Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде

Кин Сэм

Часть IV. Фатум ДНК

Генетика в прошлом, настоящем и будущем

 

 

Глава 13. Все, что случилось, – лишь пролог… порой

Что гены могут (или не могут) рассказать об исторических личностях?

Никому из них уже не поможешь, так что непонятно, с чего бы нам беспокоиться? И все же мы неисправимы в попытках поставить диагноз умершим знаменитостям, будь то Шопен (кистозный фиброз?), Достоевский (эпилепсия?), Эдгар По (бешенство?), Джейн Остин (взрослая ветрянка?), Влад Цепеш (порфирия?) или Винсент ван Гог (половина списка DSM). Несмотря на наличие официальных записей (впрочем, сомнительных), мы продолжаем гадать: как же было на самом деле? Даже вымышленные персонажи порой удостаиваются бог знает откуда взявшихся диагнозов. Врачи уверенно определяют обсессивно-компульсивное расстройство у Эбенезера Скруджа, пограничное расстройство личности у Дарта Вейдера и аутизм – у Шерлока Холмса.

Это стремление, конечно, отчасти объясняется пристальным вниманием к нашим кумирам: нас вдохновляют истории о том, как они преодолевали смертельную угрозу. Имеет место и тайное самодовольство: мы разъяснили проблему, которая была тайной для прошлых поколений! Прежде всего, как отметил один врач в журнале Американской медицинской ассоциации в 2010 году: «Самое приятное в ретроспективных диагнозах – это то, что всегда есть возможность поспорить и, поскольку нет точных доказательств, возможность представить новые теории и версии». Эти версии часто принимают форму экстраполяций – гипотез, которые объявляют загадочные болезни причинами возникновения шедевров, развертывания войн. Правда ли, что гемофилия помогла свергнуть царскую власть в России? Что подагра спровоцировала Американскую революцию? Что зарождение теории Дарвина вызвал укус клопа? Но в то время как улучшение наших знаний в области генетики делает изучение древних диагнозов все более заманчивым, на практике генетика только вносит еще больше хаоса – как в медицинском, так и в моральном плане.

По различным причинам – увлеченность культурой, большое количество сохранившихся мумий и загадочных смертей – историки медицины особое внимание обратили на Древний Египет и его фараонов, таких как Аменхотеп IV. Аменхотепа называли Моисеем, Эдипом и Иисусом Христом в одном лице, и хотя его религиозные ереси в итоге разрушили династию, они также, хоть и окольными путями, обеспечили ее бессмертие. На четвертом году своего правления (середина XIV века до н. э.) Аменхотеп изменил свое имя на Эхнатон («дух солнечного бога Атона»). Это был его первый шаг к отказу от верований предков, поклонявшихся многим богам, шаг к вере в единого бога. Вскоре Эхнатон построил целый «солнечный город», чтобы поклоняться Атону, и перенес традиционные для Египта ночные службы на самый разгар дня – время солнечного бога. Также фараон объявил о важном (и весьма удобном для него) открытии: о том, что он является давно потерянным сыном Атона. Когда простой народ начал возмущаться по поводу этих перемен, фараон приказал своим солдатам-головорезам уничтожить изображения всех богов, кроме своего «отца» Атона, будь то статуи в общественных местах или глиняная посуда в доме бедняка. Так же он стал настоящим борцом за чистоту языка, убрав из всех доступных текстов иероглифы, обозначающие слово «бог» во множественном числе.

Семнадцать лет правления Эхнатона зафиксировали столь же еретические изменения и в искусстве Египта. На фресках и рельефах эпохи Эхнатона впервые появились реалистичные изображения птиц, рыб, дичи, цветов. Многочисленные придворные художники Эхнатона также изображали его семью, включая любимую жену Нефертити и наследника Тутанхамона, в прозаичных до неприличия бытовых сценах – за едой и даже за любовными ласками. Причем, несмотря на то что художники старались передать большинство деталей максимально реалистично, тела правящих особ выглядели гротескными, даже деформированными. Это тем более загадочно, так как слуги и прочие не столь знатные особы на этих картинах выглядят по крайней мере похожими на людей. Ранее фараоны изображались этакими североафриканскими Адонисами, широкоплечими и с фигурами танцоров. Но не Атон: среди прочих людей, изображенных подчеркнуто реалистично, он, Нефертити, Тутанхамон и прочие особы голубой крови выглядят совершенными чужаками.

Описывая изображения правящей семьи Египта, археологи ведут себя как балаганные зазывалы. Один обещает нам «отвращение от одного взгляда на это воплощение человеческого уродства». Второй называет Эхнатона «гуманоидом-богомолом». Список уродливых черт, присутствующих на этих изображениях, займет много страниц. Это и миндалевидные головы, скрюченные торсы, паучьи руки, цыплячьи ноги (с коленями, полностью выгибающимися назад), огромные, как у готтентотов, ягодицы, словно накачанные ботоксом губы, впалые грудные клетки, отвислые животы и т. д. На многих картинах у Эхнатона нарисована женская грудь, а единственная сохранившаяся обнаженная статуя фараона имеет андрогинную, как у куклы Кена, промежность. Словом, эти работы можно назвать анти-Давидами, анти-Венерами Милосскими в истории искусства.

Как и в случае с портретами Габсбургов, некоторые египтологи видят в этих изображениях доказательство наследственных уродств в династии фараонов. В подтверждение этому находятся и прочие доказательства. Старший брат Эхнатона умер ребенком из-за таинственного недуга, а сам Эхнатон, как утверждают некоторые специалисты, из-за своих физических недостатков не мог участвовать в придворных церемониях. В разграбленной могиле его сына Тутанхамона археологи обнаружили 130 посохов, причем многие – явно в изношенном виде. Не в силах противостоять этим фактам, врачи задним числом наделили фараонов самыми разными заболеваниями, от синдрома Марфана до слоновой болезни. Однако каждый из этих диагнозов хоть и кажется весьма убедительным, но не может быть признан из-за катастрофической нехватки доказательств.

Египетский фараон Эхнатон (сидит слева) заставлял придворных живописцев изображать членов его семьи в виде гротескных, почти «чужих» существ, что побудило современных докторов задним числом диагностировать у них генетические уродства (Андреса Преаке)

Вспомним о генетике. Правительство Египта долго не хотело выдавать ученым наиболее ценные мумии. Сверление тканей и костей неизбежно разрушает их, и поначалу данные палеогенетики были довольно неточными, страдавшими от загрязнения и неубедительных результатов. Лишь в 2007 году египтяне пошли на попятную, разрешив генетикам взять образцы ДНК у мумий пяти поколений, включая мумии самих Эхнатона и Тутанхамона. В сочетании с подробными томографическими снимками тел этот генетический труд помог разгадать некоторые загадки, посвященные государственному устройству и искусству Древнего Египта.

Исследование не выявило никаких серьезных дефектов ни у Эхнатона, ни у членов его семьи, что намекает нам: египетские правители выглядели как нормальные люди. Это значит, что портреты Эхнатона, на которых он, бесспорно, выглядит ненормально, возможно, не должны были быть правдоподобными. Они служили пропагандой! Эхнатон, очевидно, решил, что его статус сына бессмертного бога солнца настолько поднимает его над чернью, что для его изображений нужно разработать новый тип портретной живописи. Некоторые из странных черт Эхнатона, отраженных на портретах (обвислый живот, поросячьи ляжки) заставляют вспомнить изображения богинь плодородия: возможно, фараон хотел представить себя утробой, из которой рождается все благополучие Египта.

Вместе с тем, у мумий все же наблюдались дефекты, хоть и менее заметные: утолщенные ступни, раздвоенное небо. С каждым новым поколением мумии претерпевали все больше деформаций. Тутанхамон (четвертое поколение), унаследовал и небо, и ступни. В детстве он сломал бедренную кость (как Тулуз-Лотрек), и из-за врожденного недостаточного кровоснабжения кости в его ступне отмерли. Причины страданий Тутанхамона специалисты обнаружили, изучив его гены. Некоторые ДНК-«статтеры» (повторяющиеся участки оснований) в нетронутом виде передаются от родителей к детям, таким образом, их анализ позволяет проследить родословные. К несчастью для Тутанхамона, у обоих его родителей были одни и те же статтеры – потому что у них были и одни и те же родители. Самой знаменитой женой Эхнатона была Нефертити, но в таком ответственном деле, как производство на свет наследника, фараон предпочел не ее, а собственную сестру.

Этот инцест, по-видимому, повредил иммунную систему Тутанхамона и погубил всю династию. Эхнатон, как написано в одном историческом труде, был «патологически равнодушен» ко всему, что происходило за пределами Египта, и внешние враги были этому только рады: они вторгались на территорию королевства, тем самым ставили под угрозу безопасность страны. Проблема не исчезла и после смерти Эхнатона, когда несколькими годами спустя на трон взошел девятилетний Тутанхамон. Он отверг все еретические придумки отца и восстановил в правах старых богов, очевидно, в надежде на их благосклонность. Однако это не помогло. Во время изучения мумии Тутанхамона ученые обнаружили, что кости внутри прямо-таки кишели частицами ДНК малярийных плазмодиев. Малярия и тогда не была в диковинку: простые тесты показали, что и бабушка, и дедушка фараона как минимум дважды болели малярией, при том что прожили больше 50 лет. В то же время для Тутанхамона малярия, как доказывают ученые, «добавила лишний штамм, оказавшийся фатальным для организма, который из-за приобретенных в результате инцеста генов больше не мог нести такую нагрузку». Фараон скончался в возрасте 19 лет. Странные коричневые пятна на стенах гробницы Тутанхамона позволили узнать, что он угас совершенно внезапно. ДНК и химический анализ выявили, что эти пятна имеют биологическое происхождение. Смерть Тутанхамона произошла настолько неожиданно, что раскрашенные изнутри стены гробницы не успели высохнуть, что привело к образованию плесени в гробнице после того, как она была запечатана. Хуже всего то, что Тутанхамон усугубил генетические дефекты для будущих поколений, женившись на единоутробной сестре. Двое их детей, данные о которых сохранились, умерли в возрасте пяти и семи месяцев и остались маленькими спеленутыми мумиями в отцовой гробнице – жуткими дополнениями к знаменитой золотой маске и посохам Тутанхамона.

Влиятельные силы в Египте никогда не забывали семейных грехов, и когда Тутанхамон умер, не оставив наследника, трон занял один из военачальников. Он тоже умер бездетным, однако ему наследовал другой командир, Рамзес. Он и его преемники стерли большинство упоминаний Эхнатона, Нефертити и Тутанхамона из египетских исторических хроник, истребляя их с той же решительностью, с какой сам Эхнатон уничтожал изображения богов. Неслыханным оскорблением со стороны Рамзеса и потомков было возведение новых зданий над гробницей Тутанхамона, чтобы ее скрыть. Собственно, скрыли они гробницу настолько хорошо, что даже мародерам не удалось ее разыскать. В результате сокровища Тутанхамона в течение веков сохранились нетронутыми – те самые сокровища, которые потом подарят ему и его еретической, инцестуальной семье нечто вроде бессмертия.

* * *

Честно говоря, на каждый хорошо обоснованный ретро-диагноз – Тутанхамон, Тулуз-Лотрек, Паганини, Голиаф (безусловно, гигантизм) – приходится какая-нибудь редкостная глупость. Наверное, самый вопиющий случай неправильного ретродиагноза имел место в 1962 году, когда один врач опубликовал статью о порфирии: комплексе расстройств, связанных с повреждением эритроцитов.

Порфирия приводит к накоплению побочных токсичных продуктов, которые в зависимости от типа заболевания могут обезобразить кожу, спровоцировать рост лишних волос на теле или же и вовсе устроить короткое замыкание нервам, вызвав душевное расстройство. Врач нашел, что все это очень похоже на описание оборотня, и выдвинул идею, что широко распространенные легенды о волколаках могут иметь медицинское обоснование. В 1982 году канадский биохимик пошел еще дальше. Он отметил другие симптомы порфирии – волдыри от солнечного света, выступающие зубы, кроваво-красный цвет мочи – и начал читать лекции, в которых утверждал, что это заболевание, по всей видимости, послужило поводом для возникновения легенд о вампирах. Когда от него потребовали обоснований, он отказался писать научную статью: вместо этого (что уже должно было насторожить) он решил выступить на американском национальном ток-шоу. Во время Хэллоуина зрители услышали следующие объяснения: страдающие от порфирии «вампиры» вели ночную жизнь из-за непереносимости солнечного света и, возможно, пили кровь, чтобы найти облегчение от страданий, восполнив недостаток отдельных компонентов крови в организме. Как же в таком случае объяснить поверье, что укус вампира заразен? Специалист объяснил, что ген порфирии встречается в семьях, но для того, чтобы он активизировался, часто требуется стресс или шок. Конечно, если ваш уже больной брат или сестра укусит вас и начнет сосать кровь, вы испытаете нешуточный шок и тоже окажетесь «заражены».

Шоу привлекло много внимания и вызвало настоящую панику среди больных порфирией, которые начали спрашивать своих врачей, может ли болезнь привести к превращению в вампиров-кровопийц. Несколькими годами позже один умалишенный в штате Виргиния заколол и расчленил своего больного порфирией друга – якобы в целях самозащиты. Жертву этого инцидента тем более жаль, учитывая, что упомянутая теория – полная чушь. Помимо всего прочего, черты, которые мы привыкли считать классическими особенностями вампира (вроде ночного образа жизни), не были распространены у фольклорных вампиров. В большинстве своем наши представления о вампирах – это то, что в конце XIX века выдумал Брем Стокер. С точки зрения науки гипотеза тоже не выдерживает критики. Питье крови не принесет никакого облегчения, так как ни один из необходимых для этого компонентов не перенесет пребывания в пищеварительном тракте. Так же и с генетической точки зрения: в то время как многие больные порфирией страдают от солнечных ожогов, по-настоящему страшные, пузыристые ожоги вызывает только один тип мутации, причем весьма редкий. Зафиксировано лишь несколько сотен случаев такой болезни, что, очевидно, слишком мало для того, чтобы распространить панику по поводу вампиров, которая имела место на протяжении столетий (жители некоторых деревень в Восточной Европе еженедельно вспахивали свои кладбища в поисках вампиров!). В целом провал гипотезы о порфирии в первую очередь говорит не о происхождении фольклорных чудовищ, а о доверчивости современных людей – настолько мы готовы верить всяким псевдонаучным фактам.

Более вероятный (хотя также горячо оспариваемый) исторический факт, связанный с порфирией, имел место во время правления короля Великобритании Георга III. Этот король не сгорал на солнце, однако мочился чем-то вроде розового вина. Наблюдались у него и другие признаки порфирии: постоянные запоры, пожелтевшие белки глаз, а также спонтанные вспышки безумия. Однажды он совершил рукопожатие с веткой дуба, будучи уверен в том, что это король Пруссии, а также (общепризнанная вампирская участь!) жаловался, что не видит себя в зеркалах. Когда король особенно громко визжал, слуги надевали на него смирительную рубашку. Стоит сказать, что не все симптомы Георга подходили под диагноз порфирии, да и его умственные способности были слишком высоки для человека, страдающего этим недугом. Однако его гены несли осложняющие факторы: наследственное безумие было присуще европейским августейшим особам в XVII–XIX веках, и большинство больных приходились Георгу родственниками. Независимо от причин Георг испытал первый приступ в начале 1765 года, что напугало парламент в достаточной степени, чтобы был принят указ, определяющий, к кому перейдет власть, если король окончательно свихнется. Узнав об этом, обиженный король отправил в отставку премьер-министра. Однако в хаосе весны 1765 года был подписан Акт о гербовом сборе, и это начало отравлять отношения североамериканских колоний с королем. После назначения нового премьера свергнутый решил сосредоточить оставшуюся власть на своем любимом хобби – наказании колонистов. Другой влиятельный государственный деятель, Уильям Питт (старший), желавший удержать Америку в составе Британской империи, возможно, мог бы отговорить его от этой мести. Однако Питт страдал другой наследственной болезнью – подагрой (возможно, вызванной обильными трапезами и питьем дешевого португальского вина, испорченного свинцовой посудой). Прикованный к постели, он пропустил несколько решающих политических дебатов в 1765 году и позже, и правительство безумного Георга III в конечном счете толкнуло американских колонистов на слишком решительные действия.

Новые Соединенные Штаты избавились от династических линий и тем самым избежали наследственного безумия, от которого страдали европейские правители. Конечно, президенты США тоже не избежали различных заболеваний. Так, Джон Кеннеди был болезненным с рождения – он пропустил две трети занятий в детском саду из-за болезни, а в школе второй ступени ему диагностировали гепатит и лейкемию (правда, ошибочно). Когда он достиг совершеннолетия, врачи каждые два месяца вскрывали его бедро, чтобы имплантировать туда гормональные гранулы, и, по имеющимся сведениям, семья Кеннеди хранила специальные препараты в сейфах по всей стране. Кеннеди часто и регулярно болел, поэтому, до того как стать президентом, он много раз пользовался содержимым этих сейфов. Теперь историки знают, что у Кеннеди была болезнь Аддисона, которая разрушает надпочечники и вызывает дефицит кортизола в организме. Один из распространенных симптомов болезни Аддисона – бронзовый цвет кожи – мог стать причиной многолетнего и телегеничного загара Кеннеди.

Но в целом это было весьма серьезным заболеванием, и хотя соперники Кеннеди на выборах в 1960-х годах – сначала Линдон Джонсон, потом Ричард Никсон – не знали, что именно беспокоило Кеннеди, они не гнушались распространять слухи о том, что он может (о, ужас!) умереть во время своего первого срока. Советники Кеннеди в ответ ввели общественность в заблуждение с помощью грамотно составленного доклада. Болезнь Аддисона впервые была описана врачами в XIX веке как побочный эффект туберкулеза – этот путь заражения до сих пор считается «классическим». Люди Кеннеди с невозмутимым видом могли утверждать, что у президента: «Нет и никогда не было недуга, известного как “болезнь Аддисона”, которое возникает из-за туберкулеза надпочечников». На самом деле в большинстве случаев болезнь Аддисона является врожденной, возникает в результате аутоимунных атак генов, координирующих ГКГС. Более того, Кеннеди, по-видимому, имел генетическую предрасположенность к этой болезни, поскольку от нее страдала и его сестра Юнис. Однако роль наследственных факторов в болезни Кеннеди навсегда останется неопределенной – более подробные данные можно получить только после эксгумации.

Что касается наследственности Авраама Линкольна, здесь врачам приходится еще более нелегко, так как даже точно неизвестно, был ли он болен. Первая улика в пользу этого обнаружена в 1959 году, когда у семилетнего мальчика диагностировали синдром Марфана. Отследив историю заболевания с помощью генеалогического древа мальчика, врачи нашли там некоего Мордехая Линкольна-младшего, прапрадедушку Авраама Линкольна. Это может заставить задуматься – ведь сам президент обладал тощим телом и паучьими пальцами, как типичный человек с болезнью Марфана, и поскольку этот ген является доминантным, болезнь распространялась и в следующих поколениях. Но вместе с тем это ничего не доказывает, потому что мальчик мог бы унаследовать мутацию Марфана у любого из своих предков.

Мутировавший ген Марфана участвует в создании дефектной версии фибриллина – белка, обеспечивающего структурную поддержку мягких тканей. В частности, фибриллин помогает формировать глазные яблоки, поэтому люди с синдромом Марфана часто имеют плохое зрение. Это, кстати, объясняет, почему современные врачи утверждают, что Эхнатон также страдал от этого синдрома. Логично, что человек с плохим зрением сделал выбор в пользу солнечного бога, предпочтя его косоглазым ночным божествам. Более важно то, что фибриллин опоясывает кровеносные сосуды: жертвы синдрома Марфана зачастую умирают молодыми из-за того, что их артерии полностью изнашиваются. В течение века изучение кровеносных сосудов и других мягких тканей де-факто было единственным надежным способом диагностировать синдром Марфана. Поэтому, не имея мягких тканей Линкольна, ученые что в 1959 году, что сейчас, обречены лишь корпеть над фотографиями и медицинскими документами и спорить о неоднозначных вторичных признаках синдрома.

Идея проверки ДНК Линкольна появилась около 1990 года. Частички ДНК можно было собрать с осколков черепа, запачканных кровью наволочек и манжет рубашки и прочих улик, образовавшихся после трагической гибели президента. Даже пистолетная пуля, которую извлекли из черепа Линкольна, могла иметь следы ДНК. В 1991 году было созвано девять экспертов, которые обсуждали, этично ли начинать подобное исследование. Обсуждение началось с того, что конгрессмен из Иллинойса (что неудивительно) полез на рожон и потребовал, чтобы эксперты, среди прочего, установили, был бы этот проект одобрен самим Линкольном. Это виделось сложноватым. Мало что Линкольн умер прежде, чем Фридрих Мишер открыл ДНК, он еще и не оставил никакого письменного свидетельства (с чего бы?) по поводу своего отношения к неприкосновенности частной жизни для посмертных медицинских исследований. Кроме того, генетическое исследование потребовало бы размолоть в труху бесценные артефакты – и при этом, возможно, так и не привести к вразумительному выводу. На самом деле линкольновский комитет подозрительно поздно осознал, насколько сложно будет поставить окончательный диагноз. Новые работы показали, что синдром Марфана может возникнуть в результате самых разных мутаций фибриллина, так что ученым пришлось бы перелопатить горы ДНК, чтобы диагностировать этот синдром, – гораздо более сложная процедура, чем поиск точечной мутации. Даже если им ничего не удалось бы найти, это не гарантировало отсутствия синдрома Марфана у Линкольна: он мог быть получен в результате новой, неизвестной мутации. В придачу ко всему многие заболевания способны «имитировать» синдром Марфана, подтасовывая другие гены и тем самым внося еще больше путаницы. Серьезный научный проект вдруг оказался шатким, и быстро разлетевшиеся слухи о том, что нобелевский лауреат хочет клонировать оригинальную ДНК Линкольна и продавать ее в кусочках янтаря, не прибавили проекту авторитета. В конце концов комитет наложил вето на идею исследовать ДНК Линкольна, и до сих пор эта идея еще не осуществлена.

