Приспособиться и выжить!

Кэрролл Шон

Глава 8

Создание и эволюция сложного

 

 

Хотя через трубку поступает достаточно кислорода, дух все равно захватывает.

Пышная процессия животных кораллового рифа, дрейфующая над желтым, пурпурным и бурым лесом кораллов являет собой настоящее буйство цветов, форм и размеров: косяки неоновых рыб, великолепные морские звезды, пятнистые осьминоги, колючие морские ежи, зеленые водяные черепахи, черноперые акулы, гигантские кальмары с бирюзовыми или пурпурными мантиями, полосатые крабы, пятнистые скаты и кремовые анемоны.

Большой барьерный риф Австралии, без сомнения, является одним из величайших чудес природы. Он простирается почти на 2 тыс. км вдоль восточного берега континента и представляет собой самую крупную на Земле структуру, созданную живыми организмами и единственную видимую с Луны.

Это великое чудо природы приводило в изумление многих великих натуралистов, которые задавались вопросом: откуда оно взялось? Как возникло такое невероятное разнообразие форм жизни?

В начале XIX в., когда геология стала бурно развиваться и искать естественные объяснения происхождения различных типов ландшафтов, все в основном сходились на том, что коралловые рифы возникают на вершинах кратеров подводных вулканов. Казалось, подобный механизм вполне логично объяснял возникновение округлых коралловых островов в южной части Тихого океана, окружающих лагуны с кристальной голубой водой. Однако в геологии и, как мы вскоре увидим, в биологии внешние проявления могут оказаться обманчивыми. Идея о вулканическом происхождении коралловых рифов была опровергнута. Догадайтесь кем.

Если вы скажете, что Дарвином, будете совершенно правы.

За 20 лет до выхода книги «О происхождении видов» в двух своих трудах (сначала в «Журнале исследований по геологии и естественной истории различных стран, посещенных в ходе кругосветного путешествия на Бигле», более известном как «Путешествие на Бигле» (1839), а затем в более развернутом виде в «Структуре и распределении коралловых рифов» (1842)) Дарвин дал новое объяснение образования всех типов коралловых рифов, включая Большой Барьерный риф. У его теории по меньшей мере два важных аспекта. Во-первых, она верная. Идею Дарвина не принимали и опровергали на протяжении многих десятилетий, но в конечном итоге он (снова!) оказался прав. Во-вторых, смелость Дарвина, его умение теоретически рассуждать о длительных процессах, которых никто не мог увидеть своими глазами, и способность делать общие выводы на основании отдельных наблюдений стали основой его подхода к возникновению всего живого.

Дарвин отверг вулканическую теорию происхождения коралловых рифов, так как сомневался в возможности существования кратеров столь большого диаметра, чтобы они могли охватить некоторые крупные атоллы, а также в том, что под водой могло возникнуть такое скопление больших вулканических кратеров, на месте которых появились протяженные цепи атоллов. Дарвин также указал на то, что вулканическая теория слишком атоллоцентрична и не объясняет происхождение двух других форм — окаймляющих рифов, окружающих океанические острова, и барьерных рифов, окружающих острова с лагунами. Дарвин предположил, что все три варианта рифов являются последовательными стадиями одного и того же процесса (рис. 8.1).

Рис. 8.1. Образование кораллового рифа. Дарвин предположил, что три основные формы рифов являются последовательными стадиями одного и того же процесса. Сначала вокруг острова возникает окаймляющий риф; по мере оседания суши он превращается в барьерный риф, окружающий остров вместе с лагуной. В конечном итоге поверхность суши погружается под воду, и риф превращается в окружающий лагуну атолл. Рисунок Лианн Олдс.

В соответствии с идеей Дарвина сначала вдоль берегов нового острова возникает окаймляющий риф. Затем, по мере того как остров оседает, риф продолжает расти, превращаясь в барьерный риф и образуя лагуну вокруг острова. И наконец, когда остров скрывается под поверхностью океана, возникает атолл.

Рост большинства кораллов и погружение островов нельзя увидеть глазами: крупные кораллы растут не более чем на 5 мм в год. Однако Дарвин сумел оценить кумулятивный эффект постепенных изменений, происходящих за длительный период времени, что позволило ему выстроить свою теорию. А через 20 лет после возникновения этой теории он по-новому объяснил происхождение невероятного разнообразия обитающих здесь видов.

Геологическая и биологическая теории Дарвина основаны на широкой экстраполяции — от едва заметных постепенных изменений до крупных превращений, от настоящего в прошлое и от простых форм к более сложным. В значительной степени несогласие с теорией Дарвина связанно именно с сомнениями в обоснованности подобных экстраполяций (в частности, с неприятием идеи «сложения» эффектов на протяжении длительного отрезка времени). Я в своей книге тоже нередко прибегаю к экстраполяциям. Например, я рассказывал о том, что незначительные изменения зрительных пигментов позволяют организмам адаптироваться к изменению освещенности в их среде обитания. Я надеюсь, что после прочтения предыдущих пяти глав у вас не осталось сомнений относительно реальности естественного отбора. В этом и состоит главная задача этой книги — устранить все сомнения. Но вы, возможно, все еще захотите мне возразить: допустим, все это верно в отношении небольших изменений уже существующих сложных структур, но как и из чего этот самый глаз впервые возник?

