивать им отдельные имена.

Бозоны – переносчики взаимодействий.

Массы выражены в гигаэлектронвольтах (ГэВ).

Сводная таблица, показывающая, какие частицы (бозоны и фермионы) с какими силами взаимодействуют. Фотоны – переносчики электромагнитного взаимодействия, но они не взаимодействуют непосредственно с друг с другом, поскольку они электрически нейтральны. Происхождение массы нейтрино по-прежнему загадочно, так что взаимодействуют ли они с бозоном Хиггса, неизвестно.

Гравитоны – переносчики гравитации – также безмассовы и нейтральны, но имеют спин, равный двум. Гравитоны сами взаимодействуют с гравитацией, поскольку все взаимодействует с гравитацией, но гравитация, как правило, столь слаба, что вы ее можете не заметить. (Конечно, все меняется, когда в одном месте собирается большая масса, которая создает сильное гравитационное поле.) Поэтому слабость гравитации означает, что гравитон почти не имеет значения для физики элементарных частиц, по крайней мере в рамках Стандартной модели. Поскольку полная теория квантовой гравитации еще не построена, а отдельные гравитоны практически невозможно обнаружить, его нередко не считают частицей, хотя есть все основания полагать, что гравитон вполне реален.

Слабое взаимодействие переносится заряженными W– и нейтральными Z-бозонами. Все три частицы имеют единичный спин, ненулевую массу и распадаются сразу после рождения. За то, что эти бозоны – переносчики слабого взаимодействия – приобретают массу и становятся непохожими друг на друга, ответственно именно поле Хиггса, нарушающее симметрию. Если бы поля Хиггса не было, W– и Z-бозоны больше бы напоминали глюоны с той лишь разницей, что их было бы только три, а не восемь.

В отличие от ранее упомянутых трех сил слабое взаимодействие настолько слабо, что не в состоянии само по себе удержать две какие-либо частицы вместе. По существу есть только два способа частицам провзаимодействовать через слабое взаимодействие: они могут либо рассеяться друг на друге путем обмена W– или Z-бозонами, или один массивный фермион может распасться и превратиться в более легкий фермион, испустив при этом W-бозон, который затем сам распадается на другие частицы. Эти процессы играют ключевую роль в поисках новых частиц на БАКе.

Необходимо отметить, что сам бозон Хиггса – скалярный бозон, то есть его спин равен нулю. В отличие от калибровочных бозонов он не порождается симметрией, и нет никаких оснований ожидать, что его масса равна нулю (или даже небольшая). Мы можем говорить о хиггсовской «силе», возможно, имеющей отношение к темной материи, которую ищут в экспериментах, проводимых глубоко под землей. Но основной интерес к бозону Хиггса вызван тем, что порождающее его поле отлично от нуля в пустом пространстве и влияет на другие частицы, наделяя их массой.

Если вы дочитали до этого места, считайте, что уже довольно хорошо знакомы с бозоном Хиггса.