Оказавшись в конечном счете бесполезной, попытка изучить ДНК Линкольна предоставила несколько основополагающих принципов определения ценности прочих ретрогенетических проектов. Наиболее важным фактором является качество современных технологий и то, смогут ли ученые (как бы мучительно это ни было) подождать, отдать работу на откуп будущим поколениям. Кроме того, несмотря на то, что генетики должны в первую очередь доказывать, что они могут поставить точный диагноз живому человеку (казалось бы, очевидно), в случае с Линкольном они помчались вперед без какой-либо гарантии. С помощью технологий 1991 года нельзя было не принимать во внимание загрязнения ДНК, которые неизбежно присутствовали на артефактах (которые буквально пошли по рукам), будь то манжеты или наволочки. По этой причине один из специалистов предложил практиковаться в первую очередь на анонимных останках жертв Гражданской войны, которых хватает в музеях.

Что касается этических проблем, то ученые утверждают, что ретрогенетики ничем не хуже историков, которые читают чужие дневники и истории болезней. Однако эта аналогия не совсем корректна потому, что генетик может выяснить даже то, что сам предмет изучения о себе не знал. Это не так и ужасно для тех, кто уже давно ушел на покой, но может не понравиться их живущим потомкам, которые не хотят огласки. И если вторжение в частную жизнь неизбежно, наука должна по крайней мере попытаться ответить на важные и неразрешимые вопросы другим способом. Генетики спокойно могут провести тесты, которые определят, была у Линкольна сухая или влажная ушная сера, но это не даст нам важных сведений о нем как о человеке. А вот диагностика синдрома Марфана, возможно, даст. Жертвы этого синдрома умирают в сравнительно молодом возрасте от разрушения аорты; в таком случае, возможно, убитый в 56-летнем возрасте Линкольн в любом случае был обречен не дожить до конца своего второго президентского срока. Или, если тесты исключат синдром Марфана, они могут указать на какое-нибудь другое заболевание. В последние несколько месяцев пребывания Линкольна у власти его здоровье заметно ухудшилось. В марте 1865 года «Чикаго Трибьюн» в своей передовице призывала президента, несмотря на войну, найти время для отдыха, чтобы стрессы и переработка не убили его. Однако, возможно, дело было не в стрессе. Может быть, президент был поражен если не синдромом Марфана, то каким-то подобным недугом. И поскольку такие заболевания могут вызывать сильные боли и даже привести к раку, Линкольн вполне мог подозревать, что он (как Франклин Делано Рузвельт много лет спустя) умрет в своем рабочем кабинете. Это позволяет в новом свете взглянуть на некоторые факты, в частности на то, что в 1864 году Линкольн сменил вице-президента, а также на то, что после гражданской войны он планировал проявить снисхождение к Конфедерации. Генетические тесты также могут выявить, что вечно мрачный Линкольн имел врожденную склонность к депрессии, – это популярная, но, по большому счету, недоказанная теория.

Подобные вопросы встают и по отношению к другим президентам. Из-за болезни Аддисона, которой страдал Кеннеди, «Эпоха Камелота» в любом случае могла преждевременно подойти к концу. Но, возможно, Кеннеди не смог бы так быстро подняться на политический Олимп, если бы не чувствовал дыхания смерти. А генетика семьи Томаса Джефферсона открывает нам любопытные противоречия по поводу отношения третьего президента США к рабству.

В 1802 году бульварные газеты начали высказывать предположения, что Джефферсон является отцом нескольких детей своей рабыни. Салли Хемингс приглянулась Джефферсону во время его пребывания в Париже на посту американского посла во Франции, она была в числе его слуг. Возможно, она являлась сводной сестрой его покойной жены: тесть будущего президента имел любовницу-рабыню. Через некоторое время после возвращения в Монтичелло Джефферсон якобы сделал Салли своей любовницей. Противники Джефферсона высмеивали Салли на газетных страницах, называя ее «африканской Венерой», и законодательный орган штата Массачусетс в 1805 году публично обсуждал его моральные качества, включая историю с Хемингс. И даже очевидцы из числа друзей вспоминали, что сыновья Салли были смуглокожими двойниками президента. Как-то раз один из гостей обратил внимание на одного из юных Хемингсов, прислуживавшего Джефферсону во время обеда: их внешнее сходство просто ошарашило его. Позже с помощью дневников и прочих документов историки выяснили, что за девять месяцев до рождения каждого из детей Салли Джефферсон находился в поместье. Каждому из этих детей он давал вольную после наступления совершеннолетия: прочие рабы такой привилегии не получали. После отъезда из Вирджинии один из этих освобожденных рабов, Мэдисон, хвастался газетчикам, что он знал, что Джефферсон был его отцом, а второй, Эстон, сменил свою фамилию на Джефферсон, в том числе и потому, что заметил свое внешнее сходство со статуями президента в Вашингтоне.

Сам Джефферсон отрицал наличие у себя детей от рабыни, и многие его современники не верили подобным обвинениям, подозревая в этих грехах проживавших по соседству двоюродных братьев Джефферсона и прочих его родственников. Однако в конце 1990-х биологи устроили президенту объективную проверку на генетическом «детекторе лжи». Поскольку Y-хромосома не подвергается кроссинговеру и слиянию с прочими хромосомами, мужчины передают ее своим сыновьям в ничуть не изменившемся состоянии. У Джефферсона не было сыновей (признанных), но они были у его родственников, также обладавших искомой Y-хромосомой – например, у дяди, Филда Джефферсона. У сыновей дяди Филда тоже были сыновья, и у тех были сыновья и так далее – таким образом, Y-хромосома Джефферсонов сохранилась и у некоторых наших современников. К счастью, род Эстона Хеммингса также не прервался до наших дней – в каждом поколении рождались сыновья – и генетики в 1999 году смогли отыскать членов обеих упомянутых семей. Их Y-хромосомы оказались похожими как две капли воды. Конечно, этот тест доказал лишь то, что отцом детей Салли Хемингс был представитель семьи Джефферсонов, а не конкретно Томас Джефферсон. Но, учитывая исторические свидетельства, гипотетическое дело о взыскании алиментов с третьего президента, скорее всего, было бы выиграно.

Опять-таки, бесспорно, приятно заниматься домыслами по поводу личной жизни Джефферсона – любви, вспыхнувшей в Париже, тоски по Салли, не отпускавшей президента в знойном Вашингтоне, но эта история также проливает свет на характер Джефферсона. Он мог усыновить Эстона, родившегося в 1808 году, через шесть лет после появления первых обвинений, и это послужило бы свидетельством либо чрезвычайной уверенности в себе, либо искренней преданности Салли. Однако Джефферсон, как и презираемые им английские короли, отрекся от внебрачных детей, чтобы спасти свою репутацию. Более того, он открыто выступал против смешанных браков и был автором закона, признающего союзы белых и черных нелегальными, потворствуя страхам по поводу смешения рас и расовой нечистоты. Этот факт, к сожалению, свидетельствует о двуличности одного из самых просвещенных американских президентов.

После разоблачения Джефферсона проверка Y-хромосомы стала играть более значительную роль в исторической генетике. Впрочем, у этого способа есть недостаток: патрилинейная Y-хромосома несет очень малый срез наследственной информации. С ее помощью вы сможете узнать только об одном из своих предков в каждом поколении (та же проблема и с митохондриальной ДНК, передающейся по материнской линии). Несмотря на это ограничение, Y-хромосома может сказать нам удивительно много. Например, ее изучение помогло узнать, что самым плодовитым самцом в истории человечества был не Казанова и не царь Соломон, а Чингисхан – предок 16 миллионов ныне живущих людей. Каждый двадцатый мужчина на Земле имеет частичку его мужской хромосомы. Когда монголы захватывали новые земли, они старались оплодотворить как можно больше местных женщин, чтобы привязать их к новым хозяевам (один историк отзывался: «Очевидно, чем они занимались, когда не сражались»). Чингисхан, похоже, взял основную часть этого бремени на себя, и в итоге Центральная Азия сейчас просто кишит его отпрысками.

Археологи изучали Y и другие хромосомы, чтобы распутать тайны истории евреев. Согласно Ветхому Завету, евреи в свое время разделились на два царства, Израиль и Иудею: независимые государства, у жителей которых, по-видимому, были четкие генетические маркеры, так как люди обычно женятся / выходят замуж за представителей своего рода (в широком понимании этого слова). Спустя много тысяч лет, в течение которых евреи изгонялись из разных земель и образовали диаспоры, историки наконец-то получили надежду проследить, куда именно занесло потомков обоих царств. Существование уникальных генетических подписей (в том числе и болезней) у современных евреев-ашкеназов, а также у сефардов и восточных евреев позволило генетикам отследить древние родословные и определить, что оригинальное библейское разделение сохранилось и по прошествии времени. Ученые также проследили истоки еврейских жреческих каст. В иудаизме коэны, которые якобы все происходят от Аарона, брата Моисея, играли специальные роли в храмовых обрядах. Обязанность переходила от коэна-отца к коэну-сыну – совсем как Y-хромосома. Оказалось, что коэны по всему миру действительно имеют очень похожую Y-хромосому, что свидетельствует о единой отцовской линии. Дальнейшее исследование показало, что этот «Y-хромосомный Аарон» проживал примерно в то же время, что и Моисей, подтверждая тем самым истинность иудаизма. По крайней мере в этом случае левиты, близкая, но отличающаяся от коэнов религиозная группа, тоже передавали свои религиозные привилегии от отца к сыну. Однако левиты из разных стран редко имеют общую Y-хромосому, так что или иудаисты исказили эту историю, или жены левитов активно изменяли своим мужьям.

Более того, изучение еврейской ДНК позволило подтвердить легенду африканского племени лемба, которая еще недавно считалась совсем неубедительной. Лемба всегда утверждали, что они имеют еврейское происхождение, что сотни лет назад человек по имени Буба увел их из Палестины в Южную Африку, где они до сих пор обрезают мальчиков, не едят свинины, носят головные уборы, похожие на кипу, и украшают свои дома изображениями слонов, окруженных шестиконечными звездами Давида. Легенда о Бубе, с точки зрения археологов, была совсем невероятной: они объясняли феномен существования «черных евреев» не эмиграцией, а простой передачей культурных ценностей. Но ДНК мужчин племени лемба подтверждает их еврейское происхождение. Около 10 % всех мужчин и каждый второй старик из наиболее почитаемого сословия – жрецов – имеют не что иное как «автограф» коэнов в виде Y-хромосомы.

* * *

ДНК поможет ответить на какие-то вопросы, но узнать, было ли у той или иной известной личности генетическое расстройство, при этом проверяя лишь его или ее потомков, невозможно. Ведь даже если ученые находят четкий генетический признак какого-либо синдрома, у них нет никаких гарантий, что потомки приобрели поврежденную ДНК у своего знаменитого прапращура. Из-за этого, а также из-за постоянных отказов в проведении эксгумации древних костей историкам медицины остается проводить старый добрый генетический анализ: изучать родословное древо, строить графики заболеваний и склеивать воедино признаки целой россыпи синдромов. Пожалуй, самым интригующим и самым обсуждаемым объектом такого анализа в наши дни является Чарльз Дарвин. Во-первых, из-за трудноуловимой природы своего заболевания, а во-вторых, из-за того, что он вполне мог передать недуг своим детям, потому что женился на близкой родственнице – душераздирающий пример действия закона естественного отбора на практике.

В возрасте 16 лет поступив в Эдинбургский университет для изучения медицины, Дарвин через два года бросает учебу, потому что начинаются занятия по хирургии. В своей автобиографии Дарвин немногословно описывал приключавшиеся с ним события, но нашел место для рассказа о том, что он чувствовал, наблюдая за операцией, которую делали больному мальчику. Можете только представить, каким шумом и воплем сопровождались операции до открытия анестезии. Этот момент изменил и предопределил всю жизнь Дарвина. Изменил, потому что убедил бросить учебу и заняться чем-то другим, чтобы заработать на жизнь. Предопределил, потому что шок, который Дарвин испытал во время наблюдения за операцией, расстроил его желудок и стал причиной того, что ученый до конца своих дней испытывал проблемы со здоровьем.

Здоровье Дарвина начало ухудшаться во время путешествия на корабле «Бигль». Дарвин прогулял медосмотр перед путешествием, потому что был уверен, что не пройдет его, и в открытом море он выглядел настоящей сухопутной крысой, постоянно страдая от морской болезни. Его желудок мог переваривать только изюм, и он писал слезливые письма своему отцу-врачу, спрашивая у него совета. Дарвин доказывал, что с ним все в порядке во время вылазок на сушу, пополняя свои коллекции в 50-километровых походах. Однако после возвращения в Англию и свадьбы (в 1839 году) он превратился в развалину с одышкой, настоящего инвалида, порой противного даже себе самому.

Потребуется все мастерство лучшего придворного карикатуриста фараона Эхнатона, чтобы передать всю зажатость, тошноту, дурное настроение, которые обычно овладевали Дарвином. Он страдал от фурункулов, внезапных обмороков, нарушений сердцебиения, коченеющих пальцев, мигреней, головокружения, экземы, «огненных спиц и темных туч», которые вились у него перед глазами. Самым странным симптомом был звон в ушах, после которого – как гром бывает после молнии – он ужасно громко испускал газы. Но самое главное – Дарвина рвало. Рвало после завтрака, после обеда, после ужина, второго завтрака, вечернего чая – всегда – и прекращалось это только тогда, когда было уже нечему выходить наружу. На пике формы его рвало двадцать раз в час, а однажды тошнота не прекращалась двадцать семь дней подряд. Умственное напряжение делало состояние его желудка только хуже, но даже Дарвин, самый плодородный биолог всех времен, не мог связать эти факты. «Какая мысль заставляет наш организм переваривать ростбиф? – спрашивал как-то он и сам признавался – я не могу сказать».

Болезнь перевернула все существование Дарвина. Чтобы дышать свежим воздухом, он переехал в Даун-хаус, деревню в 30 километрах от Лондона, а кишечное расстройство удерживало его от походов в гости: он боялся загрязнять чужие туалеты. Затем он придумал хаотичные, неубедительные оправдания, стараясь убедить друзей не приглашать его в гости. «Я страдаю от очень своеобразной болезни, – писал он другу, – которая предотвращает меня от психического возбуждения путем возникновения болезненных спазмов, и я не думаю, что смог бы поддерживать беседу с вами, хотя это было бы мне очень приятно». Но изоляция не вылечила его. Дарвин никогда не писал более чем двадцать минут подряд, страдая острой болью во всем теле. Из-за своих недугов он впустую провел много времени, которое можно было потратить на работу. У него даже был самодельный туалет, наполовину в стене, наполовину в его кабинете – для сохранности приватности. Свою знаменитую бородку он отрастил в основном для того, чтобы спастись от нещадно царапавшей его лицо экземы.

Вместе с тем в болезни Дарвина можно было отыскать и плюсы. Ему никогда не приходилось читать лекции и преподавать, он мог спокойно сидеть дома и совершенствовать свои труды, в то время как его «бульдог» Т. Г. Гексли выполнял такую грязную работу, как диспуты с епископом Уилберфорсом и прочими оппонентами. Месяцы, безвылазно проводимые дома, также позволили Дарвину спокойно вести переписку, с помощью которой он собрал бесценные доказательства теории эволюции. Он поручал доверчивым натуралистам совсем нелепые дела вроде подсчета хвостовых перьев у голубя или поиска борзых собак с коричневыми пятнами под глазами. Впрочем, эти запросы только казались нелепыми и слишком скрупулезными: с их помощью Дарвину удалось выявить промежуточные формы эволюции и убедиться в том, что естественный отбор имел место быть. В каком-то смысле немощность Дарвина повлияла на создание «Происхождения видов» не меньше, чем поездка на Галапагосские острова.

Дарвину, конечно, очень усложняли жизнь не отпускавшие его мигрень и тошнота, и он проводил годы, стараясь облегчить свои страдания. Он в том или ином виде проглотил большую часть таблицы Менделеева. Он пробовал опиум, жевал лимоны и поглощал эль, словно прописанное врачом лекарство. Он даже приобщился к ранней электрошоковой терапии: надевал «гальванический пояс» с заряженными батареями и получал удары током в живот. Но самой странной процедурой было «водолечение», находившееся в ведении бывшего однокурсника Дарвина по медицинскому факультету. Доктор Джеймс Манби Галли всерьез не планировал быть врачом-практиком, когда учился в университете, однако после того, как ямайские рабы получили свободу (в 1834 год), кофейная плантация семьи Галли обанкротилась, и у наследника не осталось никакого выбора, кроме как зарабатывать на жизнь медициной. В 1840-х годах он открыл курорт Малверн на западном побережье Англии, который вскоре стал модным спа-центром викторианской эпохи. Среди его посетителей были Чарльз Диккенс, Флоренс Найтингейл, лорд Альфред Теннисон. В 1849 году Дарвин перебрался в Малверн вместе со всей семьей и слугами.

Суть водолечения заключалась в том, чтобы как можно дольше держать пациента в сырости. Ни свет ни заря, в пять утра, слуги заворачивали Дарвина в мокрые простыни, а затем выливали на него ведра холодной воды. За этим следовали коллективные прогулки с многочисленными привалами на «водопой» у минеральных скважин и источников. Возвратившись в свои коттеджи, пациенты ели печенье и пили много воды, и после завтрака приступали к своему основному занятию в Малверне – принятию ванн. Ванны якобы отгоняли кровь от воспаленных внутренних органов к коже, тем самым принося облегчение. Между ваннами пациенты могли сделать освежающую холодную клизму или затянуть на животе мокрый компресс, так называемый «пояс Нептуна». Ванны обычно продолжались до самого ужина, который неизменно состоял из вареной баранины, рыбы и, конечно, местной газированной воды. В конце длинного дня обессиленный Дарвин валился в (слава богу, сухую) кровать.

Сцены популярного в викторианскую эпоху «водолечения», для пациентов с неподатливыми болезнями. Дарвин подвергся подобному лечению, чтобы справиться со своей таинственной болезнью, которая преследовала его большую часть жизни (фото предоставлено Национальной медицинской библиотекой)

И это, как ни странно, работало! После четырех месяцев в водолечебнице Дарвин чувствовал себя прекрасно, лучше, чем когда-либо после путешествия на «Бигле», он был в состоянии проходить пешком более 10 километров в день. Вернувшись в Даун-хаус, он продолжил лечение в более щадящей форме. Он каждое утро начинал с процедур в специально построенной парильне, а затем, как белый медведь, бросался в огромную (две с половиной тысячи литров) бадью, наполненную водой с температурой всего четыре-пять градусов по Цельсию. Но как только на Дарвина снова свалился огромный объем работы, к нему пришли стрессы, и водолечение утратило свою силу. К нему вернулись все недуги, и ученый отчаялся когда-либо узнать причину своей немощности.

Современные врачи едва ли могли бы лучше помочь Дарвину. Список более-менее вероятных ретродиагнозов включает в себя воспаление среднего уха, аллергию на птичье перо, вялотекущий гепатит, волчанку, нарколепсию, агорафобию, синдром хронической усталости и опухоль надпочечной железы. Последнее может объяснить, почему Дарвин, большую часть времени проводивший дома, как типичный бледнолицый англичанин, в конце жизни приобрел бронзовый цвет кожи, как Кеннеди. Один из достаточно убедительных диагнозов – болезнь Шагаса, которая вызывает симптомы, похожие на грипп. Дарвин мог подцепить эту болезнь от южноамериканского поцелуйного клопа, которого он держал на «Бигле» в качестве питомца (он восхищался, наблюдая, как клоп сосет кровь из пальца, надуваясь при этом, как клещ). Однако болезнь Шагаса не объясняет все симптомы Дарвина. Вполне возможно, что она просто изуродовала пищеварительный тракт ученого и сделала его уязвимым для более глубоких, дремлющих генетических дефектов. По крайней мере, другие полуправдоподобные диагнозы, вроде «синдрома циклической рвоты» и «хронической непереносимости лактозы», обоснованы во многом генетическими причинами. Стоит добавить, что большая часть семьи Дарвинов росла болезненной, а его мать, Сусанна, умерла от не определенных болей в животе, когда Чарльзу было восемь лет.

Генетические проблемы кажутся тем более многозначительными, учитывая, что стало с детьми Дарвина. Примерно 10 % жителей викторианской эпохи, принадлежавших к «праздному классу», вступали в брак с кровными родственниками, и Дарвин поступил так же, взяв в жены свою двоюродную сестру Эмму Веджвуд (их общим дедом был знаток фарфора Джозайя Веджвуд). Из десяти детей Дарвинов большинство были болезненными. Трое, став взрослыми, оказались бесплодны, еще трое умерли в младенчестве – это примерно вдвое превышало показатели детской смертности в Англии того времени. Один из них, Чарльз Уоринг, прожил 19 месяцев, Мэри-Элеанор – всего 23 дня. Когда заболела его любимая дочь, Энн Элизабет, Дарвин взял ее к доктору Галли на водолечение. Но десятилетняя девочка все же умерла, что погасило последние остатки религиозной веры в душе Дарвина.