Это нужный и важный вопрос.

Эволюция сложных структур долгое время была в центре внимания биологов и оставалась прибежищем противников эволюции. Довольно часто случается, что люди признают вариабельность и эволюцию внутри существующих видов (то есть «микроэволюцию»), но отказываются экстраполировать этот процесс на происхождение новых видов и эволюцию сложных признаков, выходящих за пределы вариаций внутри вида («макроэволюция»). В некоторых штатах США дело доходит до того, что в учебниках по биологии заклеивают соответствующие страницы (см. главу 9).

Чтобы объяснить, каким образом естественный отбор создает органы «чрезвычайного совершенства и сложности», Дарвину пришлось оперировать очень большими временными интервалами. Объяснение Дарвина было блестящим, но оно основывалось на экстраполяции от простого к сложному, а не на эмпирических знаниях об истории формирования глаза. Подробности образования и эволюции таких сложных структур в то время не были известны и продолжали оставаться тайной на протяжении большей части следующего столетия.

Но сегодня ситуация изменилась.

За последние 20 лет были получены прямые доказательства того, как возникли и развивались сложные структуры, в частности в организме животных. Это новое понимание появилось в основном благодаря успехам биологии развития, науки, которая изучает процесс превращения единственной клетки (яйца) в сложный организм, состоящий из миллиардов или триллионов клеток. Развитие организма теснейшим образом связано с эволюцией формы, поскольку все вариации и изменения формы сопровождаются изменением развития. Исследования в области эволюционной биологии развития (сокращенно эво-дево, от англ. evolution of development) привели ко многим неожиданным и важным открытиям, касающимся эволюции сложных организмов и их частей, и эти открытия лишают противников эволюции последних аргументов.

В этой главе я расскажу о некоторых наиболее важных открытиях в области эволюционной биологии развития, относящихся к эволюции сложных структур у животных. Я объясню, каким образом понимание процесса развития позволяет установить происхождение сложных структур, а сравнение путей развития разных организмов помогает понять эволюцию сложных признаков. Я сконцентрируюсь на описании особой группы генов, ответственных за построение тела и органов, а также на той части заключенной в ДНК информации, о которой я пока еще не рассказывал, но которая играет ключевую роль в понимании эволюции формы.

 

Внешность обманчива: у всех животных один и тот же набор генов для построения тела и органов

Животные, которых я увидел на Большом барьерном рифе, были представителями многих ветвей эволюционного древа. Из 35 основных групп, или типов, животных здесь встречаются кишечнополостные (кораллы, морские анемоны), губки, моллюски (кальмары, осьминоги), членистоногие (крабы), иглокожие (морские звезды и ежи), а также позвоночные (акулы, костные рыбы, морские черепахи и киты). Многие из этих животных характеризуются какими-то уникальными особенностями (панцири черепах, щупальца осьминогов, раковины моллюсков, клешни крабов и т. д.), однако у всех есть органы, необходимые для одних и тех же целей, например, глаза.

Нет сомнений в том, что глаза приносят пользу своим владельцам. Однако многих биологов со времен Дарвина удивляло разнообразие устройства глаз в царстве животных. Человек и другие позвоночные обладают глазами камерного типа с единственным хрусталиком. Крабы и другие членистоногие имеют сложные (фасеточные) глаза, в которых зрительную информацию независимым образом собирает множество отдельных зрительных ячеек. Осьминоги и кальмары, хотя и не являются нашими родственниками, тоже имеют камерные глаза, а вот у их более близких родственников, двустворчатых моллюсков, глаза бывают трех типов: камерные глаза с единственным хрусталиком, зеркальные глаза с хрусталиком и отражателем, а также сложные глаза, составленные из 10–80 ячеек.

На протяжении 100 с лишним лет ученые считали, что большое разнообразие строения глаз является результатом независимых «изобретений», произошедших в разных группах. На основании клеточного строения глаз животных знаменитый биолог-эволюционист Эрнст Майр и его коллега Л. В. Сальвини-Плевен предположили, что глаза в ходе эволюции возникали независимым образом от 40 до 65 раз.

С одной стороны, это утверждение поддерживает теорию о воспроизведении эволюционных событий при возникновении одних и тех же потребностей (в данном случае речь идет о потребности видеть). Идея о повторении эволюции глаз была широко распространена. Однако новые открытия заставили ученых пересмотреть свой взгляд на эволюцию глаза. Основной вопрос заключается в следующем: возникли ли глаза «из ничего» или их эволюция строилась на готовых элементах, имевшихся у одного или нескольких общих предшественников. Именно от этого зависят наши представления о вероятности эволюции сложных структур. Конечно, кажется более «трудным делом» (менее частым или менее вероятным) создание какой-либо структуры на пустом месте, из ничего, по сравнению с ситуацией, когда части этой структуры уже существуют. Новые данные показывают, что совершенно разные глаза, имеющиеся у разных типов животных, имеют между собой гораздо больше общего, чем кажется на первый взгляд, и эта общность позволяет нам лучше понять процесс эволюции сложных структур.