Несмотря на всю злость по отношению к Богу, Дарвин в основном винил в немощах своих детей самого себя. В то время как большинство (около 90 %) детей от браков двоюродных братьев и сестер рождаются здоровыми, у них наблюдаются гораздо более серьезные риски врожденных дефектов и проблем со здоровьем, и вероятность увеличивается в «неблагополучных» семьях, где родители уже имеют такие проблемы. Дарвин опережал свое время, подозревая эту опасность. Так он проверял действие инбридинга на растения не только чтобы укрепить обоснования теорий наследственности и естественного отбора, но и увидеть, поможет ли это пролить свет на проблемы со здоровьем у членов его семьи. В то же время он пишет петицию в парламент, обращаясь с предложением включить в программу переписи населения 1871 года вопросы о родственных браках и состоянии здоровья. Петиция была отвергнута, но идея не умерла: оставшиеся в живых дети Дарвина унаследовали его тревоги. Один из его сыновей, Джордж, доказывал необходимость запрета браков между двоюродными братьями и сестрами в Англии, а сын другой сын Леонард (кстати, потомства не оставивший), в 1912 году, по иронии судьбы, председательствовал на первом международном конгрессе, посвященном евгенике – науке об искусственном разведении человека.

Ученые могли бы определить характер болезни Дарвина, получи они его ДНК. Однако Дарвин, в отличие от Линкольна, смиренно преставился от сердечного приступа, не оставив никаких кровавых наволочек. Вестминстерское аббатство, где похоронен Дарвин, до сих пор отказывает выдать его кости для ДНК-экспертизы, в том числе и потому, что врачи и генетики пока не договорились, что именно нужно исследовать. Все еще более усложняется тем, что многие врачи делают вывод: болезнь, которой страдал Дарвин, была связана с ипохондрией или с другими причинами, выявить которые уже достаточно сложно. В самом деле, наше внимание к ДНК Дарвина может быть неуместным, обоснованным современной «модой». Стоит вспомнить, что когда на пике популярности был фрейдизм, многие специалисты видели истоки заболевания Дарвина в проявлении Эдипова комплекса. Они утверждали, что, будучи не в силах превзойти своего биологического отца (весьма представительного мужчину), Дарвин вместо этого «вернул Отца Небесного в царство естественной истории», как изливался один врач. Для такого мышления страдания Дарвина, «очевидно», происходят от подавленной вины за это «отцеубийство».

Возможно, наши попытки наощупь отыскать в последовательностях ДНК причины странных заболеваний, вроде дарвиновского, когда-то будут казаться столь же нелепыми. И несмотря на это, эти поиски вслепую оставляют нам более глубокое суждение о Дарвине и прочих знаменитостях, – то, что они занимались своим делом, несмотря на болезни. Зачастую молекула ДНК воспринимается как некий материалистический аналог души, наша химическая квинтэссенция. Увы, даже полная расшифровка чьей-либо ДНК позволяет узнать о человеке не так много.

 

Глава 14. Три миллиарда маленьких кусочков

Почему у человека не больше генов, чем у других видов?

Масштаб, размах, амбиции, десятки лет работы и десятки миллиардов долларов – вот причины того, что проект «Геном человека», попытка расшифровать всю цепочку ДНК, справедливо называют Манхэттенским проектом в биологии. Но мало кто поначалу предполагал, что этот проект будет в такой же мере окружен различного рода моральными противоречиями, как и предприятие в Лос-Аламосе. Попросите ваших друзей-биологов составить краткое резюме этого проекта, и вы сразу узнаете, что для них ценно. Будут ли они восхищаться учеными из государственных учреждений за их самоотверженность и преданность делу, либо же назовут их непробиваемыми бюрократами? Будут ли они возносить вызов частного сектора правительству как героический бунт или осуждать его как самопиар и жажду наживы? Считают ли они, что проект удался, или твердят об обманутых надеждах? Как и любая эпопея, расшифровка генома человека может поддерживать любое из прочтений.

Проект «Геном человека» ведет свою родословную с 1970-х годов, когда британский биолог Фредерик Сенгер, уже будучи нобелевским лауреатом, предложил метод секвенирования ДНК, заключавшийся в записи последовательностей А, Ц, Г и Т, и тем самым определить, за что конкретно отвечает ДНК. Если вкратце, метод Сенгера включал в себя три основных этапа: нагревание исследуемой ДНК до тех пор, пока ее нити не разделятся; разделение этих нитей на отдельные фрагменты; использование индивидуальных А, Ц, Г и Т для постройки новых комплементарных цепочек, основанных на этих фрагментах. Толково, хотя стоит сказать и о недостатке. Сенгер использовал специальные радиоактивные варианты каждого из оснований, которые затем вливались в готовые комплементы. Поскольку Сенгер мог отличить, какое из оснований – А, Ц, Г или Т является источником радиации в любой точке комплемента, он также мог определить, где находится каждое из оснований и тем самым подсчитать последовательность.

Сенгеру приходилось подсчитывать основания вручную, что очень утомительно. Тем не менее это позволило ему секвенировать первый геном, 5400 оснований и 11 генов вируса φX174. За эту работу Сенгер получил вторую Нобелевскую премию, в 1980 году – неплохо для того, кто однажды признался, что никогда не поступил бы в Кембридж, если бы «родители не были достаточно богаты». В 1986 году два биолога из Калифорнийского университета автоматизировали метод Сенгера. Кроме того, вместо радиоактивных оснований они использовали флуоресцентные варианты А, Ц, Г и Т, каждый из которых производил определенный цвет, на который реагировал лазер, – этакое ДНК в системе «Техниколор». Это устройство, управляемое компьютером, в одночасье сумело сделать возможными масштабные проекты по секвенированию.

При этом, как ни странно, к секвенированию ДНК не проявили абсолютно никакого интереса правительственные учреждения, спонсировавшие большинство биологических исследований, – Национальные институты здоровья (англ. National Institutes of Health – NIH). Кому – удивлялись их представители – могла прийти в голову идея расшифровывать три миллиона непонятных символов? Впрочем, не все институты отнеслись к проекту столь пренебрежительно. Министерство энергетики посчитало секвенирование естественным продолжением своих трудов по влиянию радиации на ДНК и оценило революционный потенциал этой работы. Поэтому в апреле 1987 года при поддержке Министерства взял старт первый в мире проект по изучению генома человека, рассчитанный на семь лет, с поддержкой на общую сумму в один миллиард долларов, базирующийся в Лос-Аламосе, практически там же, где разрабатывался Манхэттенский проект. Забавно, что как только бюрократы из NIH услышали о цифре в один миллиард, они внезапно решили, что секвенирование все же не лишено смысла. В 1988 году Институты здравоохранения создали конкурирующий проект по секвенированию, чтобы урвать свою долю бюджетного пирога. Также было принято очень удачное в научном плане решение: директором конкурирующего института бы назначен Джеймс Уотсон.

К 1980-м годам Уотсон заслужил и поддерживал репутацию «Калигулы от биологии», человека, который, по свидетельству научных историков, «имел разрешение говорить все, что приходит ему в голову и может восприниматься серьезно; к сожалению, он так и делал, со всей присущей ему грубой бесцеремонностью». Тем не менее, сколько бы Уотсон не отвергал взгляды коллег, он сохранил свой авторитет среди специалистов, помощь которых пригодилась бы ему на новой работе, поскольку часть крупных ученых поддержала его энтузиазм в вопросах секвенирования. Некоторые биологи отвергли редукционистские исследования генома человека, поскольку они, по их мнению, угрожали понизить человеческое существо до какой-то лужицы данных. Другие опасались, что проект десятилетиями будет поглощать все возможные исследовательские фонды и при этом не принесет практических результатов – типичный «мыльный пузырь». Третьи считали эту работу невыносимо однообразной, даже с учетом помощи машин (один из таких ученых доказывал, что только заключенные-рецидивисты согласятся заниматься секвенированием, он предлагал «по двадцать мегабаз каждому с перерывом на выходные для большей точности»). Больше всего ученые боялись потерять автономию. Такой важный проект должен был управляться с самого верха, и биологов возмущала идея стать лишь «обслугой», которой приказывают, чем заниматься. «Многие представители американского научного сообщества – жаловался один из первых участников проекта “Геном” – лучше будут поддерживать мелких посредственностей, чем даже представят себе возможность, что может существовать нечто гораздо более совершенное».

При всей своей бестактности Уотсон смог развеять страхи коллег и поспособствовать тому, что NIH перехватили у Министерства энергетики контроль над проектом. Он проводил агитацию по всей стране, читал лекции о важности секвенирования и подчеркивал, что проект «Геном человека» упорядочит не только человеческую ДНК, но и ДНК мышей и дрозофил, так что все генетики окажутся в выигрыше. Кроме этого, он предлагал создавать схемы человеческих хромосом, обозначая на них каждый ген (подобно тому, что Чарльз Стертевант в 1911 году сумел сделать с хромосомами дрозофилы). Уотсон доказывал, что с помощью такой схемы каждый ученый сможет отыскать полюбившийся ген и успешно изучать его, а не ждать пятнадцать лет (такой срок NIH отвели на полное секвенирование). С помощью последнего аргумента Уотсон закинул удочки в Конгресс, члены которого были весьма переменчивы и невежественны и могли прекратить финансирование проекта, если бы не видели еженедельных результатов. Чтобы убедить конгрессменов, некоторые горячие сторонники NIH пообещали, что если государство продолжит выделять средства, человечество будет освобождено от многих заболеваний (и не только заболеваний: утверждалось, что таким образом можно покончить и с голодом, и с нищетой, и с преступностью). Уотсон привлек и зарубежных специалистов, чтобы придать секвенированию престиж на международном уровне, и вскоре проект «Геном человека» был воплощен в жизнь.

И тут вмешался Уотсон – не будь он в противном случае Уотсоном! На третий год в качестве директора он обнаружил, что NIH планирует запатентовать некоторые гены из тех, что открыли их нейробиологи. От идеи патентования генов большинству ученых делалось дурно, они утверждали, что патентные ограничения будут мешать фундаментальным исследованиям. Проблему усугубляло и то, что в NIH признавали: они желают лишь определить месторасположение генов для патента, а за что отвечают эти гены, там не представляли. Даже специалисты, которые поддерживали патентование ДНК (например, руководители биотехнологических проектов), пришли в ужас от подобного откровения. Они опасались, что NIH создали ужасный прецедент, который прежде всего будет способствовать быстрому открытию новых генов. Они предвидели «захват генома», когда целые предприятия будут секвенировать и поспешно патентовать каждый ген, который обнаружат, а затем установят «пошлины» на использование этих генов кем-либо, когда-либо и для какой угодно цели.

Уотсон, который утверждал, что никто не консультировался с ним по этим вопросам, пришел в негодование, и имел на то полное право: патентование генов могло подточить все общественно ценные аргументы в пользу проекта «Геном человека» и снова вызвать сомнения у специалистов. Но вместо того, чтобы спокойно и профессионально планировать решение проблем, «Калигула» обрушился на свою начальницу в NIH, за ее спиной рассказывая репортерам о разрушительной и идиотской политике компании. Наступила борьба за власть, в которой руководитель Уотсона проявила себя как более искушенный воин-бюрократ. Она, как утверждал ученый, подняла в кулуарах скандал по поводу конфликта интересов с ее собственным биотехническим фондом и продолжила попытки заткнуть Уотсона. «Она создала условия, при которых у меня не было ни единого шанса остаться» – кипел от злости Уотсон. Вскоре он подал в отставку.

Однако перед этим он успел вызвать еще больше проблем. Нейробиологи из NIH находили гены в результате автоматизированного процесса, который подразумевал основное участие компьютеров и роботов и совсем небольшое – людей. Уотсон не принимал эту процедуру, потому что с ее помощью можно было определить лишь 90 % человеческих генов, а не полный комплект. Более того, как любитель всего изящного он ехидничал, что процессу не хватает стиля и мастерства. Во время слушаний в Сенате по поводу патентов Уотсон отвергал подобные операции, потому что их «могут проводить даже обезьяны». Это, конечно, не могло понравиться «обезьянам» из Национального института, о которых шла речь, – разве что Дж. Крейгу Вентеру Де-факто, в том числе и благодаря Уотсону, Вентер вскоре стал (бес)славным специалистом, международным научным злодеем. При этом такая роль была ему весьма к лицу. И когда Уотсон покинул институт, двери неожиданно распахнулись для Вентера – возможно, единственного современника Уотсона, кто был бы еще более противоречивым человеком и мог возбудить даже большую неприязнь.

* * *

Крейг Вентер начал хулиганить с малых лет: в детстве он тайком, пользуясь отсутствием ограды, пронес свой велосипед на взлетную полосу аэропорта, чтобы поездить наперегонки с самолетами, а потом убежал от полицейских, преследовавших его. Учась в средней школе в окрестностях Сан-Франциско, Крейг начал прогуливать контрольные работы, а в старших классах – ощутил прикосновение ружья к голове. Ружье принадлежало отцу его подружки, которому не нравилась слишком активная Y-хромосома парня. В тех же старших классах Вентер на два дня парализовал работу всей своей школы, организовав сидячие забастовки и марши протеста против увольнения своего любимого учителя, который порой ставил Крейгу даже колы.

Несмотря на более чем средние оценки в школе, Вентер внушил себе, что может добиться чего-то выдающегося в жизни, но помимо этого заблуждения у него не хватало целей в жизни. В августе 1967 года 21-летний Вентер поступил врачом в военно-полевой госпиталь во Вьетнаме. В течение целого года он видел своих ровесников, сотнями гибших на этой войне, в том числе и прямо на глазах у него, пытавшегося спасти несчастных. Осознание того, что жизнь ничего не стоит, претило ему, и, почувствовав отвращение к жизни, Вентер решает совершить самоубийство, как можно дальше заплыв в отливающие зеленым воды Южно-Китайского моря. Проплыв милю, солдат оказался окружен морскими змеями. В него уже начала тыкаться головой предвкушающая добычу акула. Будто бы резко проснувшись, Вентер подумал: «Что я, черт возьми, делаю?» Он развернулся и поплыл обратно к берегу.

Вьетнам пробудил у Вентера интерес к медицинским исследованиям, и несколько лет спустя, после получения кандидатской степени по физиологии, он обосновался в NIH. Среди прочих исследований, он желал идентифицировать каждый ген, который используется клетками нашего мозга, но разочаровался в этой скучной работе, которую нужно было проводить вручную. Спасение пришло, когда он услышал о методе своего коллеги, позволяющем быстро идентифицировать матричную РНК, которая используется для синтеза белка в клетках. Вентер понял, что эта информация поможет определить последовательности генов, лежащие в основе, так как он мог ретранскрибировать РНК в ДНК. Благодаря автоматизации процесса, ему удалось вскоре снизить затраты на поиск каждого гена с 50 тысяч до 20 долларов, и в течение нескольких лет открыть целых 2700 новых генов.

Это были гены, которые NIH старались запатентовать, и шумиха вокруг них выстроила основу карьеры Вентера. Ему очень хотелось делать что-нибудь грандиозное, его раздражало, что прогресс идет медленно, и хотелось найти кратчайшие пути к успеху. Другие специалисты осуждали его работу, называя ее жульничеством. Один из коллег даже сравнил этот процесс добычи генов с сэром Эдмундом Хиллари, отправленным с помощью вертолета на гору Эверест. После этого Вентеру нужно было очень постараться, чтобы заставить недоброжелателей замолчать. Но его высокомерие и грубость отталкивали от него даже союзников. В силу описанных причин, репутация Вентера к 1990-м годам становилась все более и более скверной. А один Нобелевский лауреат, шуточно представляясь Вентеру, осмотрел его с ног до головы и произнес: «Мне казалось, что у вас должны быть рога». Среди коллег-генетиков Вентер имел примерно такую же славу, как Паганини среди коллег-музыкантов.

Был Вентер дьяволом или нет, но он смог добиться результатов. Разочаровавшись в бюрократической системе NIH, в 1992 году он покинул ее и присоединился к необычной организации смешанного типа. Это было некоммерческое подразделение – Институт геномных исследований (TeInstitute for Genomic Research – TIGR), посвященный чистой науке. Также он имел – и это было угрожающим знаком для большинства ученых – очень даже коммерческое предприятие, опирающееся на медицинские корпорации и посвященное капитализации исследований в области патентования генов. Эта компания сделала Вентера богатым человеком, обеспечив его акциями, затем обеспечив TIGR учеными талантами, переманив 30 сотрудников NIH. И когда команда освоилась на новом рабочем месте, Вентер, в соответствии со своим мятежным поведением, начал совершенствовать собственный метод «дробовика» – улучшенную версию устаревших методов секвенирования, использовавшихся еще Сенгером.

Синдикат Национального института здравоохранения планировал провести первые несколько лет и потратить первый миллиард долларов, составляя подробнейшие схемы каждой хромосомы. По завершении этой работы ученые собирались разделить каждую хромосому на сегменты и разослать их по разным лабораториям. Каждая лаборатория должна была сделать копии сегмента и затем «расстрелять их из дробовика». Сначала использовать интенсивные звуковые волны или другой метод для разрушения сегмента на крохотные, перекрывающие друг друга кусочки, состоящие примерно из 1000 оснований каждый. Затем необходимо было упорядочить каждый кусочек, изучить, как он перекрывается, и сложить все кусочки в связную цельную последовательность. Как отмечают наблюдатели, этот процесс аналогичен разделению романа на главы, а главы, в свою очередь, – на предложения. Учение ксерокопируют каждое «предложение», а затем дробят все копии на случайные фразы: например, «Все счастливые семьи», «счастливые семьи счастливы одинаково», «счастливы одинаково – каждая несчастная семья несчастлива» и «несчастлива по-своему». Это позволяет ученым восстановить предложения, основываясь на этих перекрытиях. В конце концов карты хромосомы, как и книжные оглавления, могут рассказать, в каком порядке расположены части большого текста.

Команде Вентера был по душе метод дробовика, однако они решили избежать медленного составления схем. Вместо разделения хромосом на главы и предложения, ученые планировали сразу раздробить на мелкие перекрывающие друг друга черепки всю «книгу». Они планировали перемешать все вместе в один момент с помощью целого комплекса компьютеров. В NIH этот способ также рассматривали, но отклонили, посчитав небрежным, склонным к тому, чтобы оставлять в цепочке пробелы и помещать сегменты не туда, куда нужно. Вентер, однако, заявил, что в краткосрочной перспективе нужно в первую очередь обращать внимание на скорость, а не на точность: ученым нужны хоть какие-то данные прямо сейчас, чем строго выверенная информация через пятнадцать лет. И Вентеру повезло начать работать именно в девяностые, когда стремительно развивающиеся компьютерные технологии возвели нетерпеливость почти в ранг добродетели.

Едва ли другие специалисты не были так воодушевлены. Некоторые особо упорные генетики работали с 1980-х годов с целью секвенировать первый геном полноценного живого существа – бактерии. Сенгер секвенировал только вирусы, которые нельзя в полной мере считать живыми организмами: бактерия имеет куда больший геном. Эти ученые по-черепашьи ползли к финишу работы над геномом, когда в 1994 году команда Вентера на всех парах помчалась через два миллиона оснований другой бактерии – Haemophilus inf uenzae. Находясь на полпути к успеху, Вентер обращается за поддержкой в фонды NIH. Через пару месяцев он получает напечатанный на розовой бумаге отказ в финансировании по той причине, что он предполагает использовать «невозможную» технику. Вентер лишь посмеялся: его геном был уже на 90 % готов. Некоторое время спустя «аутсайдер» выиграл гонку: TIGR порвал своих медлительных соперников и опубликовал свой геном менее чем через год после старта проекта. Прошло лишь несколько месяцев – и сотрудники TIGR закончили собирать еще одну полную последовательность у бактерии – на этот раз Mycoplasma genitalium. Продолжая задираться, Вентер не только злорадствовал по поводу того, что закончил оба проекта первым, не взяв ни цента у NIH, он также напечатал партию футболок, посвященных второму триумфу, на которых было написано: «Я ♥ СВОИ ГЕНИТАЛИИ».

Ученые, работавшие над проектом «Геном человека», скрепя сердце поражались достижениям Вентера, но не без оснований сомневались: будет ли то, что работало в случае с ДНК бактерии, работать для гораздо более сложного генома человека? Проправительственный консорциум хотел собрать воедино «композитный» геном – смесь многочисленных мужских и женских цепочек ДНК, которые смогли бы привести их различия к общему знаменателю и определить своеобразный платонический идеал для каждой хромосомы в отдельности. Консорциум предполагал, что лишь осторожный подход, неспешное передвижение от фразы к фразе может отсортировать все повторяющиеся участки, палиндромы и инверсии в ДНК и достичь этого идеала. Но микропроцессоры и автоматические секвенсоры продолжали работать быстрее, и Вентер бился об заклад, что если его команда соберет достаточно данных и позволит компьютерам их перелопатить, то они смогут превзойти достижения консорциума. Следует отдать должное Вентеру: он лично не изобретал метод дробовика и не составлял необходимые для секвенирования компьютерные алгоритмы, но у него было достаточно гордости (или наглости – как вам больше нравится), чтобы игнорировать всех своих заслуженных недоброжелателей и двигаться дальше.

И он сделал это! В мае 1998 года Вентер сообщил об основании новой компании, которая должна была практически разрушить международный консорциум. В частности, он планировал секвенировать геном человека за три года – на четыре года быстрее, чем предполагал окончить свою работу консорциум. Причем он предполагал потратить на это не три миллиарда долларов, а в десять раз меньше. Вентер и его команда составили новые планы настолько наспех, что у новой компании даже не было имени: позже она стала называться Celera. Для начала Celera получила от материнской компании сотни самых современных секвенсоров, которые обошлись в 300 тысяч долларов каждый. Эти машины (несмотря на то, что, как мы уже знаем, на них «могли работать даже обезьяны») обеспечили Вентеру такие возможности в деле секвенирования, которых не имели все остальные специалисты в мире, вместе взятые. Для обработки данных Celera обладала крупнейшим в мире гражданским суперкомпьютером. Напоследок Вентер отпустил шпильку в адрес конкурентов, сказав, что когда труды его команды сделают работу консорциума бессмысленной, его сотрудники все равно смогут найти себе полезное занятие. Например, секвенировать геном мыши.

Вызов, брошенный Вентером, деморализовал специалистов консорциума. Уотсон сравнил Вентера с Гитлером, захватившим Польшу, и большинство ученых из проекта «Геном человека» опасалось потерять кусок хлеба. Несмотря на солидную фору, не казалось невероятным, что Вентер сможет догнать и перегнать конкурентов. Чтобы задобрить своих ученых, стремившихся к независимости, консорциум открыл несколько филиалов в американских университетах, а также наладил партнерские отношения с лабораториями в Германии, Японии и Великобритании. Учреждения были настолько разбросаны, что даже сами сотрудники организации не верили, что работу удастся завершить вовремя: к 1998 году, который был уже восьмым из пятнадцати лет, отведенных на проект, а группы ученых коллективными усилиями успели секвенировали лишь 4 % человеческой ДНК. Особенно беспокоились специалисты из США. Пятью годами ранее 86 % членов Конгресса проголосовало за прекращение финансирования строительства сверхпроводящего суперколлайдера, огромного ускорителя частиц в Техасе, так как сроки строительства затягивались, а смета была перерасходована не на один миллиард долларов. Казалось, что «Геном человека» может ждать та же участь.

Ключевые сотрудники проекта «Геном человека» тем не менее отказывались сдаваться. После отставки Уотсона управление консорциумом взял на себя Фрэнсис Коллинз, хотя некоторые специалисты возражали против этого. Коллинз занимался фундаментальными генетическими исследованиями в Мичиганском университете; он открыл участки ДНК, отвечающие за кистозный фиброз и болезнь Хантингтона, а также консультировал участников проекта по изучению ДНК Линкольна. При всем этом он был страстным христианином, и некоторые за это считали его «идеологически несостоятельным». Получив предложение работать в консорциуме, Коллинз целый день молился в часовне, ожидая указаний от Иисуса. Иисус дал добро. К тому же (хоть это и не имеет значения) по сравнению с броским импозантным Вентером Коллинз выглядел очень неказисто: согласно одному описанию, у него были «усы щеточкой и прическа, будто бы он подстриг себя сам».

Коллинз, тем не менее, показал себя опытным дипломатом. Сразу после того, как Вентер объявил о своих планах, Коллинз оказался в самолете вместе с боссами Вентера из голодной до больших денег материнской корпорации. На высоте в 9 тысяч метров над землей Коллинз нагнулся к уху босса и ко времени приземления сумел его уболтать на поддержку государственных лабораторий, осуществлявших опыты по секвенированию. Узнав об этом, Вентер пришел в ярость. Затем, чтобы успокоить недоверчивых членов Конгресса, Коллинз объявил, что консорциум внесет в свои планы изменения, необходимые для того, чтобы закончить полное секвенирование на два года раньше. Уже в 2001 году планировалось выпустить «черновик» работы. Звучало это все красиво, но на практике новые сроки, форсируемые Коллинзом, оборачивались закрытием многих сопутствующих программ, которые требовали много времени, – Коллинз просто вычеркивал такие программы из исторического проекта. Один уволенный специалист жаловался, что в NIH его прочехвостили по самые не балуйся.

Британский коллега Коллинза в консорциуме, дюжий бородатый здоровяк Джон Салстон из Кембриджа, помог осуществить первую в мире попытку секвенирования полного генома животного: это был червь (кстати, именно Салстон предоставил образец своей спермы для «самого реалистического портрета в мире», появившегося в Лондоне). На протяжении большей части карьеры Салстон был типичной «лабораторной крысой» – не увлекался политикой и был счастлив, что имеет возможность закрыться в своей лаборатории и возиться с приборами. Однако в середине девяностых компания, снабжавшая Салстона секвенаторами, начала вмешиваться в его работу, запрещая доступ к необработанным данным без приобретения дорогостоящего ключа. Представители компании аргументировали это тем, что у них есть права на анализ данных, собранных Салстоном, в том числе и в коммерческих целях. В ответ Салстон взломал программное обеспечение секвенсеров и переписал их код, тем самым закрыв компании доступ к данным. С этого времени он стал настороженно относиться к коммерческим интересам и стал заядлым борцом за то, чтобы ученые получили право свободного обмена данными о ДНК. Идеи Салстона начали набирать популярность, когда он оказался назначенным на пост руководителя одной из дорогостоящих лабораторий консорциума в Центре Сенгера в Англии. Компания, поддерживавшая Celera, оказалась той же самой компанией, с которой Салстон в свое время воевал по поводу доступа к данным, и он считал эту корпорацию воплощением Мамоны, желающего захватить все данные о ДНК в свои руки и содрать с исследователей по три шкуры за право изучать их. Услышав объявление Вентера, Салстон воодушевил своих коллег, произнеся на конференции речь не хуже той, которую выдал Генрих V перед битвой при Азенкуре. Кульминационным моментом этой речи было объявление, что институт удвоит финансирование своих проектов, чтобы победить Вентера. Войска кричали «Ура!» и топали ногами.

И вскоре началась борьба: Крейг Вентер против консорциума. Соперничество было неистовым, но вместе с тем весьма оригинальным. Победа в меньшей степени зависела от проницательности, убедительности доказательств, профессиональных навыков (традиционных критериев успеха в науке) и в большей – просто-напросто от того, кто сохранит больше сил для того, чтобы быстрее работать. Крайне необходима была и ментальная устойчивость, так как геномная гонка, по оценкам специалистов, «имела все психологические признаки настоящей войны». Это была и гонка вооружений: каждая команда тратила десятки миллионов долларов, чтобы расширять свои возможности для секвенирования. Имели место и меры по введению противника в заблуждение. В определенный момент два специалиста из консорциума опубликовали в журнале материал, в котором анализировали новые секвенсоры, использовавшиеся в Celera. Они дали этому оборудованию очень неоднозначную оценку, – а в это время их боссы тайком договаривались о приобретении десятков подобных машин для консорциума. Присутствовала и тактика запугивания. Некоторые независимые специалисты получали предупреждения о том, что если они будут сотрудничать с Вентером, то их карьеры подойдут к концу, и сам Вентер обвинял консорциум в том, что тот старался препятствовать публикации его работ. Не обошлось без напряженности в среде союзников. Вентер вступал в бесчисленные стычки со своими менеджерами, а на одной из встреч консорциума немецкий ученый орал на своих японских коллег, допустивших ошибки в работе. Конечно, полным ходом шла пропаганда. Вентер и Celera на весь свет трубили о своих достижениях, но каждая новость от тех или других сопровождалась тем, что Вентер пренебрежительно отзывался о геноме коллег, «будто взятом из журнала карикатур», или же Салстон появлялся на телевидении, чтобы доказать, что Celera сморозила очередную глупость. Можно говорить даже о наличии боеприпасов! После получения смертельных угроз от неолуддитов вокруг офиса Celera были вырублены все деревья, чтобы предотвратить появление снайперов, а Вентер был предупрежден ФБР о необходимости сканировать все посылки, на случай, если террористам вздумается послать по почте бомбу.

Конечно, атмосфера взаимной ненависти, которой было пропитано соревнование, возбуждала интерес общественности и обеспечивала публичное внимание. Но в то же время эта атмосфера способствовала и появлению по-настоящему ценных научных трудов. Находясь под неослабевающим потоком критики, в компании Celera понимали, что им снова придется доказывать действенность метода дробовика. Поэтому они пока отложили свои стремления, связанные с геномом человека и в 1999 году начали работать (в сотрудничестве с командой Калифорнийского университета в Беркли, финансируемой Институтом здравоохранения) над секвенированием 120 миллионов оснований генома дрозофилы. К удивлению большинства, им удалось достичь идеального результата: на конференции, собранной сразу после того, как Celera завершила свою работу, исследователи дрозофилы аплодировали Вентеру стоя. И как только оба конкурента с новой силой приступили к работе над геномом человека, соперничество стало по-настоящему захватывающим. Конечно, споры по-прежнему продолжались. Когда Celera объявила о взятии высоты в один миллиард оснований, консорциум опроверг эту информацию, так как компания Вентера (защищая свои бизнес-интересы) не стала публиковать данные, и специалисты не могли их подтвердить. Месяцем спустя консорциум сам начал хвастаться преодолением миллиардного рубежа; через четыре месяца спустя там гордо объявляли о двух миллиардах. Но все эти трения совершенно несущественны по сравнению с действительно важным фактом: в течение нескольких месяцев ученые секвенировали намного больше ДНК, чем в течение двадцати предыдущих лет, вместе взятых. Когда Вентер работал на NIH, генетики критиковали его за то, что он штампует генетический материал, не стараясь разобраться в том, как что работает. Однако теперь все играли по правилам Вентера, лихорадочно секвенируя все новые и новые основания.

Прочую ценную информацию удалось добыть, когда ученые начали анализировать все, даже самые начальные, данные, полученные в результате секвенирования. С одной стороны, у людей оказалось слишком много ДНК, которая была аналогичной ДНК микробов и вирусов: широкое поле для изучения. Более того, оказалось, что у людей не так уж и много генов! До старта проекта «Геном человека» специалисты в большинстве своем считали, принимая во внимание сложность человеческого организма, что у нас 100 тысяч генов. В частности, Вентер вспоминает о том, что подозревались даже такие цифры, как 300 тысяч. Но по мере того как Celera и консорциум углублялись в тайны генома, оценка числа генов снизилась до 90 тысяч, потом до 70 тысяч, наконец до 50 тысяч – и продолжала снижаться. Начиная с первых дней работы, 165 ученых скинулись и образовали призовой фонд (1200 долларов), который должен был достаться тому, кто предскажет точное число генов в человеческом организме. Обычно данные в подобных шуточных тотализаторах расположены вокруг выигрышного варианта по принципу нормального распределения. Но в генетическом тотализаторе все было не так: с каждым днем становилось яснее, что низкие ставки имеют наивысший шанс на победу.

Всякий раз, когда ученые предвещали, что история проекта «Геном человека» станет реальной, происходило нечто пикантное и отвлекавшее всех участников гонки. Например, в начале 2000 года президент Билл Клинтон ни с того ни с сего объявил, что человеческий геном принадлежит всему человечеству, и призвал всех специалистов, в том числе и независимых, немедленно поделиться информацией о секвенировании. Пошли слухи, что правительство запретит патентовать гены, и эта информация очень быстро распугала инвесторов секвенирующих компаний. Celera за несколько недель потеряла шесть миллиардов из-за падения акций – из них 300 миллионов принадлежали лично Вентеру. Чтобы компенсировать эту и прочие неудачи, Вентер в то время пытался добыть кусочек мозга Эйнштейна, чтобы увидеть, как кто-то может секвенировать свою ДНК, но потерпел неудачу.

Звучит слишком трогательно, но некоторые специалисты надеялись, что Celera и консорциум смогут работать вместе. Салстон в 1999 году решительно опроверг слухи о перемирии с Вентером, но некоторое время спустя их помирить попытались другие специалисты. Дошло даже до идеи о публикации 90 %-го черновика генома человека как общей работы двух организаций. Переговоры шли полным ходом, но проправительственные ученые продолжали настороженно относиться к бизнес-интересам компании Celera (их рассердил отказ коллег немедленно опубликовать данные своих исследований). В ходе переговоров Вентер демонстрировал обычную харизму: один из представителей консорциума ругал его на чем свет стоит лицом к лицу, а его многочисленные коллеги делали то же самое за глаза. Фотография Вентера в журнале «Нью-Йоркер» была подписана трусливо анонимной цитатой старшего научного сотрудника: «Крейг Вентер – козел». Неудивительно, что планы по совместной разработке генома в конце концов провалились.

Будучи шокированым перебранкой, держа в уме предстоящие выборы, Билл Клинтон в конце концов вмешался и убедил Коллинза и Вентера вместе появиться на пресс-конференции в Белом доме в июне 2000 года. Там конкуренты объявили, что геномная гонка завершилась – и завершилась вничью. Перемирие было условным и, принимая во внимание сохранившиеся взаимные обиды, по большому счету фальшивым. Но вместо того чтобы продолжать ругаться, в тот летний день Коллинз и Вентер искренне улыбались друг другу. Почему бы и нет? Это было меньше чем через век после того, как ученые определили первый человеческий ген, меньше, чем через полвека после открытия двойной спирали Уотсоном и Криком. Тогда, на пороге нового тысячелетия секвенирование генома человека обещало даже больше. Оно изменило всю природу биологической науки. Около трех тысяч ученых внесли свой вклад в две крупные работы, объявленные черновиком генома человека. Клинтон важно заявил: «Эпоха большого правительства закончилась». Начиналась эпоха большой биологии.

* * *

Две работы, излагающие черновой вариант генома человека, появились в начале 2001 года, и тот факт, что две части совместной публикации вышли отдельно, можно считать просто историческим везением. Создание единого документа привело бы обе группы к ложному консенсусу, в то время как две соперничающие работы подчеркивают уникальный подход каждой из сторон – и подвергаются различным сплетням, которые превращаются в общепринятое мнение.

В этой работе Celera признается в присваивании данных, полученных консорциумом и находившихся в свободном доступе, чтобы построить часть своих последовательностей, – из-за чего репутация Вентера, известного своей бескомпромиссной честностью, оказалась сильно подмочена. Более того, специалисты консорциума утверждали, что Celera, не пользуясь разработанными их компанией схемами, и вовсе не закончила бы свою работу по созданию совокупности последовательностей ДНК, собранных по методу дробовика. Конечно, команда Вентера опубликовала гневное опровержение этого. Салстон также поставил под сомнение идею Адама Смита по поводу того, что конкуренция повышает эффективность и вынуждает обе стороны делать инновационные риски. Он утверждал, что вместо этого Celera растрачивала на глупую публичную возню ту энергию, которой можно было бы дать полезный ход, – и если это и помогло ускорить появление черновика, то черновик оказался фальшивым.

Конечно, ученым нравилась их работа, даже в черновом варианте, и консорциум никогда не пошел бы на подобные публикации, если бы Вентер не бросил ему перчатку в лицо. Притом, что консорциум всегда утверждал, что в организации работают зрелые специалисты, которые придают значение не победе в геномной гонке, а в первую очередь аккуратности – многие специалисты, исследовавшие оба черновых проекта, утверждали, что Celera сработала качественнее. Говорили, что их секвенирование вдвое качественнее и менее заражено следами вирусной ДНК. Консорциум также опровергал критику в свой адрес от Вентера, который обвинял их в применении метода дробовика в более поздних проектах, таких как работа с геномом мыши.

Сам Вентер не собирался давать своей работе широкую огласку. В результате возни за лидерские кресла Celera отправила Вентера в отставку в январе 2002 года. Прежде всего, Вентер отказался патентовать большинство генов, которые обнаруживала его команда: по сути своей он был довольно эгоцентричным капиталистом, одержимым собственными идеями. Когда Вентер ушел, Celera лишилась своей основной движущей силы в вопросах секвенирования, и консорциум праздновал победу, в начале 2003 года сумев секвенировать полный геном человека.

Однако Вентер, подобно стареющей звезде футбола, не мог просто так взять и уйти после стольких лет увлекательной конкуренции. В середине 2002 года он отвлек внимание от текущей работы консорциума, сообщив, что составной геном от Celera на 60 % представлял собой ДНК его собственной спермы: он был главным «анонимным» донором. И, не обращая никакого внимания на шушуканье, которое сопровождало его откровение (самовлюбленный! эгоцентричный! скандалист! – и еще более лестные характеристики), Вентер объяснил, что хотел анализировать собственную ДНК, не имевшую следов прочих доноров. В конце концов он основал новый институт, Центр продвижения геномики (англ. T e Centre for Applied Genomics – TCAG) и потратил 100 миллионов долларов за четыре года, чтобы секвенировать себя и только себя.

У Вентера должен был получиться первый в истории полный индивидуальный геном, который, в отличие от платонического результата работы проекта «Геном человека», включал бы и материнские, и отцовские генетические признаки, а также все побочные мутации, делающие каждого человека уникальным. Однако, поскольку группа Вентера целых четыре года провела за постепенной отделкой генома своего босса, выстраивая основание за основанием, группа ученых-конкурентов смогла включиться в гонку и первой в мире секвенировать другой индивидуальный геном, который принадлежал не кому иному, как давнему сопернику Вентера – Джеймсу Уотсону. По иронии судьбы, вторая команда, получившая название «Проект “Джим”», взяла пример с Вентера и добилась своего, используя новые, более дешевые и менее чистые методы секвенирования, расправившись с полным геномом Уотсона за четыре месяца и обойдясь гораздо более скромной суммой – примерно двумя миллионами долларов. Вентер, не будь он Вентером, отказался признать поражение, и его вторая геномная гонка снова завершилась ничьей. Обе команды опубликовали свои последовательности в интернете летом 2007 года с разницей в несколько дней. Скоростные компьютеры проекта «Джим» поразили весь мир, но секвенирование от Вентера снова было признано более аккуратным и полезным для большинства исследований.

Гонка статусов тем самым не закончилась. Вентер по-прежнему активно проводит исследования. Так, в настоящее время он, вычитая ген за геном из ДНК микробов, пытается определить минимальный размер генома, необходимый для жизни. Публикация собственного генома, какой бы скандальной она ни казалась, дает Вентеру преимущество в борьбе за Нобелевскую премию – награду, которую, говорят, он очень жаждет получить. Нобелевскую премию может получить не больше трех ученых одновременно, но и Вентер, и Коллинз, и Салстон, и Уотсон имеют все основания претендовать на нее в одиночку. Шведский Нобелевский комитет может проигнорировать нехватку хороших манер у Вентера и выдать премию ему одному за все безупречные труды. Если так произойдет, Вентера все же стоит признать победителем геномной войны.

Так что же вся эта геномная гонка принесла нам, профессиональным ученым? Каждый делает свои выводы по этому поводу. Большинство специалистов, занимающихся генетикой человека, направляют усилия на лечение заболеваний, и они убеждены, что проект «Геном человека» сможет выявить, какие гены отвечают за болезни сердца, диабет и прочие широко распространенные недуги. Конгресс потратил три миллиарда долларов на эту довольно туманную перспективу. Однако, как указывали Вентер и другие ученые, с 2000 года не появилось практически ни одного генетически обоснованного лекарственного препарата – и не появится в ближайшем будущем. Даже Коллинз, нервно сглотнув, со всей присущей ему дипломатией признал, что темпы предполагаемых научных открытий лишь разочаровывают. Оказалось, что многие распространенные заболевания обусловлены гораздо большим количеством мутировавших генов, чем это представлялось вначале, а разработать лекарство, которое способно поразить больше, чем пару генов, практически невозможно. Что еще хуже, ученые не всегда могут отличить значимые мутации от безвредных. А в некоторых случаях и вовсе не могут определить, имеет ли место мутация. Основываясь на моделях наследования, они знают, что некоторые заболевания имеют определенные генетические признаки, но тщательное исследование ДНК больных людей в поисках нужных генов ничего не дает: хорошо если находятся какие-то общие генетические дефекты. А «ДНК-вредительница» бесследно исчезла.

Эти неудачи могут быть обусловлены несколькими причинами. Возможно, истинные причины болезней скрываются в некодирующей ДНК, за пределами генов, в участках спирали, о которых мы пока имеем весьма смутное представление. Возможно, одинаковые мутации у разных людей вызывают неодинаковые заболевания, так как имеют место взаимодействия с различными генами. Возможно, хоть и маловероятно, что у некоторых людей есть дупликаты отдельных генов, которые очень важны для каких-то целей. Возможно, что секвенирование, с разбитием хромосом на мелкие частицы, разрушает важную информацию о структуре хромосомы и вариациях в ее строении, которые могут рассказать ученым, какие гены и каким образом участвуют в совместной работе. Самая пугающая из всех версий, изобличившая наше фундаментальное невежество, – идея, что болезней как таковых не существует. Когда врачи видят схожие симптомы у разных пациентов – колебание уровня сахара в крови, боль в суставах, высокий уровень холестерина, – они спокойно делают одинаковые выводы. Однако для регулирования уровня сахара и холестерина требуется совместная работа множества генов, и мутация в одном из них может разрушить всю систему. Другими словами, даже если масштабные симптомы идентичны, лежащие в их основе генетические причины, которые должны определяться и лечиться врачами, могут быть различными. Некоторые биологи, говоря об этом, переделывают цитату Льва Толстого, говоря, что все здоровые организмы здоровы одинаково, а каждый больной – болен по-своему. В силу описанных причин медики порой мямлят, что проект «Геном человека», как бы так сказать, пока что провалился. Если так оно и есть, то самым подходящим сравнением из мира большой науки будет вовсе не Манхэттенский проект, а космическая программа «Аполлон», которая сначала доставила человека на Луну, а потом угасла.