История формирования нового взгляда на эволюцию глаза началась в 1994 г. Вальтер Геринг и его коллеги из Университета Базеля (Швейцария) занимались изучением гена, необходимого для развития сложного глаза у дрозофилы. Когда этот ген инактивировали с помощью мутаций, глаз не формировался. Еще раньше ученые, занимающиеся генетикой дрозофил, прозвали этот ген безглазым (eyeless) (многие гены получают свое название от той функции, которая нарушается в случае их мутации; на самом деле нормальная функция данного гена состоит в содействии формированию глаза). Когда ученые выделили ген eyeless, они, к своему большому удивлению, обнаружили, что он кодирует белок, который чрезвычайно сильно напоминает белки, кодируемые мышиным и человеческим генами. Мышиный белок назвали маленьким глазом (Small eye); он также необходим для формирования глаза. Человеческий белок получил имя аниридия (Aniridia), поскольку его дефект приводит к исчезновению радужной оболочки глаза. Сходство между белками человека, мыши и дрозофилы настолько велико, что становится ясно — это один и тот же белок у разных видов организмов (рис. 8.2).

Рис. 8.2. Фрагмент белковой последовательности, кодируемой геном Pax-6. Здесь представлены фрагменты белка дрозофилы, мыши и человека. Обратите внимание на большое сходство между белками дрозофилы и млекопитающих, а также на идентичность последовательностей белка мыши и человека.

Теперь этот белок носит общее и менее выразительное имя — Pax-6.

Открытие гена Pax-6 тут же вызвало новый вопрос: является ли наличие одинаковых генов у животных со столь разными глазами, как у насекомых и млекопитающих, простым совпадением или имеет какой-то глубокий смысл? Другими словами, использовали ли дрозофилы и млекопитающие ген Pax-6 для независимой эволюции своих глаз «из ничего» или кажущиеся столь разными глаза имеют между собой больше общего, чем представляется на первый взгляд, и их формирование при участии гена Pax-6 является отражением какого-то фундаментального принципа?

Теперь появилось множество новых данных, позволяющих ответить на этот вопрос. Сначала экспериментальным путем было показано, что гены Pax-6 мыши и дрозофилы являются взаимозаменяемыми. Швейцарские ученые активировали ген Pax-6 дрозофилы в необычных местах, таких как ноги, крылья или усики, и обнаружили, что это приводит к формированию тканей глаза! Затем они установили, что мышиный ген Pax-6 может индуцировать образование глазной ткани у дрозофил. Таким образом, эти гены имеют одинаковые функции, а не только очень похожие последовательности. Вспомните, в третьей главе мы говорили о том, что никакой ген не может сохраняться во времени без поддержки со стороны естественного отбора. По какой-то причине функция и последовательность белка Pax-6 сохранялась на протяжении длительного периода эволюции животных — более 500 млн лет.

Причина сохранности гена Pax-6 стала ясна в результате серии экспериментов, посвященных исследованию роли этого гена в образовании глаз у других животных. Изучение гена Pax-6 кальмаров и различных червей, таких как планарии и ленточные черви, показало, что ген также участвует в формировании сложных или простых глаз у этих животных.

Поскольку Pax-6 задействован в развитии глаз у столь широкого круга организмов, очень маловероятно, что все они стали использовать этот ген случайно. Участие гена Pax-6 в развитии глаза должно иметь исторические причины. Это означает, что общий предшественник всех этих животных использовал Pax-6 для создания каких-то, возможно очень примитивных, глаз. И все удивительные и сложные глаза, развившиеся у потомков этого общего предка, эволюционировали именно на этом основании.

Следующий вопрос, на который необходимо ответить, если мы хотим воссоздать картину эволюции сложных органов, заключается в том, что же это было за основание. Какие элементы, в дальнейшем использовавшиеся для эволюции более сложных глаз, уже существовали у общего предка животных?

Об этих элементах нам известно достаточно много. Глаза любого типа состоят из регистрирующих свет клеток, называемых фоторецепторными клетками, и пигментных клеток, определяющих угол падения света на фоторецепторные клетки. Таким образом, резонно предположить, что самые примитивные глаза состояли из этих двух типов клеток. Именно такое предположение и сделал Дарвин: «Самый простой орган, который можно было бы назвать глазом, состоит из зрительного нерва, окруженного пигментными клетками и покрытого прозрачной кожей, но без хрусталика или преломляющего тела».

Такие простые двухклеточные глаза действительно существуют. Они были обнаружены у личинок некоторых существ, таких как морские черви нереиды (Platynereis dumerilii). На второй день развития оплодотворенной яйцеклетки личинка имеет пару двухклеточных глаз, «пристально глядящих» с передней стороны туловища (рис. 8.3, верхний ряд).