Опять же, какими бы ни были недостатки (пока существующие) в медицине, секвенирование генома человека могло изменить, если вовсе не перестроить заново, практически каждую область биологии. Секвенирование ДНК позволило сделать молекулярные часы более точными и доказало, что животная ДНК дала убежище огромным участкам ДНК вирусной. Секвенирование помогло ученым реконструировать происхождение и развитие сотен ветвей эволюции, включая и наших родственников-приматов. Секвенирование помогло проследить историю глобальных человеческих миграций и показало, как близки мы были к вымиранию. Оно определило, что у человека не так-то много генов (кстати, в «генетическом тотализаторе» выиграла самая низкая ставка – 25 947), и заставило ученых осознать, что исключительные качества, которыми обладают лишь люди, обусловлены не столько наличием специальной ДНК, сколько особым упорядочением и соединением участков спиралей.

Наконец, получение полного генома человека – и особенно индивидуальных геномов Уотсона и Вентера – подчеркнуло, что многие ученые в погоне за расшифровкой генома не принимали во внимание разницу между чтением и пониманием генома. Оба ученых сильно рисковали, публикуя свои геномы. Специалисты по всему миру корпели над геномами, изучая символ за символом, разыскивая недостатки или компрометирующие факты. Уотсон и Вентер по-разному воспринимали этот риск. Ген АпоЕ усиливает нашу способность питаться мясом, но и (по некоторым версиям) увеличивает риск болезни Альцгеймера. Бабушка Уотсона была жертвой этого расстройства, и сам он очень болезненно относился к перспективе потерять рассудок, поэтому просил, чтобы специалисты не оглашали информацию о состоянии его собственного АпоЕ. К сожалению, ученые, которым он доверял, не сохранили в тайне результаты синтеза. Вентер не скрывал никаких сведений по поводу своего генома и даже наоборот – выложил в открытый доступ результаты своего медицинского обследования. Таким образом ученые смогли соотнести гены своего коллеги с его ростом, весом и прочими показателями, имеющими отношение к здоровью. Эти данные во всей совокупности гораздо более полезны в медицинском плане, чем данные, полученные от безымянного генома. Оказалось, что у Вентера были в наличии гены склонности к алкоголизму, слепоте, сердечной недостаточности, а вдобавок еще и к болезни Альцгеймера. Что еще более странно, в ДНК Вентера были обнаружены длинные отрезки, которые, как правило, не встречаются у людей, но обычны для шимпанзе. Причина этого неизвестна, но, несомненно, враги Вентера имеют особые подозрения по этому поводу. Вдобавок, сравнение генома Крейга Вентера и платонического генома, полученного в результате проекта, выявило гораздо больше отклонений, чем ожидалось: целых четыре миллиона мутаций, инверсий, лишних и пропущенных фрагментов и прочих особенностей, каждая из которых могла оказаться фатальной. При этом Вентер, чей возраст уже приближается к семидесяти, избежал каких-либо проблем со здоровьем. Ученые также обратили внимание на два участка в геноме Уотсона, с копиями разрушительных рецессивных мутаций – синдром Ушера (который оставляет своих жертв глухими и слепыми), а также синдромом Коккейна (приводящему к нарушениям роста и преждевременному старению). Однако у Уотсона, которому уже хорошо за восемьдесят, никогда не было и намека на подобные проблемы со здоровьем.

Что же это нам дает? Неужели геномы Уотсона и Вентера лгут? Или их как-то не так прочитали? У нас нет оснований считать Уотсона и Вентера какими-то особенными людьми. Наивное прочтение чьего-либо генома, наверное, приговорило бы любого человека к болезням, уродствам и быстрой смерти. Однако же большинство из нас выживает. Это значит, что вроде бы могущественная последовательность А-Ц-Г-Т может быть ограничена экстрагенетическими факторами, включая нашу эпигенетику.

 

Глава 15. Как пришло, так и ушло

Почему однояйцевые близнецы могут быть вовсе не одинаковыми?

Приставка эпи-обозначает, что что-то размещается на чем-то другом. Растения-эпифиты растут на прочих растениях. Эпитафии и эпиграфы появляются на надгробных плитах и в пафосных книгах. Зеленые предметы, например трава, могут отражать световые волны длиной 550 нанометров («феномен»), но наш мозг воспринимает этот свет как цвет — понятие, связанное с памятью и чувствами («эпифеномен»). Когда проект «Геном человека» заставил ученых сомневаться в некоторых вещах даже больше, чем раньше, – к примеру, как 22 тысячи генов (меньше, чем у винограда!) смогли построить сложное человеческое существо? – генетики стали уделять больше внимания регуляции генов и взаимодействию генотипа и среды, включая эпигенетику.

Как и генетика, эпигенетика включает в себя передачу по наследству определенных биологических признаков. Но в отличие от генетических изменений эпигенетические не влияют на устоявшуюся последовательность А-Ц-Г-Т. Вместо этого эпигенетические наследования влияют на то, как клетки получают, читают и используют ДНК. Гены ДНК – это, говоря компьютерным языком, хард, а эпигенетические факторы – софт. И в то время как биология разграничивает внешнюю среду и мир генов, эпигенетика причудливо совмещает их. Она даже намекает на то, что периодически мы можем наследовать внешние факторы, то есть сохранить биологическую память о том, что наши матери и отцы (или бабушки и дедушки) ели, чем дышали, как выживали.

Честно говоря, отличить настоящую эпигенетику («мягкое наследование») от прочих взаимодействий генетических и внешних факторов довольно сложно. Ясности никак не способствует то, что эпигенетика традиционно была этаким мусорным пакетом идей, куда научные работники скидывали каждую забавную наследственную черту, которую находили. Но главное то, что эпигенетика имеет действительно проклятую историю, где хватает и голода, и болезней, и суицидов. Но ни одна другая отрасль не является столь многообещающей для достижения главной цели биологии человека: перескочить от молекулярных мелочей генома человека к пониманию всех причуд и индивидуальностей полноценного человеческого существа.

* * *

Хотя эпигенетика является передовой отраслью науки, она возвращает к жизни один из самых древних споров в биологии, который вели предшественники Дарвина – француз Жан-Батист Ламарк и его соотечественник, наш старый знакомый барон Кювье.

Так же как Дарвин сделал себе имя, изучая не самые известные виды (усоногих раков), так и Ламарк собаку съел на изучении «червей». В то время под этим понятием объединялись также медузы, пиявки, слизни, осьминоги и прочие скользкие твари: натуралисты не снисходили до того, чтобы классифицировать их подробнее. Ламарк был более внимательным и разборчивым, чем его коллеги, поэтому он решил спасти всю эту живность от таксономической безвестности, выделяя уникальные черты каждого вида и согласно этому разделяя их на отдельные типы. Вскоре он ввел для них термин «беспозвоночные», а в 1802 году пошел дальше, придумав слово «биология» для обозначения всей области науки, которой интересовался.

Ламарк стал биологом, пойдя обходными путями. После смерти своего отца, бравого вояки, семнадцатилетний Жан-Батист бросил духовную семинарию, купил старую клячу и поскакал на Семилетнюю войну. Позже его дочь утверждала, что Ламарк отлично себя проявил на войне, ратными подвигами заслужив офицерское звание, однако она часто преувеличивала достижения отца. В любом случае, военная карьера лейтенанта Ламарка закончилась бесславно: он был травмирован собственными солдатами, когда они в процессе какой-то забавы поднимали молодого офицера за голову. Потеря для армии стала приобретением для биологии, и вскоре Ламарк стал известным ботаником и специалистом по «червям».

Жан-Батист Ламарк разработал первую научно обоснованную теорию эволюции. Она была ошибочной, однако по многим признакам напоминает современную науку – эпигенетику (Луи-Леопольд Буальи)

Не ограничиваясь вскрытием червей, Ламарк разработал помпезную теорию, первым в истории обосновав эволюцию с научной точки зрения. Теория делилась на две части. В главной ее части содержались попытки объяснить, почему эволюция случается вообще: все существа, как утверждал Ламарк, имеют «внутреннюю потребность» к «совершенствованию», к тому, чтобы приблизиться к наиболее сложным организмам – млекопитающим. Вторая часть была связана с механизмами эволюции. И в этой части мы находим пересечения – по крайней мере концептуальные – с современной эпигенетикой, поскольку Ламарк говорил, что все живые существа меняют внешний облик или образ жизни в зависимости от окружающей среды, которая наделяет их организмы определенными признаками.

К примеру, Ламарк предположил, что болотные кулики, стремясь сохранить свои огузки сухими, ежедневно чуть-чуть растягивали ноги и в конце концов обзавелись длинными «ходулями», которые унаследовали и их птенцы. Таким же образом жирафы, чтобы доставать листья с самых верхушек деревьев, приобрели длинные шеи и передали их потомкам. Подобные предположения возникали и по поводу людей: например, год за годом махавшие молотом кузнецы якобы передавали детям свою внушительную мускулатуру. Заметим, что Ламарк не говорил, что животные рождаются с более длинными придатками, быстрыми ногами или прочими чертами, дающими преимущество; вместо этого существа старались развить эти черты. И чем усерднее они старались, тем лучшее наследство передавали своим детям (в этой теории слышны отголоски социологии Вебера и трудовой этики протестантов). Никогда не отличавшийся скромностью Ламарк объявил свою теорию «совершенной» к 1820 году.

Через двадцать лет изучения этих глобальных метафизических представлений о жизни в абстрактном понимании, реальная физическая жизнь Ламарка начала разрушаться. Его научная позиция никогда не считалась основательной, потому что теория приобретенных признаков так и не впечатлила многих коллег Ламарка: в одном из самых сильных и правдоподобных опровержений, приводимых ими, отмечалось, что еврейские мальчики вот уже три тысячи лет подряд рождаются необрезанными. Кроме того, Ламарк постепенно слеп и вскоре после 1820 года был вынужден уйти на пенсию как профессор «насекомых, червей и микроскопических животных». Не имея ни славы, ни доходов, вскоре он превратился в бедняка, целиком зависящего от забот своей дочери. Перед своей смертью в 1829 году он смог лишь «арендовать могилу», то есть его останки покоились с миром всего пять лет, а затем, изъеденные червями, были выброшены в парижские катакомбы, чтобы освободить место в могиле для другого клиента.

Но еще большее посмертное оскорбление Ламарк снес от любезного барона. Кювье и Ламарк сотрудничали в постреволюционном Париже, будучи если не друзьями, то уж точно добрыми коллегами. Конечно, с точки зрения темперамента Кювье был почти на 180 градусов противоположен Ламарку. Барону были нужны факты, факты и только факты, он не верил ни во что, отдававшее домыслами, то есть практически ни во что из поздних работ Ламарка. Кроме того, Кювье напрочь отрицал эволюцию. Наполеон, его покровитель, завоевал Египет и привез оттуда тонны настоящих сокровищ для ученого, в том числе фрески с изображениями животных, а также мумии кошек, обезьян, крокодилов и прочих зверей. Кювье не верил в эволюцию, так как видел, что представленные в этих коллекциях виды животных не изменились за несколько тысяч лет – а несколько тысяч лет в то время казались значительным временным промежутком в истории Земли.

Кювье не ограничивался научными опровержениями и использовал для дискредитации Ламарка свои политические возможности. Среди многочисленных обязанностей Кювье была и такая, как сочинение надгробных речей для членов Французской академии наук, и он порой составлял эти речи так, чтобы метко высмеивать покойных коллег. Он начал «Панегирик» Ламарку с восхваления его преданности червям, сожалея, что недостаточно красноречив и богат на похвалу. Затем, по словам автора, он был просто вынужден вспомнить, что его дорогой друг Жан-Батист много раз сбивался с пути истинного – на бесполезную болтовню об эволюции. Барон Кювье использовал против Ламарка одно из его же несомненных достоинств – умение обращаться к аналогиям, щедро рассеяв по тексту карикатурные описания эластичных жирафов и влажных огузков пеликанов, которые стали неразрывно связаны с именем Ламарка. «Система, основанная на подобных положениях, может потешить воображение поэта, – резюмировал Кювье, – но даже на мгновение она не заинтересует того, кто сам пробовал вскрывать руку, внутренние органы – да хотя бы птичье перо». В целом этот «Панегирик» заслуживает звания «жестокого шедевра», которое дал ему специалист по истории науки Стивен Джей Гоулд. Но, отбросив морализаторство, ловкому барону стоит отдать должное. Для большинства людей написанные панегирики вызвали бы чуть большее неудобство, чем боль в шее. Кювье видел, что в данном случае может превратить это небольшое преимущество в грозную силу, и имел достаточно опыта, чтобы осуществить это на практике.

После разгромного выступления Кювье некоторые ученые-романтики еще цеплялись за идею Ламарка по поводу пластичности окружающего мира, однако другие специалисты – как, например, Мендель – нашли, что его теории оставляют желать лучшего. Многие, впрочем, не могли окончательно определиться со своими взглядами. Дарвин в печати признавал, что именно Ламарк первым сформулировал теорию эволюции, называя его «заслуженно знаменитым ученым». И Дарвин верил, что некоторые приобретенные характеристики (в том числе, изредка, и обрезанный пенис) могут передаваться следующим поколениям. Но в то же время Дарвин отвергал теорию Ламарка в своих письмах друзьям, называя их «настоящим мусором» и «чрезвычайно бедными», из которых он «не почерпнул ни одной идеи либо факта».

Одна из претензий Дарвина заключалась в том, что он верил, что живые существа получают какие-то преимущества в первую очередь благодаря врожденным, а не приобретенным, как в интерпретации Ламарка, признакам. Дарвин также подчеркивал, что эволюция распространялась очень медленно, потому что врожденные черты могут распространиться только тогда, когда особи, обладающие преимуществами, произведут потомство. Противоположно этой гипотезе, в интерпретации Ламарка животные могли сами контролировать процесс эволюции: длинные конечности или крупные мускулы, распространялись очень быстро и в пределах одного поколения. Возможно, худшим из тезисов Ламарка, для Дарвина и кого бы то ни было еще, было то, что француз продвигал голословную телеологию – мистическое учение о стремлении живых существ к совершенствованию и искоренению недостатков путем эволюции – то, что биологи хотели с корнем выполоть из своей работы.

Столь же убийственными для теории Ламарка оказались исследования ученых, живших после Дарвина. Они обнаружили, что в организме проводится четкая граница между обычными клетками, с одной стороны, и сперматозоидами (яйцеклетками) – с другой. Соответственно, даже если у кузнеца будет такая же мускулатура, как у державшего небесный свод Атланта, это совершенно ничего не значит. Сперматозоиды никак не зависят от клеток, образующих мышцы, и если у кузнеца они будут 98-миллиметровыми хиляками со слабой ДНК, то, скорее всего, и дети кузнеца родятся слабаками. В 1950-х годах ученые укрепили идею подобной независимости, доказав, что клетки организма не могут изменить ДНК, заключенную в сперматозоиде или яйцеклетке, – единственную ДНК, которая имеет значение в процессе наследования. Теория Ламарка, казалось, умерла окончательно.

Однако в течение последних десятилетий ламарковские черви к нам вернулись! Теперь специалисты рассматривают наследственность как нечто менее стабильное, а барьеры между генами и окружающей средой – как нечто более проницаемое. И это еще не все интересное по поводу генов: заходит речь и об экспрессии генов, то есть их «включении» и «выключении». Клетки обычно «выключают» ДНК, нанося на ее поверхность маленькие бугорки – метильные группы, или же «включают», используя ацетиловые группы, разматывая белковые «узлы». И ученые теперь знают, как клетки передают эти точные паттерны метильных и ацетиловых групп дочерним клеткам, когда бы они ни делились – своеобразная «клеточная память». Правда, ученые когда-то думали, что метильные группы в нейронах отвечают за запись воспоминаний у нас в мозгу. Это не так, но связи между метилами и ацетилами могут влиять на формирование памяти. Ключевой момент в том, что все эти модели хоть и стабильны, но непостоянны: определенные эксперименты с изменением окружающей среды могут добавлять и убавлять метилы и ацетилы, изменяя паттерны. Это фактически разрушает память о том, что организм делал со своими клетками, а эта память – определяющий момент, первый шаг в любой описанной Ламарком наследственности.

К сожалению, негативный опыт может быть зафиксирован в клетке столь же легко, как позитивный. Сильные эмоциональные переживания порой могут переполнить мозг млекопитающего нейрохимикатами, которые принесут метильные группы туда, где их не должно быть. Мыши, которые третировались другими мышами, когда были детенышами, часто имеют эти метильные паттерны в своем мозгу. Так же как и мышата, выращенные нерадивыми матерями (родными или нет), которые отказывались вылизывать, греть и нянчить детенышей. Когда такие мыши вырастают, они теряются в стрессовых ситуациях, причем их провалы нельзя объяснить плохими генами: родные и «усыновленные» мышата в конце концов ведут себя одинаково неестественно. Аномальные метильные паттерны с самых ранних лет впечатываются в мозг, и, поскольку нейроны продолжают делиться, а мозг – расти, паттерны навсегда увековечивают себя. События 11 сентября 2001 года могли оставить следы в мозгу еще нерожденных людей. У некоторых беременных женщин на Манхэттене обнаружили посттравматическое стрессовое расстройство, которое могло эпигенетически активизироваться и деактивизироваться с помощью как минимум дюжины генов, включая гены мозга. Эти женщины, особенно те, кто в минуты трагедии был на последнем триместре беременности, в конце концов родили детей, более тревожных, чувствительных к переживаниям, чем другие дети, сталкивающиеся с нестандартными раздражителями.

Отметим, что эти изменения ДНК не генетические, поскольку цепочка А-Ц-Г-Т остается неизменной. Однако эпигенетические изменения фактически являются мутациями: гены также могут не работать. Как и при мутациях, эпигенетические изменения будут происходить и в клетках потомков. В самом деле, по мере старения в организме каждого из нас накапливается все больше и больше уникальных эпигенетических изменений. Это объясняет, почему личные качества и даже внешние черты однояйцевых близнецов, несмотря на идентичную ДНК, с каждым годом становятся все менее схожими. Это также значит, что избитый в детективах сюжетный ход о том, что один из братьев-близнецов совершил преступление, и оба были отпущены на свободу – поскольку тесты ДНК не смогли их различить – некорректен, потому что так не может продолжаться всегда. Рано или поздно одного из братьев осудит его эпигеном.

Конечно, все эти факты доказывают только то, что клетки организма могут получать внешние сигналы и передавать их другим клеткам, – своеобразная разновидность наследования. Обычно, когда сперматозоид соединяется с яйцеклеткой, эмбрион стирает всю эпигенетическую информацию – это позволяет вам стать вами, человеком, независимым от того, чем занимались его родители. Но есть и факты, которые доказывают, что некоторые эпигенетические изменения, через ошибки или уловки, иногда украдкой проникают к новым поколениям зверят, птенцов и маленьких детей – этого вполне себе хватит, чтобы убедиться в преимуществах ламаркизма и заставить Кювье и Дарвина скрипеть зубами от досады.

* * *

Впервые ученым удалось уловить подобные эпигенетические факторы в действии в деревушке Оверкаликс – маленьком поселении в «подмышечной впадине» между Швецией и Финляндией. С XIX века воспитание детей там проходило в весьма жестких условиях. Семьдесят процентов семей имели пять и более детей, из них четверть – более десяти, и все эти рты должны были прокормиться с двух акров (0,8 гектара) неплодородной почвы: для большинства семей это была вся земля, которую можно было наскрести. Плодородности не способствовала погода, на 66-м градусе северной широты примерно раз в пять лет случался неурожай ржи и прочих культур. Были периоды, например в 1830-х, когда урожай погибал практически каждый год. Местный пастор фиксировал эти факты в летописи Оверкаликса с сумасшедшим хладнокровием. «Ничего исключительного не произошло, – гласит одна запись, – только восьмой [подряд] год случился неурожай».

Конечно, не каждый год был безотрадным. Порой земля награждала людей обилием еды, и даже семьи из пятнадцати человек могли наесться вволю и забыть о голодных временах. Однако в самые мрачные зимы, когда урожай засыхал, а дремучие скандинавские леса и замерзшее Балтийское море отрезали деревню от внешнего мира, жители Оверкаликса спасались тем, что резали последних свиней и коров.

Эта история – достаточно обычная для глухой провинции – возможно, так и осталась бы незамеченной, если бы не отдельные шведские ученые. Они заинтересовались ситуацией в Оверкаликсе, потому что желали разобраться, как внешние факторы, такие как недостаток пищи, влияют на беременных женщин, предопределяя проблемы со здоровьем у их потомства. У специалистов был повод так думать, основанный на отдельном исследовании 1800 детей, родившихся во время и сразу после голода в оккупированных Германией Нидерландах: так называемой Голодной зимой 1944–1945 годов.

Суровая зима сковала льдом каналы для кораблей с продовольствием. По земле также невозможно было доставить подкрепление: в качестве своей последней милости, оказанной голландцам, нацисты разрушили дороги и мосты. Дневной рацион взрослого голландца к ранней весне 1945 года упал до 500 калорий в день. Крестьяне и беженцы (к последним принадлежала и семья будущей великой актрисы Одри Хепберн, оказавшаяся в Голландии во время войны) были вынуждены грызть луковицы тюльпанов.

После освобождения Нидерландов в мае 1945 года рацион жителей страны увеличился сразу до 2000 калорий, и этот скачок позволил провести натуральный эксперимент: ученые смогли сравнить детей, зачатых во время голода и сразу после него, и определить, кто более здоров. Как и ожидалось, дети, вынашиваемые во время голода, при рождении оказались меньше и слабее; кроме того, в будущем у них чаще встречались такие недуги, как ожирение, диабет и даже шизофрения. Поскольку все дети происходили из единого генофонда, различия между ними, возможно, возникли благодаря эпигенетическому программированию. Нехватка пищи изменила химическую среду матки (окружающий мир для плода) и таким образом повлияла и на экспрессию отдельных генов. Даже шестьдесят лет спустя эпигеномы тех, кто голодал, находясь в материнской утробе, имели заметные различия, и у жертв других случаев большого голода – блокады Ленинграда, кризиса в самопровозглашенной республике Биафра (Нигерия), «Большого скачка» в маоистском Китае – наблюдались схожие долгосрочные эффекты.

Поскольку в Оверкаликсе голод случался часто, шведские ученые решили, что имеют возможность изучить более интересный вопрос: могут ли эпигенетические эффекты сохраняться через несколько поколений? Короли Швеции издавна требовали от каждого прихода фиксировать данные об урожае (чтобы убедиться в том, что вассалы верны своему королю и ничего от него не утаивают), так что сельскохозяйственные данные Оверкаликса начали сохраняться задолго до 1800 года. Ученые смогли сопоставить эти данные с информацией о рождаемости, смертности и состоянии здоровья прихожан, которые тщательно велись местной лютеранской церковью. Преимуществом стало еще и то, что в Оверкаликсе был чрезвычайно малый приток и отток генетического материала. Суровые морозы и броский местный акцент послужили причиной того, что шведы и лопари из других местностей практически не приезжали в деревню, и из 320 жителей Оверкаликса, которых изучали специалисты, лишь 9 впоследствии переехали в более плодородные земли – таким образом биологи получили возможность следить за целыми семьями на протяжении многих лет.

Многое из того, что было открыто шведами – к примеру, связь между питанием матери и здоровьем будущего ребенка – имело практическое значение. Многое, но не все. В частности, они обнаружили явную связь между здоровьем будущего ребенка и рационом отца. Конечно, отцы не вынашивают детей, так что любые из подобных эффектов могут проскальзывать лишь вместе со сперматозоидами. Что еще более странно, здоровье ребенка улучшалось лишь в тех случаях, когда отец тоже сталкивался с проблемой голода. Дети отцов-чревоугодников жили меньше и болели чаще.

Влияние отцов оказалось настолько явным, что ученые смогли проследить его и дальше, к отцу отца. К примеру, если дедушка Харальд голодал, это положительно влияло на здоровье его маленького внука Олафа. И эти эффекты были совсем не умозрительными. Если дедушка Харальд был обжорой, у внука Олафа вчетверо увеличивался риск заболеть диабетом. Если дедушка был вынужден затягивать пояс, внук жил (с корректировкой на социальное неравенство) в среднем на тридцать лет дольше. Примечательно, что голодание или обжорство оказывало гораздо более сильный эффект на внуков, чем на самих дедов, и дедушки, которые голодали, объедались и ели в меру, жили примерно одинаково – около 70 лет.

Влияние отца/деда не имеет никакого генетического смысла: голод не может изменить последовательность ДНК у родителя или ребенка, установленную при рождении. Однако окружающая среда тоже не является главной причиной изменений. Голодавшие мужчины женились и производили на свет потомство в самые разные годы, соответственно, их дети и внуки жили в различных десятилетиях, как урожайных, так и трудных, – но все они извлекли пользу из того, что их отцы или деды голодали.

Однако влияние окружающей среды может иметь эпигенетическое значение. Опять-таки пища, богатая метильными и ацетиловыми группами, может включать и выключать гены – значит, голодание и чревоугодие могут маскировать и демаскировать ДНК, которая отвечает за метаболизм. Что касается того, каким образом эпигенетические «выключатели» сумели просочиться между поколениями, ученые сумели найти разгадку, изучая сроки голодания. Голодание в период полового созревания, в младенчестве, в половозрелом возрасте не имело никакого значение для здоровья детей и внуков голодающего. Имеет значение лишь то, объедался человек или голодал в период «постепенного роста», в промежутке с 9 до 12 лет, сразу перед половым созреванием. В этот период в мужском организме начинает выделяться группа клеток, которые потом становятся сперматозоидами. Соответственно, если период постепенного роста связан с чревоугодием или голоданием, пре-сперматозоиды могут запечатлеть необычные метильные или ацетиловые паттерны – те, которые будут запечатлены в настоящих сперматозоидах, когда придет время.

Ученые до сих пор исследуют на молекулярном уровне то, что произошло в Оверкаликсе. Но некоторые другие исследования «мягкого наследования» поддерживают идею, что эпигенетика сперматозоидов закладывает глубокие наследуемые признаки… Мужчины, начавшие курить в 11 лет и раньше, имеют более низкорослых детей (особенно сыновей), чем мужчины, закурившие в более позднем возрасте, даже если курильщики из начальной школы быстро бросили свою привычку. Точно так же сотни миллионов азиатов и африканцев, жующих орехи бетеля – стимулятор примерно такой же силы, как капучино, – в два раза сильнее рискуют, что станут отцами детей с сердечной недостаточностью и нарушением обмена веществ. И хотя нейробиологи не всегда могут найти анатомические различия между мозгом здорового и душевнобольного человека, они могут отыскать различные метильные последовательности в мозге – и в сперматозоидах – страдающего шизофренией или маниакально-депрессивным синдромом. Это заставило ученых пересмотреть свои предположения о том, что зигота тщательно избавляется от всех изъянов, которые сперматозоид и яйцеклетка приносят из внешней среды. Это значит, что биологические недостатки отцов могут передаться их детям, а также детям их детей (точно как в родословной ветхозаветных патриархов).

Первенство сперматозоидов в определении долгосрочных последствий для здоровья ребенка – это, пожалуй, наиболее странный момент во всем механизме «мягкого» наследования. Народные приметы предостерегают, что любые впечатления матери – например, встреча с одноруким человеком – могут нанести сильнейший вред ребенку; современная наука, в свою очередь, добавляет, что роль отца в генетике ребенка еще важнее. Вместе с тем, эти специфические родительские эффекты не стали совсем уж неожиданными, науке уже было известно, что материнская и отцовская ДНК передается детям не вполне одинаково. Если самцы львов покрывают самок тигров, у тех рождается лигр – 3,5 метровая кошка, по весу вдвое превосходящая среднего «царя зверей». Но если тигр-самец оплодотворит львицу, получившийся в итоге тигролев будет далеко не таким здоровенным. Подобные расхождения наблюдаются и у других млекопитающих, а это значит, что попытки Ильи Иванова оплодотворить самок шимпанзе и человеческих женщин были совсем не симметричны друг другу, как он надеялся. Иногда отцовская и материнская ДНК даже вступают в конфликт за контроль над плодом. Это, к примеру, происходит в случае с геном IGF.

В данном случае расшифровка названия гена помогает определить его обязанности: IGF обозначает insulin-like growth factor (инсулиноподобный фактор роста), он заставляет ребенка в утробе вырастать до определенных размеров быстрее, чем это подразумевает нормальное развитие. Но в то время как отец хочет, чтобы оба гена IGF работали вовсю, чтобы получился большой крепкий ребенок, который быстро вырастет и начнет передавать свои гены, мать стремится успокоить эти гены, чтобы первенец не повредил ее внутренние органы или вовсе не убил ее при родах, перед тем как она успеет произвести на свет других детей. В итоге получается примерно такая же борьба, как в доме престарелых за грелку: сперматозоид стремится «пристегнуть» ген IGF в нужное место, в то время как яйцеклетка хочет от него избавиться.

Сотни прочих «запечатленных» генов в нашем организме включены или выключены в зависимости от того, кто из родителей передал их нам. Сорок процентов генов из генома Крейга Вентера имели материнские/отцовские различия. Удаление одинаковых участков спирали ДНК, которые могут привести к различным заболеваниям, зависит от того, отцовская или материнская хромосома является неполноценной. Некоторые запечатленные гены даже могут переключаться со временем: у мышей (возможно, как и у людей) материнские гены осуществляют контроль деятельности мозга в детстве, а затем эта задача переходит к отцовским генам. Фактически мы, пожалуй, неспособны выжить без правильного «эпигендерного» импринтинга. Ученые легко могут сконструировать эмбрион мыши с двумя наборами мужских или двумя наборами женских хромосом. При современном уровне развития генетики это не такое уж сложное дело. Но эти «двугендерные» эмбрионы погибнут еще в утробе. Когда ученые добавили несколько клеток организмов противоположного пола, чтобы помочь эмбрионам выжить, самцы стали огромными и пухлыми, как младенцы на картинах Ботеро (спасибо гену IGF), но имели ничтожно малый мозг. У самок же было субтильное тело, но нестандартно большой мозг. Соответственно, разбежки вроде разницы в размере мозга Эйнштейна и Кювье стоит рассматривать только как причуды родословных их родителей: подобным образом распространяется и склонность мужчин к облысению.

Так называемые эффекты родительского происхождения также возродили интерес к одной из самых вопиющих научных фальсификаций, когда-либо совершенных. Учитывая непрочность такой дисциплины, как эпигенетика – в течение последних 20 лет специалисты еще только начали разбираться в ее тонкостях – можно представить, что специалист, который когда-то давным-давно пробирался через все премудрости паттернов, должен бороться за интерпретацию своих результатов, не говоря уже о том, чтобы соглашаться с мнением коллег. И австрийский биолог Пауль Каммерер боролся – за науку, любовь, политику и много за что еще. Однако некоторые современные эпигенетики видят его историю, как, возможно, лишь горькое напоминание о том, как опасно совершать открытия, опережая свое время.

* * *

Амбиции Пауля Каммерера по поводу переделывания природы были не меньше, чем у алхимика, а способности мучить мелких животных – не меньше, чем у подростка. Каммерер утверждал, что может изменить окраску саламандр, даже раскрасить их в горошек или в полосочку, просто окружив их ландшафтом необычного цвета. Он заставлял любящих солнце богомолов принимать пищу в темноте и ампутировал у асцидий хоботки, просто чтобы посмотреть, как это скажется на их потомстве. Он даже утверждал, что может выращивать амфибий с глазами или без, в зависимости от того, сколько солнечного света они получали, будучи головастиками.

Триумфом – и фиаско – для Каммерера стала серия опытов с одной из самых необычных амфибий – жабой-повитухой. Большинство видов жаб спариваются в воде, отпуская оплодотворенную икру в свободное плавание. Жабы-повитухи занимаются любовью на суше, и, поскольку икра на суше гораздо более уязвима, самец наматывает гроздь икринок на свои задние ноги, как гроздь винограда, и таскает их с собой, пока не вылупится потомство. Не отступая от своих чудных привычек, Каммерер в 1903 году решил заставлять жаб-повитух размножаться в воде, увеличивая температуру в террариуме. Тактика сработала: жабы становились сморщенными, как сушеные абрикосы, если не проводили все время в воде, и те, кто выживал, с каждым поколением становились все более любящими воду. У них удлинялись жабры, вырабатывалось слизкое желеобразное покрытие, защищающее икринки от воды, а также (запомните это) развивались «брачные мозоли» – черные шершавые наросты на передних конечностях, помогающие самцу захватывать своих скользких партнерш во время совокупления в воде. Что самое интересное, когда Каммерер возвращал несчастных амфибий в более прохладные и сухие помещения и позволял им спариваться, то их потомки (которым никогда не приходилось жить в условиях пустыни) якобы наследовали признаки водяных животных и передавали их дальше, своим потомкам.

Каммерер объявил о результатах своих опытов к 1910 году. В течение следующих десяти лет он использовал эти и другие опыты (казалось, что у него не было ни одной неудачи), чтобы доказать, что в надлежащих условиях животных можно изменять как угодно. Подобные мысли в то время имели глубокий марксистский подтекст, так как марксисты считали, что единственная причина, по которой нищенские народные массы находятся на самом дне социальной лестницы, это их ужасное окружение. Как убежденный социалист, Каммерер с легкостью спроецировал свои доказательства и на человеческое общество: по его мнению, воспитание и природное окружение были понятиями одного порядка.

Пауль Каммерер, австрийский биолог-мученик, совершивший одну из самых грандиозных афер в истории науки, может считаться невольным первопроходцем в эпигенетике (фото использовано с разрешения Библиотеки Конгресса)

В биологической науке наблюдалась полнейшая неразбериха – дарвинизм считался спорным учением, ламаркизм был практически мертв, законы Менделя еще не восторжествовали, а Каммерер при этом обещал, что может объединить Дарвина, Ламарка и Менделя! К примеру, он проповедовал, что подходящая окружающая среда действительно может пробудить благоприятные гены к существованию. И люди на полном серьезе проглатывали его теории: книги Каммерера становились бестселлерами, он ездил по всему миру с лекциями, которые собирали аншлаги. В этих «ток-шоу» Каммерер, в частности предлагал «лечить» гомосексуалистов с помощью пересадки яичек, а также принять по всему миру сухой закон, аналогичный американскому, так как сухой закон неизбежно должен превратить следующие поколения американцев в сверхлюдей, без малейшей тяги к спиртному.

К сожалению, чем более известным становился Каммерер (вскоре он провозгласил себя «вторым Дарвином»), тем более шатким выглядело его учение. Самым подозрительным было то, что Каммерер в своих отчетах об экспериментах с амфибиями умалчивал о важных деталях. Учитывая его идеологическое позерство, многие биологи – и в особенности Уильям Бэтсон, «бульдог Менделя» в Европе – думали, что Каммерер нагло лжет.

Безжалостный Бэтсон никогда не упускал случая покритиковать своих коллег. Во время упадка дарвинизма в начале XX века он вступил в особенно злобную перепалку со своим бывшим наставником Уолтером Уэлдоном, защитником теории Дарвина. По отношению к Уэлдону Бэтсон повел себя как Эдип: сначала с его помощью влился в научную среду и нашел деньги на свои опыты, а потом прекратил с ним общаться. Дело было настолько плохо, что после смерти Уэлдона в 1906 году его вдова заявила, что виновником гибели мужа стал ненавидевший его Бэтсон – несмотря на то, что Уэлдон умер от сердечного приступа во время езды на велосипеде. Тем временем союзник Уэлдона Карл Пирсон препятствовал появлению статей Бэтсона в печати, а также нещадно нападал на него в своем журнале «Биометрика». Когда Пирсон перестал отвечать на письма Бэтсона, тот напечатал фальшивый тираж «Биометрики» с поддельными подписями, вставил туда свой ответ и распространил журналы по библиотекам и университетам, без какого-либо указания на подделку. В то время по этому поводу был составлен лимерик:

Знаменитый биолог Карл Пирсон На коллегу нешуточно злился. Бэтсона и компанию На три буквы и далее Посылал биометрик Карл Пирсон.

Бэтсон потребовал возможности проверить жаб Каммерера. Тот проигнорировал его просьбу, отказавшись доставить вещественные доказательства, и критики, не впечатленные оправданиями Каммерера, продолжали нападать на австрийца. Первая мировая война на время прервала дискуссию, так как в военные годы лаборатория Каммерера была разрушена, а все животные погибли. Но, как было отмечено в одной статье, «Первая мировая не смогла полностью уничтожить Австрию и Каммерера вместе с ней, но после войны приехал Бэтсон и завершил это дело». Находясь под постоянным давлением, Каммерер наконец, в 1926 году, позволил американскому соратнику Бэтсона осмотреть единственную жабу-повитуху, которая у него сохранилась. Этот биолог, американский специалист по рептилиям Глэдвин Кингсли Ноубл, написал в журнал Nature, что жаба выглядела абсолютно нормальной, за исключением одного – отсутствия брачных мозолей. Тем не менее под кожу жабы были шприцом введены чернила, чтобы имитировать эти мозоли. Ноубл не использовал слова «фальсификация», но в этом и не было нужды.

Биологическое сообщество взорвалось. Каммерер отрицал какую-либо вину, ссылаясь на саботаж неназванных политических противников. Но ропот со стороны других ученых только нарастал, что привело Каммерера в отчаяние. Незадолго до публикации злополучной статьи в журнале Nature ему предложили работу в СССР – стране, где его неоламаркианская теория была в почете. Шесть недель спустя Каммерер написал в Москву, что он не может с чистой совестью согласиться на эту работу, так как его плохая репутация способна повредить великому Советскому Союзу.

Далее это отказное письмо принимает трагический оборот. Каммерер пишет: «Надеюсь, я смогу собрать в кулак всю свою силу и мужество, чтобы завтра же положить конец моей разрушенной жизни». Он выстрелил себе в голову 23 сентября 1926 года в скалистой сельской местности в окрестностях Вены. Казалось, Каммерер чистосердечно признал свою вину.

Вместе с тем у Каммерера всегда были защитники, и некоторые историки выстраивают достаточно убедительные доказательства его невиновности. Эти эксперты верят, что брачные мозоли действительно появлялись, и Каммерер (или не в меру усердный ассистент) вводили жабам чернила только для того, чтобы «подчеркнуть» доказательства. Другие верят, что провал Каммерера подстроили политические оппоненты. Местная национал-социалистическая партия (предшественник – Национал-социалистическая немецкая рабочая партия – НСНРП), возможно, хотела очернить ученого с еврейскими корнями, потому что его теории заставляли сомневаться во врожденном генетическом превосходстве арийской расы. Кроме того, суицид не обязательно мог произойти из-за разоблачительной статьи Ноубла. У Каммерера постоянно были финансовые проблемы, и он совсем потерял голову из-за Альмы Малер-Верфель. Верфель некоторое время работала у Каммерера неоплачиваемой лаборанткой, но она более известна как роковая женщина, бывшая жена композитора Густава Малера. У нее была интрижка с чудаковатым «ботаником» Каммерером, и хотя он был всего лишь одним из многих ее любовников, он стал просто одержим ею. Однажды он угрожал размозжить себе голову о надгробную плиту Малера, если Анна не выйдет за него замуж. Она лишь посмеялась.

Кроме того, любой обвинитель Каммерера с легкостью может указать на неудобные для того факты. Во-первых, даже такой далекий от науки человек, как Альма Малер-Верфель, светская львица и композитор-любитель, писавшая легкомысленные песенки, вспоминала, что Каммерер, трудясь в лаборатории, был весьма неряшлив, вел записи ужасно небрежно и постоянно (хоть и, как она утверждала, несознательно) игнорировал результаты, которые расходились с его любимой теорией. Более того, научные журналы откопали доказательства того, что Каммерер и раньше прибегал к жульничеству. Его назвали «отцом манипуляций с фотографиями».

Вне зависимости от мотивов, самоубийство Каммерера окончательно обесчестило ламаркизм, так как стало ассоциироваться именно с ним, – ведь делом Каммерера решили заняться нечистоплотные советские политические деятели. Сначала там решили снять пропагандистсткий фильм в защиту чести Каммерера. Фильм «Саламандра» рассказывал историю героя, подобного Каммереру: профессора Занге, которого погубили происки реакционно настроенного священника (намек на Менделя?) Священник и его сообщник ночью проникают в лабораторию профессора Занге и вводят чернила под кожу саламандры; назавтра Занге оказывается унижен, когда во время демонстрации саламандры коллегам чернила протекают и загрязняют воду в ванночке. Потеряв работу, Занге заканчивает тем, что просит милостыню на улице (в компании с обезьянкой, сбежавшей из лабораторных застенков). Но в тот самый момент, когда Занге решает покончить с собой, его спасает женщина, забирая с собой в советский рай. Как бы смешно это ни звучало, но будущий сельскохозяйственный божок Советского Союза Трофим Лысенко поверил этому мифу: он посчитал Каммерера мучеником за социалистическую биологию и начал продвигать его теорию.

По крайней мере, отдельные ее положения. Когда Каммерер так кстати скончался, Лысенко обратил внимание лишь на его неоламаркианские идеи, которые больше подходили советской идеологии. Пылая ламаркианским энтузиазмом, Лысенко пробился к власти в 1930 году и начал ликвидировать генетиков, не поддерживавших идеи Ламарка (в том числе и протеже Бэтсона), казнив и замучив в лагерях десятки ученых. К сожалению, чем больше людей исчезало, тем больше советских биологов готовы были присягнуть извращенным идеям Лысенко. Британский специалист того времени упоминал, что разговаривать с Лысенко о генетике «было все равно что объяснять дифференциальное исчисление человеку, который не знает таблицы умножения». Он был мракобесом от биологии. Неудивительно, что деятельность Лысенко разрушила советское сельское хозяйство – миллионы умерли от голода – однако же там не собирались отказываться от идей Каммерера.

Хоть это и несправедливо, но ассоциация с Кремлем окончательно подорвала репутацию как самого Каммерера, но и ламаркизма, несмотря на то, что сторонники ученого и продолжали выступать в его защиту. Наиболее заметный случай состоялся в 1971 году, когда писатель Артур Кёстлер (что интересно, неоднократно высказывавшийся против коммунистов) написал документальную книгу «Дело жабы-повитухи», в которой оправдывал Каммерера. Среди прочего, Кёстлер раскопал где-то статью 1924 года об открытии дикой жабы-повитухи с брачными мозолями. Это далеко не обязательно оправдывает Каммерера, но намекает, что у этих жаб могут быть скрытые гены, отвечающие за появление брачных мозолей. Такие гены могли быть обнаружены во время опытов австрийца.