Рис. 8.3. Простые и более сложные глаза у морских червей. На второй день развития у личинки нереиды (вверху слева) уже существует пара простых глаз, каждый из которых состоит всего из двух клеток (вверху справа). У взрослого червя образуются две пары глаз (внизу слева), состоящих из гораздо большего числа клеток, организованных в форме чаши (внизу справа). В формировании обоих типов глаз задействованы одинаковые гены. Верхние рисунки, а также нижний правый рисунок любезно предоставлены Детлевом Арендтом из Европейской молекулярно-биологической лаборатории в Гейдельберге (из статьи Arendt et al., 2002, Development 129:1143, с изм.); нижний левый рисунок предоставлен Бенжамином Прюдоммом из Медицинского института Говарда Хьюза и Университета Висконсина.

Но простота строения этих глаз обманчива. Они построены из тех же компонентов, что и более сложные и совершенные глаза. Например, регистрация света фоторецепторными клетками этих простых глаз основана на действии опсинов — тех самых зрительных пигментов, о которых мы говорили в предыдущих главах. Все животные используют опсины для регистрации света. Объяснить этот факт можно единственным образом: опсин существовал уже в примитивных глазах общего предшественника большинства животных и с тех пор используется для детекции света во всех типах глаз.

Картину формирования и эволюции более сложных глаз исследовали на примере тех же личинок нереиды. Рядом с двухклеточными глазами личинки в какой-то момент начинают формироваться более крупные глаза взрослой особи, имеющие форму чаши и состоящие из гораздо большего числа фоторецепторных и пигментных клеток (рис. 8.3, нижний ряд). Сложность в данном случае является результатом организации большего количества таких же клеток в трехмерном пространстве — тот же строительный материал, другая конструкция. А для строительства используются те же инструменты. В этом процессе участвует ген Pax-6 и еще как минимум два других гена, таких же как у дрозофил и позвоночных. Создание более крупного, но все еще примитивного глаза взрослого червя из тех же основных типов клеток, а также использование тех же генов, что служат для построения более сложных фасеточных и камерных глаз, демонстрирует нам путь создания и эволюции сложных органов. Анализируя этот процесс, мы видим, что сложные органы строятся путем сборки большого количества клеток всего нескольких типов и что в ходе эволюции для построения глаз современных животных продолжали использоваться те же типы клеток и те же гены. Для создания глаз с различным строением у разных животных применяются те же «строительные кирпичики» и те же «инструменты».

С учетом этих новых представлений получается, что разные типы глаз являются продуктом разных эволюционных путей, начавшихся со сходных стартовых позиций, с некоей простой конфигурацией фоторецепторных и пигментных клеток, но не с пустого места. Также неверно, что камерный глаз эволюционировал из фасеточного глаза или наоборот. Представьте себе современные сложные типы глаз и попытайтесь превратить один тип в другой. Это невозможно сделать без потери эффективности органа у промежуточных вариантов. Но в ходе эволюции этого и не происходило.

Напротив, сегодня нам представляется, что история эволюции глаза состояла в повторяющемся акте построения более сложного органа из более простых «протоглаз» (рис. 8.4).

Рис. 8.4. Происхождение и эволюция сложного глаза. Под контролем гена Pax-6 у общих предшественников животных возникли фоторецепторные клетки, способные детектировать свет с помощью белков-опсинов. Сложные глаза эволюционировали из более простой структуры, состоявшей из фоторецепторных и пигментных клеток. Общий предшественник билатеральных животных имел два типа фоторецепторных клеток: рабдомерные фоторецепторы в протоглазах отвечали за зрение, а цилиарные фоторецепторы в головном мозге — за регуляцию суточного ритма. Рабдомерные рецепторы стали основой эволюции глаз членистоногих и головоногих животных, а в эволюции глаз позвоночных животных были задействованы оба типа рецепторов. Рисунок Лианн Олдс.

Роль естественного отбора в эволюции сложных глаз с лучшими оптическими характеристиками объяснить несложно. Начиная с простой структуры, постепенно накапливались небольшие изменения, улучшавшие функциональные характеристики органа. Если мы рассмотрим лишь одну ветвь на филогенетическом древе животных, например ветвь моллюсков, то обнаружим большое разнообразие глаз с разной степенью сложности (рис. 8.5).

Рис. 8.5. Различные стадии эволюции глаза у моллюсков. Моллюски имеют глаза различного строения; это могут быть простые пигментированные глазки (а), глаза в форме чаши (б), глаза, заполненные клеточной жидкостью (в), глаза с наружной линзой (г) и сложные глаза (как у кальмара) (д). Из книги M. W. Strickberger, Evolution, © 1990 by Jones and Bartlett Publishers, Boston.

С помощью компьютерного моделирования Дан Нильсон и Сюзанна Пелгер из Университета Лунда (Швеция) показали, что отбор малых вариаций за 2 тыс. стадий на протяжении 500 тыс. лет мог привести к образованию камерного глаза из простого прототипа.

Детализация картины эволюции глаза помогла объяснить некоторые интересные различия между разными типами глаз. Например, в глазу человека фоторецепторы повернуты от света и находятся на задней стенке глазного яблока, тогда как у кальмара они направлены к свету и располагаются спереди (см. рис. 8.4).

Чрезвычайно сложно (и не нужно) пытаться представить себе, каким образом один тип строения перешел в другой. Очевидно, что для эволюции глаз камерного типа существовало несколько путей, и головоногие и позвоночные пошли разными путями.

Еще одним важным отличием глаз человека от глаз кальмара или дрозофилы является тип фоторецепторов: у человека и других позвоночных фоторецепторные клетки (палочки и колбочки) относятся к так называемому цилиарному типу, тогда как фоторецепторы кальмаров и дрозофил относятся к рабдомерному типу. Различие состоит в том, каким образом мембраны рецепторных клеток каждого типа расширяются для соединения с опсинами. Этот признак служил важным аргументом в пользу независимого происхождения глаз позвоночных и других животных.

Новые открытия, сделанные все на тех же незамысловатых нереидах, прояснили тайну происхождения наших глаз и фоторецепторов. Детлев Арендт и его коллеги из Европейской молекулярно-биологической лаборатории в Гейдельберге (Германия) обнаружили в развивающемся головном мозге нереид несколько цилиарных (реснитчатых) клеток, которые странным образом напоминали фоторецепторные клетки позвоночных. Дальнейшие исследования показали, что эти клетки синтезируют некий опсин, который больше похож на опсины позвоночных, чем на опсины, обнаруженные в фоторецепторных клетках в глазах самих нереид или других беспозвоночных животных. Опсин цилиарных клеток головного мозга (c-опсин), как выяснилось, нужен не для зрения, а для регуляции суточного ритма. Таким образом, оказалось, что кольчатые черви нереиды имеют оба типа фоторецепторов и опсинов. Это означает, что общий предшественник нереид, кальмаров и позвоночных также имел все эти типы фоторецепторов и опсинов. Рабдомерные фоторецепторы и их опсин (r-опсин) послужили для создания зрительной системы у членистоногих и головоногих организмов, тогда как для создания зрительной системы у позвоночных природа использовала цилиарные фоторецепторы и c-опсин. Кроме того, рабдомерные рецепторные клетки в глазах позвоночных превратились в так называемые ганглиозные клетки сетчатки, функция которых состоит в передаче сигнала в головной мозг. Таким образом, глаза позвоночных животных, по-видимому, сформировались из обоих типов фоторецепторных клеток.

Глаз, таким образом, не только перестал быть примером органа, которому трудно дать эволюционное объяснение, но и служит для нас одним из важнейших источников информации о том, как эволюция создает сложные структуры с помощью общих генетических инструментов. Открытия в области биологии развития показали, что для создания совершенно разных по строению сердец, пищеварительных систем, мышц, нервов и конечностей у всех видов животных используются одни и те же генетические инструменты. Совершенно очевидно, что подобно фоторецепторам, которые представляют собой древний тип клеток, другие типы клеток, из которых состоят многие ткани и органы, также имеют древнее происхождение. Более того, в результате анализа генов и геномов стало известно, что большинство животных снабжены сходными наборами инструментов (генов) для построения тела и органов (ветвь позвоночных имеет более широкий ассортимент этих генов в результате масштабных процессов удвоения генов). Все это говорит о том, что сам этот набор инструментов также имеет древнее происхождение и должен был существовать у общего предшественника еще до начала эволюции тел и органов большинства современных животных.

Мы не знаем, кто был этим общим предком. Но если попытаться изобразить это существо, то нужно представить себе небольшое свободно плавающее морское животное с мягким телом, напоминающее личинку нереиды (см. рис. 8.3, слева вверху), с полным генетическим «набором инструментов развития», множеством типов клеток и простыми органами. Такое животное является хорошей аппроксимацией того существа, которое послужило основой эволюции всего царства животных.

Эти новые открытия позволяют нам проследить за процессом возникновения и эволюции сложных структур. Но при этом возникает новый парадокс: почему при такой общности клеточных типов и генов возникло такое большое разнообразие форм?

 

Биоразнообразие — результат использования одинаковых генов разными способами

Прежде чем я продолжу рассказ об эволюции формы, необходимо подчеркнуть принципиальное различие между белком Pax-6 и другими белками из эволюционного инструментария с одной стороны и различными типами белков, о которых я говорил в предыдущих главах, с другой. Опсины, глобины, рибонуклеазы, обонятельные рецепторы и другие белки непосредственным образом отвечают за физиологические функции — зрение, дыхание, расщепление пищи или обоняние. А Pax-6 и другие белки из «набора инструментов» необходимы для создания формы — они контролируют количество, размер и форму частей тела, а также типы клеток, участвующих в построении тела. Большинство белков этой группы прямо или косвенно воздействуют на то, где и когда самые разные гены используются в организме. Столь значительная роль гена Pax-6 (потеря глаз при его инактивации и появление глаз при его активации) связана с его влиянием на многие другие гены на разных стадиях развития. Более того, Pax-6 и большинство других генов этой группы выполняют при формировании тела и его частей не одну, а несколько обязанностей. Например, Pax-6 участвует также в построении головного мозга и носа млекопитающих. Некоторые гены из этого «набора инструментов» задействованы в формировании десяти, двадцати и большего количества различных частей тела.