Также возможно, что дело в эпигенетике. Ученые отмечают, что, среди прочих эффектов, опыты Каммерера изменили толщину желатиновой оболочки, покрывающей яйца жабы-повитухи. Поскольку это желе богато метильными группами, изменение толщины слоя могло «включать» и «выключать» гены, включая и атавистичные, вроде гена брачных мозолей. Столь же любопытно то, что когда бы Каммерер ни скрещивал жаб, он отмечал, что у их потомства отцовские предпочтения по поводу спаривания на суше или в воде «бесспорно» доминировали над материнскими. Если отец любил спариваться «насухо», те же привычки были у его сыновей и внуков: если предпочитал совокупляться в воде, – то же самое демонстрировали и потомки. Подобные эффекты родительского происхождения играют важную роль в «мягком наследовании»: жабьи тенденции в этом плане перекликаются с историей жителей Оверкаликса.

Строго говоря, даже если Каммерер наткнулся исключительно на эпигенетические эффекты, он этого не понял – и, возможно, на самом деле (если вы, конечно, не верите в нацистский заговор) совершил фальсификацию, введя своим жабам чернила. Но в некотором смысле это даже добавляет Каммереру харизмы. Шум, пропаганда и скандалы вокруг его имени объясняют, почему многие специалисты даже во время хаотического упадка дарвинизма отказывались признавать теории мягкого наследования, подобные эпигенетической. Каммерер, возможно, был и жуликом, и невольным пионером в науке, и тем, кто готов лгать для большей правдоподобности своей идеи, – и тем, кто в конечном счете не солгал. В любом случае он столкнулся с теми же проблемами, с которыми генетики сражаются до сих пор – проблемами взаимодействия генов и окружающей среды, поиском ответа на вопрос, что из этого в итоге доминирует. Это действительно очень животрепещущий вопрос: как бы Каммерер отреагировал, если бы знал, к примеру, об Оверкаликсе. Он жил и работал как раз тогда, когда в шведской деревушке обнаружились некоторые трансгенерационные эффекты. Мошенничал Каммерер или нет, но если бы он увидел хотя бы какие-то следы своего любимого ламаркизма, то, возможно, не отчаялся бы до такой степени, чтобы свести счеты с жизнью.

* * *

В последние десять лет эпигенетика развивалась настолько быстро, что попытки систематизировать ее достижения выглядят практически неосуществимыми. Эпигенетические механизмы могут делать и совсем легкомысленные вещи (например, выращивать у мышей хвосты в горошек), и серьезные – даже толкать людей к самоубийству (как и в случае с самим Каммерером). Наркотики – кокаин, героин – могут сматывать и разматывать спираль ДНК, которая регулирует нейротрансмиттеры и нейростимулянты (что объясняет, почему наркотики доставляют удовольствие), но если постоянно их принимать, ДНК будет все время размотанной, что и приводит к зависимости. Восстановление ацетиловых групп в клетках мозга на самом деле привело к восстановлению забытой информации у мышей, и каждый день появляется еще больше выводов, показывающих, что опухолевые клетки могут управлять метильными группами, чтобы подавлять генетические регуляторы, которые обычно препятствуют их росту. Некоторые надеются, что когда-нибудь нам удастся решить даже проблему эпигенетики неандертальцев.

Соответственно, если вы хотите разозлить биолога, начните разглагольствовать о том, как эпигенетика перепишет теорию эволюции или поможет нам освободиться от своих генов, сковывающих нас, как кандалы. Эпигенетика может внести изменения в наши представления о функциях генов, но не может совсем отвергнуть их. И поскольку эпигенетические эффекты действительно присутствуют у людей, многие биологи подозревают, что такие явления «легко приходят, легко уходят»: метильные, ацетиловые группы и прочие механизмы могут просто испариться через несколько поколений, как изменяются триггеры окружающей среды. Мы просто еще не знаем, может ли эпигенетика насовсем изменить вид. Пожалуй, основополагающая последовательность А-Ц-Г-Т всегда остается незыблемой и напоминает гранитную стену, которая остается стоять, в то время как граффити в виде метильных и ацетильных групп постепенно выцветают.

Но на самом деле подобный пессимизм упускает из виду главное и все же дает надежду эпигенетике. Низкое генетическое разнообразие и ограниченное число человеческих генов видится невозможным для объяснения всей нашей сложности и многосторонности. Возможны миллионы и миллионы различных комбинаций эпигенов. И даже если мягкое наследование улетучивается, к примеру, через пять-шесть поколений, каждый из нас живет на свете только в течение двух-трех поколений – и на этой шкале времени эпигенетика делает огромную разницу. Гораздо легче переписать эпигенетическое «программное обеспечение», чем заменить свои гены полностью, и даже если мягкое наследование не приведет к настоящей генетической эволюции, оно позволит нам адаптироваться к стремительно меняющемуся миру. В самом деле, новые знания, получаемые благодаря эпигенетике – сведения о раке, клонировании, генной инженерии – помогут нашему миру меняться еще быстрее.

 

Глава 16. Жизнь, какой мы (не)знаем ее

Что, черт возьми, сейчас происходит?

В конце 1950-х Пол Доти, биохимик, специализирующийся на ДНК (член клуба галстуков РНК), прогуливался по Нью-Йорку, думая о своем, когда увидел уличного торговца сувенирами и в недоумении остановился. На лотке у торговца были значки, и среди банальных надписей Доти увидел значок с буквами ДНК. Мало кто в мире знал о ДНК больше, чем Доти, но он предполагал, что публика знает о его работе совсем мало, а интересуется этим еще меньше. Предполагая, что аббревиатура значит что-то другое, Доти спросил продавца, что такое ДНК. Тот осмотрел великого ученого с головы до ног. «Чуваак, врубайся! – рявкнул он с нью-йоркским акцентом. – Это же ген!»

Перенесемся на четыре десятилетия вперед, в лето 1999 года. Знания о ДНК росли как на дрожжах, и законодательные органы штата Пенсильвания, взволнованные надвигающейся «революцией ДНК», спросили у эксперта по биоэтике, члена компании Celera Артура Каплана совета по поводу того, как депутаты могут контролировать генетику. Каплан согласился, но дело с самого начала пошло неудачно. Чтобы оценить свою аудиторию, он начал лекцию с вопросов: «Где ваши гены? Где конкретно в организме они находятся?» Лучшие умы Пенсильвании этого не знали. Без всякого стыда и иронии четверть присутствовавших ассоциировала свои гены с половыми железами. Еще 25 % самонадеянно предположили, что гены размещены в мозгу. Остальные где-то видели изображения спиралей, но были не вполне в курсе, что это значит. В конце 1950-х термин ДНК был частью духа времени, и спираль вполне органично смотрелась на значке уличного торговца. С тех пор общественное мнение никак не продвинулось. Из этого невежества Каплан сделал вывод: «Просить политиков устанавливать правила и ограничения в генетике очень опасно». Конечно, отсутствие толковых знаний о генах и ДНК не позволяет иметь твердое мнение о подобных технологиях.

Это не должно удивлять. Генетика очаровывает людей практически с тех пор, как Мендель вырастил свой первый гороховый куст. Но это очарование подтачивает червячок недоумения и отвращения, и будущее генетики зависит от того, сможем ли мы преодолеть эту амбивалентность, сможем ли видеть не только черное и белое. Пожалуй, наиболее гипнотизирует/пугает нас генная инженерия (в том числе клонирование) и попытки объяснить весь сложный человеческий внутренний мир терминами «чистых» генов – эти идеи часто остаются непонятыми.

Строго говоря, люди начали генетически изменять растения и животных еще десять тысяч лет назад, с появлением сельского хозяйства. Но настоящая генная инженерия взяла старт в 1960-х годах. Ученые в большинстве своем начинали с того, что обмакивали яйца дрозофил в слизь из ДНК, надеясь, что пористые яйца что-то поглотят. Удивительно, но эти топорные эксперименты срабатывали: крылья и глаза мух изменяли форму и цвет, и эти перемены передавались по наследству. Десятью годами позже, в 1974 году, один молекулярный биолог разработал инструментарий для склеивания ДНК различных видов воедино, чтобы формировать гибриды. Хотя эта Пандора в своих опытах ограничилась микробами, некоторые биологи, увидевшие эти химеры, забеспокоились – кто знает, что будет дальше? Они решили, что их коллеги торопят события, и призвали к мораторию на исследования по рекомбинации ДНК. Примечательно, что биологическое сообщество (включая специалиста-«Пандору») согласилось с этим решением и добровольно перестало проводить опыты, чтобы обсудить безопасность и правила поведения, – практически уникальное событие в истории науки. К 1975 году биологи решили, что узнали уже достаточно для того, чтобы продолжать эксперименты, но их благоразумие успокоило общественность.

На этом ажиотаж не закончился. В том же 1975 году специалист по муравьям, слегка страдающий дислексией, родившийся в евангелистской Алабаме и работавший в Гарварде, издал почти 2,5-килограммовую книгу из 697 страниц под названием «Социобиология». Эдвард О. Уилсон в течение десятилетий копался в грязи со своими любимыми муравьями, выясняя, как привести сложные, запутанные социальные взаимодействия рабочих муравьев, солдат и матки к простым законам поведения, даже точным математическим уравнениям. В «Социобиологии» амбициозный Уилсон распространил свою теорию на прочие классы, семейства и типы, поднимаясь по эволюционной лестнице ступенька за ступенькой – к рыбам, птицам, мелким млекопитающим, хищникам и приматам. Затем он через шимпанзе и горилл подходит к пресловутой 27-й части, называемой «Человек». В ней он предполагает, что биологи могут обосновать многие, если не все аспекты человеческого поведения – искусство, этику, религию, самые уродливые проявления агрессии, – с помощью ДНК. Это означало, что человеческие особи не были бесконечно податливы, а имели четкую, фиксированную природу. В работе Уилсона также предполагалось, что некоторые темпераментные и социальные различия (к примеру, между мужчинами и женщинами) могут иметь генетические корни.

Позже Уилсон признал, что был по-идиотски недальновидным, не предсказав все бури, громы, молнии, водовороты, нашествия саранчи и прочие катаклизмы, которые эта работа вызвала в академической среде. Естественно, коллеги Уилсона из Гарварда, в том числе и Стивен Джей Гулд, который в обществе был сама любезность, разнесли социобиологию в пух и прах за попытку логически обосновать расизм, сексизм, нищету, войну, нехватку яблочного пирога и все прочее, что вызывает ненависть у приличных людей. Ученые также напрямую связывали деятельность Уилсона с гнусной кампанией по евгенике и нацистскими погромами – и потом изображали изумление при виде взбесившихся пролетариев. В 1978 году Уилсон защищал свою работу на научной конференции, когда несколько недоумков-активистов ворвались на сцену. Уилсон, со сломанной лодыжкой сидевший в инвалидном кресле, не мог ни уворачиваться, ни сопротивляться. Молодчики вырвали у ученого микрофон, обвинили в «геноциде», а после вылили ледяную воду на голову Уилсона, крича: «Хватит заливать!»

К 1990-м годам благодаря распространению другими специалистами (как правило, в более мягкой форме) идея о том, что человеческое поведение имеет прочные генетические корни, уже не казалась шокирующей. Кроме того, сегодня мы считаем самим собой разумеющимся другой социобиологический принцип, гласящий, что наше мышление до сих пор подвергается влиянию со стороны ДНК, унаследованной от предков: охотников, падальщиков и собирателей. Но в то время, когда мерцал уголек социобиологии, учение из Шотландии от души подлили керосина, чтобы разжечь в обществе боязнь генетических опытов. В феврале 1997 года было объявлено о рождении, пожалуй, самого известного животного всех времен. Ученые передали ДНК взрослой овцы четыремстам овечьим яйцеклеткам, а затем по-франкенштейновски били их током: в результате удалось создать двадцать жизнеспособных эмбрионов – клонов взрослой особи-донора. Шесть дней клоны провели в пробирках, 145 – в утробе: в течение этого времени 19 беременностей из 20 оказались внезапно прерванными. Долли выжила.

Честно говоря, людей, таращившихся на маленького ягненка, в целом не волновала Долли сама по себе. Проект «Геном человека» наделал шуму, обещал ученым размножать человечество под копирку, и Долли подогревала опасения по поводу того, что ученые стремятся побыстрее клонировать кого-нибудь из них самих, причем без каких-либо запретов в обозримом будущем. Это, черт возьми, откровенно пугало большинство людей, хотя Артур Каплан прекрасно ответил одному из дозвонившихся до него энтузиастов, который хотел узнать о возможности клонировать Христа. Естественно, звонивший планировал взять ДНК с Туринской плащаницы. Каплан ответил: «Вы стараетесь вернуть к нам одного из немногих людей, которые сделают это и без вашей помощи!»

Долли, первое клонированное млекопитающее, проходит медосмотр (фото предоставлено Рослинским институтом, Эдинбургский университет)

Братья и сестры Долли приняли ее, ничуть не беспокоясь о происхождении овечки-клона. Не задумывались о нем и любившие Долли бараны: в течение своей жизни она (натуральным способом) родила шестерых ягнят, и все были здоровы. Но, несмотря на все это, люди испытывают почти инстинктивный страх к клонам. После Долли некоторые фантазеры высказывали «сенсационные» предположения о будущих армиях клонов, марширующих по иностранным столицам, или фермах, где будут выращиваться клоны для производства внутренних органов. Были и менее причудливые страхи: высказывались предположения о том, что клоны будут обременены различными болезнями или глубокими молекулярными дефектами. Клонирование взрослой ДНК требует включения «спящих» генов и побуждения клеток к тому, чтобы делиться, делиться и делиться. Звучит во многом похоже на рак, и клоны, кажется, и вправду склонны к появлению опухолей. Многие специалисты также заключали (хотя создатели Долли это оспаривали), что знаменитая овечка с рождения была старухой в генетическом плане, с необычно старыми, изношенными клетками. И в самом деле, ноги Долли необычайно рано одеревенели от артрита, а умерла она в возрасте шести лет (в среднем овцы ее породы живут вдвое дольше) после заражения вирусом, (как описано в работах Пейтона Роуса) принесшим ей рак легких. ДНК взрослой особи, которая использовалась для клонирования Долли, была, как и все ДНК, испещрена эпигенетическими изменениями, деформирована мутациями и кое-как залатанными пробелами. Эти недостатки, возможно, породили геном Долли еще до ее рождения.

Но если играть в бога, можно с тем же успехом попытаться сыграть и в адвоката дьявола. Предположим, что ученые преодолели все медицинские ограничения и начали производить абсолютно здоровых клонов. Многие люди до сих пор выступают против клонирования в принципе. Часть доказательств с их стороны, однако, опирается на понятные, но, к счастью, ложные представления о генетическом детерминизме, идее, что ДНК существенно влияет на биологию и личность человека. С каждым новым геномом, который удается секвенировать ученым, становится все более понятно, что гены определяют возможный, а не неизбежный ход событий. Это лишь генетическое влияние, и не более того. Не менее важные эпигенетические исследования показывают, что изменения окружающей среды способны повлиять на работу и взаимодействие генов, и точное клонирование кого-либо может потребовать сохранения всех эпигенетических тегов, возникающих от каждого пропущенного обеда и каждой выкуренной сигареты. Люди, как правило, забывают, что уже слишком поздно предотвращать появление человеческих клонов: они живут среди нас даже сейчас, и эти монстры называются… однояйцевые близнецы. Клон и его оригинал похожи друг на друга не больше, чем близнецы, со всеми их эпигенетическими различиями, и есть причина подозревать, что на самом деле близнецы даже более схожи.

Подумайте: греческие философы обсуждали проблему корабля, корпус и палубы которого постепенно гниют доска за доской – и в конце концов через пару десятков лет каждая доска, каждый кусок дерева заменен другим. Будет ли это тот же самый корабль? Почему да или почему нет? Любого человека тоже можно представить героем подобного парадокса. Атомы в теле до смерти успеют обновиться много-много раз, так что нельзя сказать, что у нас одно и то же тело на протяжении всей жизни. Тем не менее мы ощущаем себя тем же самым человеком. Почему? Потому что, в отличие от корабля, у каждого из нас есть память: поток мыслей и воспоминаний, который не иссякает. Если существует душа, то этот объем памяти ею и является. Однако у клона не будет тех же воспоминаний, что у его родителя, – ведь он вырастет на другой музыке, ему будут нравиться другие персонажи, его организм будет подвергаться воздействию другой еды и прочих химикатов, а его мозг – воздействию новых технологий. Сумма этих различий разграничит вкусы и наклонности клона и родителя и приведет к разграничению внутреннего мира и разделению душ. Клонирование, таким образом, не производит абсолютных двойников, а ограничивается лишь внешним сходством. ДНК определяет наше существование, но то, как будет очерчен круг наших возможностей – как мы будем выглядеть, какими болезнями болеть, как наш мозг станет переносить стрессы, искушения, неудачи, – зависит не только от ДНК.

Не стоит путать: я здесь не выступаю сторонником клонирования. Во всяком случае, эти доводы выступают против – ибо будет ли в этом смысл? Скорбящие родители могут пожелать клонировать своего умершего ребенка и тем самым облегчить муки, которые они испытывают каждый раз, проходя мимо пустой детской. Психологи могут захотеть клонировать Теда Качинского или Джима Джонса, чтобы узнать, как можно обезвредить социопата. Но если клонирование не оправдает их ожиданий – а оно, скорее всего, и не оправдает – то зачем оно нужно?

* * *

Клонирование не только накручивает людей, заставляя их думать обо всяких ужасах. Оно отвлекает от других споров о человеческой природе, которые могут раздуть – и раздувают – генетические исследования. Как бы нам ни хотелось закрыть глаза на эти раздоры, они никуда не исчезнут.

У сексуальной ориентации есть генетическое обоснование. Пчелы, мухи, жуки, крабы, рыбы, змеи, сцинки, жабы и всяческие млекопитающие (бизоны, львы, еноты, дельфины, медведи, обезьяны) ведут беспечную сексуальную жизнь, и их совокупление часто кажется запрограммированным. Ученые открыли, что блокировка одного-единственного гена у мыши – двусмысленно названного FucM — может превратить самок мыши в лесбиянок. Человеческая сексуальность более причудлива, однако мужчины-геи (которых изучали тщательнее, чем женщин-лесбиянок) имеют значительно больше геев-родственников, чем мужчины-гетеросексуалы, выросшие примерно в тех же условиях, и в данном случае гены кажутся существенным фактором, определяющим различия.

С точки зрения дарвинизма это парадокс. Быть геем – значит уменьшить вероятность рождения детей и передачи им каких-либо «гей-генов», но гомосексуальность сохраняется в каждом уголке земного шара на протяжении всей истории человечества, несмотря на частые жестокие преследования. Согласно одной теории, гены гомосексуальности, возможно, это просто гены мужелюбия, гены андрофилии, которые заставляют мужчин влюбляться в мужчин, – но и женщины, которые влюбляются в мужчин, вероятно находятся под действием тех же генов, которые тем самым повышают их репродуктивный успех. Возможен и обратный вариант – гены андрофилии. Или, возможно, гомосексуальность возникает в результате побочного эффекта других генетических взаимодействий? Многочисленные исследования обнаруживают более высокий процент левшей и амбидекстров среди мужчин-геев, а также у геев зачастую наблюдаются более длинные безымянные пальцы. Конечно, никто реально не верит в то, что сексуальная ориентация зависит от того, в какой руке человек держит вилку. Однако некоторые гены, вызывающие серьезные последствия, могут определять и эти черты, возможно, связанные с деятельностью мозга.

Подобное открытие можно назвать палкой о двух концах. Поиск генетических связей может признать, что гомосексуальная ориентация – это врожденное и внутреннее состояние, а не извращенный «выбор». Тем не менее люди уже беспокоятся по поводу возможности отбора и выделения потенциальных гомосексуалистов, с самого раннего возраста. Более того, эти результаты могут быть искажены. Один точный показатель гомосексуальности человека – это число старших биологических братьев; существование каждого из них увеличивает шансы на 20–30 %. Основное объяснение этому сейчас следующее: иммунная система матери создает все более сильную реакцию на каждую «чужую» Y-хромосому в своей утробе, и этот иммунный ответ как-то внедряет гомосексуальность в мозг эмбриона. Опять же, это может обосновать гомосексуализм с биологической точки зрения, но вы сможете увидеть, как наивный и озлобленный исследователь способен на словах исказить смысл этой иммунной связи и приравнять гомосексуальность к болезни, которая требует искоренения. Неутешительная картина.

Много неудобств генетикам доставляли и расы. С одной стороны, существование рас не имеет особого смысла. Люди менее разнообразны генетически, чем практически любой другой вид животных, однако их цвета кожи, пропорции, черты лица варьируются так же широко, как финалисты Вестминстерской выставки собак. Одна из расовых теорий доказывает, что изолированные друг от друга группы перволюдей, находившиеся на грани исчезновения, мало чем отличались друг от друга. Но когда эти люди ушли из Африки и начали скрещиваться с неандертальцами, «денисовскими людьми» и бог знает кем еще, различия стали более существенными. В любом случае, некоторые участки ДНК у представителей разных народов должны различаться. Так, супружеская пара австралийских аборигенов никогда не произведет на свет рыжеволосого веснушчатого Шеймуса, даже если они переедут в Ирландию и будут там спариваться до Страшного суда. Цвет кожи закодирован ДНК.