По этой причине чрезвычайно важное различие между генами, связанными с физиологической функцией, и теми, что участвуют в формировании тела, заключается в последствиях мутаций этих генов. Мутации гена опсина могут вызвать изменение диапазона спектра, детектируемого палочками или колбочками глаза. А вот мутация гена, ответственного за формирование тела, может привести к полной потере глаза или какого-то другого органа. По этой причине мутации генов из «набора инструментов» часто вызывают катастрофические последствия и не могут сохраняться в геноме. В результате эволюция формы чаще происходит путем изменения способа применения генов из «набора инструментов», чем изменения самих этих генов.

Я приведу два примера, показывающих, что эволюция формы часто происходит в результате изменений тех участков ДНК, которые не кодируют белки, но содержат инструкции для использования инструментальных (регуляторных) генов. Именно в этих менее изученных последовательностях ДНК содержатся ключи к пониманию того, каким образом столь богатое архитектурное разнообразие смогло возникнуть при использовании одного набора инструментов.

Одной из очевидных отличительных особенностей крупных и сложных животных является то, что их тело построено из повторяющихся фрагментов. Как ткани и органы строятся из клеток-кирпичиков, так и тела животных в целом часто тоже составлены из отдельных кирпичиков. Например, сегменты — кирпичики тела членистоногих (насекомых, пауков, ракообразных, многоножек), а позвонки — кирпичики позвоночника человека и других позвоночных животных. Многие структуры, связанные с этими кирпичиками тела, также повторяются: ноги, когти, крылья, усики и т. д. у членистоногих и ребра и конечности у позвоночных. Одна широко распространенная тенденция в эволюции тела животных заключается в изменении количества и типа повторяющихся частей. Основным признаком, на основании которого выделяют отдельные классы членистоногих, является количество сегментов и количество и вид конечностей. Аналогичным образом классы позвоночных различаются по количеству и типу (шейные, грудные, поясничные, крестцовые) позвонков.

Различие в числе и форме повторяющихся элементов наблюдается не только между таксономическими группами, но встречается и среди представителей родственных видов или популяций. Например, во многих озерах Северной Америки водится трехиглая колюшка двух типов: в придонной части мелких водоемов живет колюшка с редуцированными шипами, а в открытой, глубокой воде — колюшка с хорошо развитыми шипами (рис. 8.6).

Рис. 8.6. Эволюция брюшного плавника у трехиглой колюшки. Во многих озерах обнаружены две формы трехиглой колюшки. В популяции придонных рыб скелет брюшного плавника недоразвит. Это изменение скелета связано с изменением функции генетического переключателя, контролирующего участие гена Pitxi в развитии брюшного плавника (X). Рисунок Лианн Олдс.

Брюшной шип является частью брюшного плавника, а брюшные и грудные плавники — это повторяющиеся структуры. Размер брюшного шипа находится под влиянием естественного отбора, поскольку он защищает колюшку от хищников. В открытых водоемах длинный шип защищает рыб от более крупных хищных рыб, а вот на дне озера он становится обузой, поскольку личинки стрекоз поедают молодых колюшек, хватая их за шипы.

Эволюция этих двух разновидностей колюшек имеет совсем недолгую историю. Озера, в которых они живут, образовались в результате таяния льдов в конце последнего ледникового периода, примерно 10 тыс. лет назад. Озера были заселены океанской колюшкой, которая несколько раз давала начало популяциям с длинными и с короткими шипами. Исключительно подробная ископаемая летопись подтверждает быструю эволюцию этих рыб.

Поскольку две популяции эволюционировали лишь недавно, их представители по-прежнему могут спариваться и давать потомство. Это позволяет генетикам обнаружить генетические изменения, лежащие в основе изменения формы тела. Недавно Дэвиду Кингсли, Дольфу Шлатеру и их коллегам из Университета Стэнфорда и Университета Британской Колумбии удалось идентифицировать гены, ответственные за эволюцию отдельных признаков у колюшки. Эволюция одного признака, длины брюшного шипа, демонстрирует, каким образом формирование повторяющихся структур зависит от способа использования регуляторных генов.

Уменьшение размера брюшного шипа у придонной популяции колюшки вызвано нарушением развития зачатка плавника. Недавно был идентифицирован ответственный за эти изменения ген, оказавшийся одним из генов «набора инструментов», известным под названием Pitxi. Это типичный «инструментальный» ген: в процессе развития рыб он выполняет несколько функций, контролирует другие гены и имеется также у других животных. Например, у мышей Pitxi отвечает за отличия задних конечностей от передних (конечности — это еще одна повторяющаяся структура).

Анализ окаменелостей показывает, что брюшной плавник был эволюционным предшественником задних конечностей четвероногих животных. Участие Pitxi в развитии брюшного плавника у рыб и задних конечностей у млекопитающих является прекрасным независимым подтверждением этого факта.

Но я хочу обратить ваше внимание на то, что брюшной плавник рыб редуцировался в результате изменения гена Pitxi, а в других частях тела, в формировании которых участвует Pitxi, изменений не произошло.

Чтобы понять, как это могло случиться, следует сравнить белки Pitxi у рыб с длинным и коротким брюшным шипом. Последовательности этих белков абсолютно одинаковы.