Камнем преткновения, очевидно, являются не косметические вариации тона кожи, а другие потенциальные различия. Брюс Лан, генетик из Чикагского университета, начал научную карьеру с систематизации палиндромов и инверсий в Y-хромосоме, но ближе к 2005 году он стал изучать такие гены человеческого мозга, как микроцефалин и Aspm, которые влияли на рост нейронов. Хотя у людей наблюдаются разные и многочисленные версии этого гена, одна из версий часто передается «генетическим автостопом» и, по-видимому, она невероятно быстро распространилась среди наших предков. Этот ген дал человеку существенные преимущества в выживании, и, основываясь на способностях гена к стимуляции роста нейронов, Лан сделал предположение, что эти гены принесли нам познавательный импульс. Весьма любопытно, что дающие толчок к развитию познания микроцефалин и Aspm начали распространяться соответственно 35 тысяч лет до нашей эры (появление первобытного искусства) и 4 тысячи лет до нашей эры (возникновение первых городов). По горячим следам Лан отследил распространение этого гена у представителей различных современных народов и выяснил, что «мозгостимулирующие» версии гена появлялись у представителей европеоидной и монголоидной расы в несколько раз чаще, чем у негроидов. Хм…

Другие специалисты назвали эти выводы спекулятивными, безответственными, расистскими и попросту ложными. Эти два гена проявляются и во многих местах за пределами головного мозга, так что они могли помочь древним европейцам и азиатам и другими способами. Эти гены предположительно помогают сперматозоидам вертеть хвостиками быстрее и могут оснастить иммунную систему новым оружием. Они также могут быть связаны с появлением абсолютного слуха, особенно в тональных языках типа китайского. Еще более убийственный довод «против» состоит в том, что по данным последующих исследований люди с этими генами показали в тестах на IQ не лучшие результаты, чем те, у кого они отсутствовали. Это практически убивает гипотезу мозгового импульса, и Лан – который, ко всему прочему, был еще и иммигрантом из Китая – вскоре признал: «С научной точки зрения я оказался слегка разочарован. Но в контексте социальных и политических противоречий мне немного полегчало».

Брюс Лан не был единственным в своем роде: расовый вопрос фактически разделил генетиков на два лагеря. Кто-то на все лады божился, что рас не существует. Это «биологически бессмысленно», утверждали такие люди, это чисто социальная концепция. Термин «раса» на самом деле является несколько некорректным, и большинство генетиков предпочитает употреблять эвфемизмы вроде «этническая группа» или «популяция», которые, по убеждению ученых, действительно существуют. Но даже когда некоторые генетики хотят ввести цензуру расследований «этнических групп» и умственных способностей как врожденного показателя – они хотят моратория. Другие остаются уверенными в том, что всякое толковое исследование должно доказывать равенство рас и поэтому позволяют им продолжать. Конечно, и чтение лекций о расах, и указание, что их не существует, может лишь усилить противоположные убеждения. Это как «не думать о белой обезьяне».

Тем временем некоторые считающие иначе – и очень благочестивые – ученые уверены, что «биологическая бессмыслица» – это ерунда. С одной стороны, некоторые этнические группы плохо реагируют по чисто биохимическим причинам на определенные препараты от гепатита С, сердечной недостаточности и прочих болезней. Представители других групп из-за весьма скромных жизненных условий на древней родине их предков в наше время продуктового изобилия стали более уязвимы к нарушениям обмена веществ. Одна противоречивая теория доказывает, что потомки людей, захваченных рабовладельцами в Африке, сейчас имеют высокие показатели гипертензии в том числе и потому, что их предки, выжившие в ужасных условиях путешествия на рабовладельческом судне, накапливали в своих организмах питательные вещества, в особенности соль. Некоторые этнические группы даже имеют повышенный иммунитет к ВИЧ, но каждая из них – по собственным биохимическим причинам. В этом и прочих случаях – болезнь Крона, диабет, рак легких – доктора и эпидемиологи, которые полностью отрицают расовые различия, могут принести вред своим пациентам.

На более глобальном уровне некоторые ученые доказывают, что расы существуют, потому что каждый народ, бесспорно, имеет различные версии некоторых генов. Если проверить хоть пару сотен участков чьей-либо ДНК, можно практически в 100 % случаев определить принадлежность этого человека к одной из широких родовых групп. Нравится вам это или нет, но эти группы в целом соответствуют традиционному человеческому представлению о расах – негроидная, монголоидная, европеоидная (как определил один антрополог, «поросячье-розовая») и т. д. На самом деле между этими этническими группами всегда есть промежуточные состояния, особенно на географических перекрестках вроде Индии, и это делает понятие расы бесполезным, слишком неточным для многих исследователей. Но то, к какой расе люди сами себя относят, позволяет довольно четко определить границы биологических групп. И поскольку нам неизвестно, какую работу выполняет каждый отдельный вариант каждого конкретного участка ДНК, некоторые особо склочные и упрямые ученые, изучающие расы / популяции / этнические группы / как-хотите-так-и-называйте и утверждают, что исследование потенциальных различий рас по интеллекту – это совершенно нормально, подвергаются цензуре со стороны обиженных коллег. Как и ожидалось, и те, кто признает расовые различия, и те, кто их отрицает, обвиняют противоположную сторону в том, что она позволяет политике вмешиваться в науку.

Кроме расы и сексуальной ориентации, генетики уже начинают вступать в дискуссии по поводу преступности, гендерных отношений, пристрастия к наркотикам, ожирения и всего прочего. Вероятно, в ближайшие 10–20 лет генетические факторы и подверженность им будут найдены практически для каждой внешней черты или особенности поведения человека, какую ни возьми. Но независимо от того, что генетики выяснят по поводу этих черт, мы, прежде чем сопоставить генетику с социальными проблемами, должны учитывать несколько важных принципов. Самое главное, вне зависимости от биологических обоснований конкретной черты спросить себя: неужели на самом деле имеет смысл обвинять и порицать кого-то, основываясь лишь на поведении нескольких микроскопических генов? Кроме того, помните, что большинство генетических предрасположенностей нашего поведения сформировалось в африканских саванах много тысяч, если не миллионов, лет назад. Так что эти предрасположенности, хоть и являются в каком-то смысле «естественными», сейчас вовсе не обязательно должны хорошо нам служить, ведь окружение человека с тех пор радикально изменилось. То, что случается в дикой природе, в любом случае является не очень хорошим ориентиром для принятия решений. Одна из самых грубых ошибок этической философии – это натуралистическое заблуждение, согласно которому природа отождествляется с чем-то «правильным» и для того, чтобы оправдать или извинить предрассудки, употребляются слово «естественный». Мы, люди, являемся гуманными существами в том числе и потому, что можем заглянуть за свою биологическую сущность.

В любом исследовании, которое затрагивает социальные вопросы, мы можем по крайней мере взять паузу и не обнародовать сенсационные заключения без достаточно полного доказательства. В течение последних пяти лет научные работники старались не покладая рук и секвенировали ДНК от большего и большего количества этнических групп по всему миру, чтобы максимально разнообразить состав того пула генов, который сегодня используется для исследований; вплоть до настоящего времени в нем содержатся преимущественно гены европеоидов. И некоторые ранние результаты, особенно полученные в результате проекта с говорящим названием «1000 геномов», показывают, что ученые, возможно, преувеличивают значение ДНК-изгибов – тех, что разожгли пламя идеи Лана об интеллектуальном различии рас.

К 2010 году генетики идентифицировали две тысячи вариантов человеческих генов, которые демонстрировали заслуживавшие внимания признаки; как правило, небольшое различие между этими генами служило признаком того, что имел место «генетический автостоп». И когда ученые определили, чем отличаются эти примечательные варианты от непримечательных, они отыскали случаи, в которых триплет ДНК мутировал и образовывал новую аминокислоту. Это имело смысл: новая аминокислота могла изменить состав белка, и если в результате этого изменения появлялось нечто более жизнеспособное, естественный отбор действительно мог внедрить новую форму в популяцию. Однако когда ученые исследовали прочие регионы, они находили те же знаки перемен в генах со «спящими» мутациями – мутациями, которые из-за избыточности в генетическом коде не сумели изменить аминокислоту. Естественный отбор не смог внедрить эти изменения, потому что мутация оказалась бы незаметной и не принесла бы организмам никакой пользы. Другими словами, многие видимые ДНК-изгибы могут оказаться ложными, искажающими прочие эволюционные процессы.

Это не значит, что ДНК-изгибов не существует; ученые до сих пор верят, что гены переносимости лактозы, структуры волоса и некоторых прочих черт (включающих, по иронии судьбы, и цвет кожи) могли внедриться в различные этнические группы в различных местах вместе с мигрантами, которые столкнулись с разным природным окружением за пределами Африки. Но это могло иметь место лишь в некоторых случаях. Большинство изменений в природе человека протекают медленно, и, возможно, ни одна из этнических групп не «вырывалась вперед» в генетическом тотализаторе, приобретая особенно успешные гены. Любые доказательства обратного – особенно учитывая, как часто якобы научные доводы об этнических группах рассыпались в прах, – должны быть тщательно обработаны. Поскольку, как говорит старая пословица: «Это не то, что мы не знаем, что вызывает неприятности, – это то, что мы знаем, что их не вызывает».

* * *

Приобретение новых знаний в области генетики требует не только достижений в понимании того, как работают гены, но и достижений в области вычислительной техники. Закон Мура для компьютеров – гласящий, что мощность микрочипов удваивается примерно каждые два года – соблюдается уже десятилетиями, что объясняет, почему современный электронный собачий ошейник мощнее, чем компьютеры, рассчитывавшие полеты «Аполлонов» на Луну. Но с 1990 года генетические технологии превзошли даже прогнозы Мура. Современный секвенатор ДНК может за 24 часа выдать больше данных, чем весь проект «Геном человека» за десять долгих лет, и технологии становились все удобнее, распространяясь по лабораториям и опытным станциям по всему миру. После убийства Усамы бен Ладена в 2011 году американские военные идентифицировали его – путем сравнения ДНК с образцами, взятыми у родственников – в течение пары часов, в середине океана, в глухую ночь. В то же самое время стоимость секвенирования целого генома устремилась вниз, как тело в свободном полете в вакууме, – от трех триллионов до десяти тысяч долларов, от одного доллара за основание, до примерно трех десятитысячных долей цента. Если в наше время ученые желают изучать отдельный ген, зачастую оказывается дешевле секвенировать целый геном вместо того, чтобы хлопотать над изолированием одного гена и секвенированием лишь части генома.

Конечно, ученым до сих пор приходится анализировать невообразимое количество А, Ц, Г и Т, которые они собирают. Будучи посрамлены результатами проекта «Геном человека», они понимают, что не могут лишь таращиться на поток рядов данных и ожидать озарения, в стиле фильма «Матрица». Им необходимо изучить, как клетки склеивают ДНК, и учесть эпигенетические «примечания», а это гораздо более сложный процесс. Им нужно изучить, как гены работают в группах, и как ДНК упаковывает их в трехмерную конструкцию внутри ядра. Столь же важно для них определить, как культура клеток, являющаяся побочным продуктом ДНК, в свою очередь, влияет на генетическую эволюцию. На самом деле некоторые ученые доказывают, что петля обратной связи между ДНК и культурой не просто повлияла, но и определила эволюцию человека в течение примерно 60 тысяч последних лет. Чтобы справиться со всеми этими задачами, необходимо задействовать очень мощную компьютерную технику. Крейг Вентер потребовал суперкомпьютер, но генетики будущего, возможно, обратят внимание на саму ДНК и исследовательские технологии, основанные на ее блестящих вычислительных мощностях.

Та сторона вещей, которая имеет отношение к программному обеспечению, так называемые генетические алгоритмы, могут помочь решить сложнейшие проблемы, поставив себе на службу силу эволюции. Если вкратце: генетические алгоритмы моделируются компьютерными командами, которые связываются программистами воедино, как индивидуальные «гены» вместе образуют цифровые «хромосомы». Программист может начать проверять примерно десяток программ. Он кодирует команды генов в двоичном коде и объединяет их в одну длинную последовательность, подобную хромосоме (0001010111011101010…). Затем начинается самое интересное. Программист запускает каждую программу, оценивает ее и подвергает лучшие программы «кроссоверу» – обмену цепочками нулей и единиц, подобно тому, как хромосомы обмениваются ДНК. Далее программист запускает эти гибридные программы и оценивает уже их. На этом этапе лучшие из программ снова подвергаются кроссоверу и обмениваются нулями и единицами. Процесс повторяется снова и снова, позволяя программам развиваться. Эпизодические мутации – обмены нулей на единицы или наоборот – приносят большее разнообразие. В конце концов, генетические алгоритмы объединяют лучшие «гены» из самых разных программ в одну, близкую к оптимальной. Даже если в начале иметь дело с самыми отсталыми программами, генетическая эволюция автоматически улучшит их, и они сфокусируются на лучших образцах.

Если говорить о компьютерах (приравнивая к ним и человеческий мозг), ДНК когда-нибудь может заменить или дополнить кремниевые транзисторы и физически выполнять расчеты. Можно вспомнить известную историю о том, как ДНК использовалось для решения классической проблемы коммивояжера. В этой головоломке, напомним, коммивояжер вынужден проехать, допустим, по восьми городам, разбросанным по всей карте. Он должен посетить каждый город лишь однажды, но, покинув один город, он не может прибыть в него еще раз, даже не может пересечь свой путь в любом другом месте. К несчастью, дороги между городами очень запутаны, так что определить правильный порядок посещения не так-то и легко.

Чтобы увидеть, как ДНК может решить эту задачу, приведем гипотетический пример. В первую очередь нужно взять два одноцепочечных набора фрагментов ДНК. Первый набор будет представлять собой восемь городов, которые нужно посетить, и его отрезки могут обозначаться случайными последовательностями А – Ц – Г – Т: например, Су-Фолс может быть А – Г – Ц – Т– А – Ц – А – Т, а Каламазу – Т – Ц – Г – А – Ц – А – А – Т. Для второго набора будем использовать карту. Каждая дорога между двумя городами получает свой фрагмент ДНК. Однако – и в этом суть – эти фрагменты мы будем распределять не случайным образом, а поступим умнее. Допустим, шоссе № 1 начинается в Су-Фолс и заканчивается в Каламазу. Если вы используете первую половину фрагмента дороги, меняя местами А с Т и Ц с Г в половине букв, которыми шифруется Су-Фолс, а во второй половине этого фрагмента проделаете ту же операцию со знаками, принадлежащими Каламазу, то шоссе № 1 свяжет два города:

После такого же кодирования каждой из оставшихся дорог и городов начинаются собственно расчеты. Смешиваем в пробирке все эти фрагменты ДНК, хорошенько встряхиваем – и, вуаля, получаем ответ. Так в пробирке отыщется более длинная цепочка ДНК, теперь уже двуспиральная, со всеми восемью городами на одной цепочке, в том порядке, в котором нужно посетить города, а на комплементарной цепи окажутся все дороги в правильном порядке.

Конечно, ответ будет записан в биологическом эквиваленте машинного кода (ГЦГАГАЦГТАЦГААТЦЦ…) и будет нуждаться в расшифровке. И в то время как пробирка содержит много копий правильного ответа, свободно плавающая ДНК неуправляема, а кроме нее в пробирке содержатся триллионы неправильных решений – решений, согласно которым придется возвращаться в города, или не посещать какой-либо из городов, или бесконечно кружиться между двумя городами. Кроме того, выделение правильного ответа, очистка «правильной» цепочки ДНК потребует целой недели монотонной работы в лаборатории. Конечно, до участия в шоу для эрудитов, например в «Своей Игре», ДНК-компьютеру далеко… Однако можно понять людей, получающих удовольствие от всей этой рутины. Один грамм ДНК вмещает содержимое триллиона компакт-дисков. Если бы наши ноутбуки вмещали такой объем информации, они бы были подобны старым добрым компьютерам-мастодонтам, в одиночку занимавшим огромные комнаты. К тому же эти «ДНК-транзисторы» могут одновременно осуществлять расчеты с гораздо более высокой скоростью, чем цепочки кремниевых транзисторов. Возможно, лучшие из всех «ДНК-транзисторы» могут собирать и копировать самих себя при минимальных затратах.

Если дезоксирибонуклеиновая кислота действительно может заменить кремний в компьютерах, генетики смогут эффективно использовать ДНК для изучения ее собственных привычек и истории. ДНК уже может распознавать самое себя: определять, как ее нити соединяются друг с другом. Соответственно, ДНК-компьютеры могут дать молекуле другой скромный уровень рефлексии и самосознания. ДНК-компьютеры могут даже помочь ДНК обновить саму себя и улучшить свою собственную функцию. (Это заставляет задуматься, что же первично…)

Но какие улучшения ДНК могут принести эти вычисления? Совершенно очевидно, что можно исправить многочисленные помехи и сбои, приводящие к всевозможным генетическим заболеваниям. Эта контролируемая эволюция сможет наконец-то позволить нам избежать беспощадных действий естественного отбора, который требует, чтобы большинство особей рождалось с какими-то генетическими отклонениями – просто чтобы меньшинство получило возможность поступательно развиваться. Мы сможем улучшить наше здоровье, сформировав ген, который будет переваривать кукурузный сироп с высоким содержанием фруктозы (современный ответ древнему гену мясоедения – АпоЕ). Более того, мы, возможно, будем в состоянии перепрограммировать свои прически и отпечатки пальцев. Если глобальное потепление станет распространяться все шире и шире, у человека может появиться потребность увеличить площадь поверхности тела для излучения тепла: раздутые тела сохраняют больше тепла (вот почему неандертальцы, жившие в Европе в ледниковый период, имели бочкообразные грудные клетки). Кроме того, некоторые мыслители предлагают корректировать ДНК не «настраивая» существующие гены, а устанавливая дополнения на лишнюю пару хромосом и внедряя эту пару в эмбрионы – своеобразный биологический «патч». Это может предотвратить скрещивание особей разных поколений, но может и привести нас снова в те времена, когда нормой считались 48 хромосом.

Эти изменения могут сделать ДНК жителей всего мира даже более похожей, чем сейчас. Если потрудиться с цветом волос, глаз и фигурами, можно добиться, что все мы, как и наша ДНК, будем выглядеть одинаково. Но если сравнить эту ситуацию с историческими закономерностями развития других технологий, все может пойти и по совсем другому пути: наша ДНК может стать столь же разнообразной, как и наши вкусы в одежде, музыке и еде. В этом смысле ДНК способна привести нас к полному постмодернизму, и само понятие стандартного генома человека может исчезнуть. Геномный «текст» может стать бесконечно переписываемым палимпсестом, и метафора ДНК как конкретного «сценария» по конкретной «книге жизни» станет уже не актуальной.

На самом деле далеко не факт, что это все реально может произойти за пределами нашего воображения. В отличие от книг и сценариев – творений человека – ДНК не имеет фиксированного, точного значения. Или, скорее, имеет значение, которым мы сами его наделяем. В этом смысле мы должны интерпретировать ДНК весьма аккуратно скорее не как прозаический текст, а как мудреное и пышное высказывание оракула.

Как и ученые, изучающие ДНК, древнегреческие паломники, задававшие вопросы дельфийскому оракулу, всегда узнавали о себе что-то мудрое, но редко слышали в ответ то, что предполагали узнать в первую очередь. Верховный правитель Крёз однажды спросил оракула, удастся ли ему победить другого правителя в битве. Оракул ответил: «Ты разрушишь великую империю». Крёз и разрушил – свою собственную. Этот же оракул сообщил Сократу, что «нет никого мудрее» него. Сократ усомнился в этом, и сомневался до тех пор, пока на самом деле не был признан величайшим мудрецом. Затем он понял, что в отличие от прочих мудрецов он по крайней мере признавал свое невежество и не обманывался «знанием» того, что он на самом деле не знает. В обоих случаях пророчество стало правдивым только по прошествии времени, когда люди собрали все факты и смогли расшифровать непонятные места. То же и с ДНК: она слишком часто говорит нам то, что мы хотим услышать, и любой драматург может поучиться у нее мастерству иронии.

В отличие от дельфийского, наш оракул вещает до сих пор. Начиная с крайне скромного старта, претерпевая неожиданные повороты и оказываясь на грани вымирания, наша ДНК (а также РНК и прочие – НК) смогли создать нас – существ, оказавшихся достаточно сообразительными, чтобы открыть и расшифровать ДНК внутри себя. Но сообразительных лишь в той степени, чтобы понять, насколько эта самая ДНК нас ограничивает. ДНК открыла нам целый клад историй о нашем прошлом, которые, казалось нам, потеряны навсегда, и наделила нас мозгами и любопытством, подходящими для того, чтобы раскапывать еще больше таких кладов на протяжении веков. И несмотря на всю амбивалентность и двусмысленность, чем больше мы узнаем, тем более желанной и соблазнительной становится перспектива изменить эту самую ДНК. Она наделила нас воображением, и мы сейчас можем представить, как освободимся от строгих цепей, которыми она охватывает нашу жизнь. Мы даже можем представить себе переделку нашего химического состава; мы можем представить переделку всей известной нам жизни. Эта молекула-оракул, кажется, обещает, что если мы продолжим стараться, продолжим исследовать, прощупывать и всячески возиться с нашим генетическим материалом, то привычная нам жизнь и вправду может прекратиться. И помимо собственной красоты генетики, отрезвляющих озарений и неожиданных смешных моментов, которые обеспечивает изучение ДНК, оно (и в том его привлекательность!) также обещает нам поведать все больше, больше и больше о нашей ДНК и наших генах, наших генах и нашей ДНК.