Но разве я не утверждал, что различия в строении брюшного плавника связаны с геном Pitxi? Да, утверждал. Этот кажущийся парадокс разрешается, если учесть, что кроме кодирующей последовательности каждый ген имеет некодирующую последовательность ДНК, выполняющую регуляторную функцию. Регуляторные последовательности, содержат элементы, работающие наподобие переключателей, которые определяют, где и когда будет или не будет использоваться соответствующий ген. «Инструментальные» гены могут иметь несколько отдельных переключателей, каждый из которых определяет работу гена в той или иной части тела. Функционирование этих переключателей определяется последовательностью их ДНК, и изменения в этой последовательности могут влиять на работу генов. Важной особенностью переключателей является то, что изменение в одном из них не влияет на функцию других. И именно это проливает свет на эволюцию формы тела и органов. Получается, что функция «инструментального» гена может изменяться в одном органе или структуре без изменения его функции в других структурах.

Действительно, у колюшки с укороченным брюшным шипом ген Pitxi не участвует в развитии брюшного плавника. Изменения в структуре переключателя, регулирующего его действие в задних конечностях, привели к специфическому изменению этой части скелета (рис. 8.6). Этот пример показывает, каким образом изменения на уровне ДНК могут способствовать быстрой эволюции анатомических признаков.

Редукция задних конечностей происходила в эволюции позвоночных несколько раз. У китообразных и ламантинов задние конечности в значительной степени редуцировались по мере превращения сухопутных предшественников этих животных в морских обитателей. Уменьшение размеров конечностей или их полное исчезновение произошло также у змей и безногих ящериц. Пример трехиглой колюшки и многие другие, которых я не привожу в этой книге, показывают, каким образом происходили подобные изменения формы тела и органов.

Уменьшение размеров органов и их исчезновение — это лишь одна сторона эволюции формы. Конечно, нам хотелось бы узнать, как появляются новые признаки. И центром нашего внимания вновь станут регуляторные последовательности ДНК.

 

Бесконечное число самых прекрасных мушек

Хотя тропические рыбы, бабочки и птицы считаются, вероятно, самыми красивыми представителями царства животных, в царстве биологических исследований найдется мало существ, которые могли бы соперничать с плодовой мушкой, или дрозофилой. Открытие регуляторных генов дрозофилы возродило к жизни биологию развития и способствовало появлению нового направления биологии — эволюционной биологии развития (эво-дево). Не так давно разнообразие окраски крыльев дрозофил (хотя и менее нарядных, чем крылья птиц или бабочек) помогло прояснить механизмы эволюции новых признаков.

У лабораторной плодовой мушки Drosophila melanogaster крылья бледные, но ее многочисленные родственники из того же семейства обладают крыльями с разнообразным черно-белым рисунком (рис. 8.7).

Рис. 8.7. Разнообразие окраски крыльев плодовых мушек. Крылья этих маленьких насекомых — прекрасный пример того, как с помощью одних и тех же генетических инструментов может возникнуть почти бесконечное разнообразие узоров. Монтаж Николаса Гомпела и Бенжамина Прюдомма.

У многих видов характерная окраска присуща только самцам и предназначена для демонстрации самкам в период ухаживания, когда самцы танцуют или прихорашиваются перед своими избранницами. Наиболее типичная окраска — одно черное пятнышко около кончика крыла.

Сотрудники нашей лаборатории в Университете Висконсина занимались изучением происхождения и эволюции пятен на крыльях дрозофил. Эти пятна — превосходная иллюстрация общей закономерности: новые признаки появляются тогда, когда «старые» гены учатся новым трюкам.

Появление пятен на крыльях связано с активностью фермента, синтезирующего меланин (черный пигмент, о котором мы уже говорили в главе 7). Этот фермент можно сравнить с кисточкой в генетическом «наборе инструментов». У насекомых с пятнистыми крыльями эта кисточка прокрашивает заранее заданный рисунок. Форму рисунка контролируют переключатели, окружающие кодирующую область каждого гена-кисточки. В ходе эволюции рисунка крыльев переключатели претерпели несколько изменений. Появление темных пятен с хорошо очерченными краями было не одностадийным процессом («пятен нет — пятна есть»), а последовательной серией изменений, в ходе которых эволюционировала форма рисунка и интенсивность окраски. Так что история «простого» пятна не так уж проста: оно сформировалось постепенно в результате сложения многих мелких вариаций. Мы считаем, что большинство физических признаков эволюционировали таким же образом.

Мы идентифицировали изменения в последовательности переключателя, регулирующего использование одного гена-кисточки в крыле (рис. 8.8).

Рис. 8.8. Появление и исчезновение пятен на крыльях у дрозофил происходит при участии специфических переключателей гена-кисточки. Появление пятнистых крыльев у современных дрозофил, эволюционировавших из предшественника с неокрашенными крыльями, произошло в результате модификации генетического переключателя, контролирующего работу гена окраски в развивающемся крыле (звездочки). Селективная потеря пятен на крыльях (без каких-либо изменений в других частях тела) также произошла в результате модификации этого переключателя (X). Рисунок Лианн Олдс.

Этот ген имеет и другие переключатели, регулирующие его действие в других частях тела (например, в груди и брюшке) или на других стадиях развития (у личинок дрозофил). И вновь существование независимых переключателей позволяет модифицировать действие инструментального гена в одной части тела, не влияя на его действие в других местах. У других видов модификация других переключателей приводила к другим изменениям.

Появившееся на крыле темное пятно передалось по наследству многим дочерним видам. Интересно, однако, что некоторые виды мушек его потеряли. Потеря признака — гораздо более частое явление в природе, чем думают многие. Почему исчезли пятна на крыльях дрозофил? Возможно, самки перестали ориентироваться на этот признак при выборе партнера, половой отбор этого признака ослабел, и пятна исчезли. Мы исследовали механизм исчезновения пятен и обнаружили, что переключатель, позволивший образоваться пятнам на крыльях у предков, накопил мутации и инактивировался (этот сценарий напоминает образование ископаемых генов, о которых я рассказывал в главе 5). Переключатели, подобно белкам, также могут разрушаться под действием мутаций. Разница заключается в том, что инактивация переключателя не приводит к инактивации гена-кисточки, который продолжает участвовать в окрашивании других частей тела.

В результате игр с переключателями генов пигментации у дрозофил появилось множество вариантов окраски крыльев, чему способствовал как естественный, так и половой отбор. Пример этого маленького насекомого очень важен, поскольку показывает, как с помощью одного и того же набора генетических инструментов можно добиться большого разнообразия.

 

Создаем сложное

Я начал первую главу книги словами Дарвина: «Когда в каждом произведении природы мы будем видеть нечто, имеющее длинную историю; когда в каждом сложном строении или инстинкте мы будем видеть итог многочисленных хитроумных приспособлений, каждое из которых полезно их обладателю… как неизмеримо — говорю на основании личного опыта — возрастает интерес, который представит нам изучение естественной истории!»

Дарвин выбрал термин «хитроумное приспособление» (contrivance) для усиления своей мысли. Ту же терминологию использовал преподобный Уильям Пейли в знаменитой книге «Естественная теология» (Natural Theology, 1802 г.). В существовании «хитроумных приспособлений» в природе Пейли видел доказательство божьего промысла: «Изобретение должно иметь изобретателя, а создание создателя». Дарвин, который был страстным поклонником книги Пейли и утверждал, что почти выучил ее наизусть, оформил многие аргументы в своей книге «О происхождении видов» как прямое опровержение аргументов Пейли в пользу существования создателя.

Преимущество Дарвина перед Пейли и другими мыслителями того времени заключается в способности охватывать большие временные промежутки. Благодаря своим изысканиям в области геологии Дарвин получил представление о мощной кумулятивной силе постепенных изменений, происходящих на протяжении чрезвычайно длинных отрезков времени. Его воображение и, что еще важнее, способность быстро схватывать суть явлений позволили ему выбраться из смирительной рубашки библейской интерпретации возраста Земли. Дарвин понимал, что ему придется собрать огромное количество фактов, отыскать наиболее яркие аналогии и метафоры и изложить материал самым убедительным образом, чтобы преодолеть мощное сопротивление и сомнения ученых и широкой публики. Он предвидел трудности, которые должны возникнуть у людей при попытке понять происхождение сложных структур или «хитроумных приспособлений». Но он знал, что этот труд окупится сторицей.

Количество фактов, касающихся эволюции, продолжает множиться во всех направлениях. Большие достижения в области биологии развития и эво-дево, а также расшифровка летописи ДНК открыли новые перспективы в изучении эволюции и ее истории. Биология развития позволяет исследовать формирование сложных структур в доступном для восприятия временном диапазоне. Киты, черепахи, рыбы, крабы и кораллы барьерного рифа являются сложными существами, но все они начинают свою жизнь со стадии оплодотворенного яйца. Через несколько дней, недель или месяцев они превращаются в целые организмы с многочисленными сложными органами, и суть этого процесса теперь известна нам в мельчайших подробностях. Эво-дево связывает различия между видами, находящимися в ежедневном процессе развития, с длительным процессом эволюционных изменений формы, то есть со «сложением» всех изменений, произошедших в ходе развития видов за многие тысячи и миллионы поколений. А информация, заключенная в ДНК, позволяет реконструировать каждый отдельный этап эволюции.

Идея о создании живых существ усилием какого-то внешнего разума лишилась всех оснований.

Трудно представить, что человек, знакомый со всеми этими фактами, все еще может сомневаться. Эти данные получены благодаря тем же научным и технологическим достижениям, которые позволили выявить генетические причины сотен заболеваний, создать десятки новых средств для генной терапии, реформировать криминалистику и сельское хозяйство. И все же вопреки всем научным доказательствам сомнения и отрицание реальности биологической эволюции по-прежнему нередки. Чтобы понять, откуда эти сомнения и это неприятие, нужно выйти из сферы научных исследований, поскольку причины этих сомнений не могут быть научными и не являются таковыми. Их суть кроется в культурной традиции. Чтобы это понять, лучше всего обратиться к тем моментам в истории человечества, когда некоторые группы людей по личным или идеологическим соображениям отказывались принимать новые научные открытия.

Пришло время для нашей послеобеденной беседы.

Памятник Луи Пастеру на площади Бретей в Париже. Фотография любезно предоставлена Бенжамином Прюдоммом.