1
Наука о движении была самым тесным образом связана с космологией: и у Аристотеля, и у мыслителей Средневековья устройство космоса определяло взгляды на сущность, характер и причины движения. Поэтому, как мы увидим в дальнейшем, защита Галилеем коперниканской космологии обернулась становлением новой науки о движении, и в каждом этапе этого становления, помимо фундаментальных инноваций, нетрудно отметить характерные черты древней традиции.
Однако, прежде чем анализировать черты преемственности и новые представления, следует более детально рассмотреть, как понималось движение предшественниками Галилея.
Прежде всего отметим, что понятие движения мыслилось гораздо шире, чем изменение положения во времени и пространстве,— а именно так мы понимаем движение сегодня. Но в догалилеевские времена движение представляло более широкое понятие, сущность которого, по Аристотелю, составляла актуализация потенциальной возможности, и даже более того, переход от актуальности к потенции также представлял собой движение. Поэтому понятие движения использовалось в рамках любой формальной категории, где было возможно провести различие между актуальным и потенциальным {1, с. 22}. Согласно Аристотелю, существует четыре таких категории: субстанция, количество, качество и место. Тогда, вообще говоря, понятие движения должно включать: во-первых, возникновение и уничтожение субстанции (generatio и corruptio); во-вторых, увеличение и уменьшение количества, которое может включать увеличение или уменьшение материи (augmentatio и diminuitio), что может происходить только в живых организмах, а также увеличение и уменьшение объема при неизменном количестве материи, т. е. сгущение и разрежение (condensatio и rarefactio); в-третьих, изменение качества (alteratio), наиболее важным случаем которого является увеличение и уменьшение интенсивности (intensio и remissio), и, наконец, в-четвертых, изменение места, или местное движение (motus localis).
В дальнейшем Аристотель уточняет понятие движения, называя движением в строгом смысле слова такой переход от потенции к актуальности, и наоборот, который совершается не мгновенно, а длится во времени, проходя через последовательные стадии. Именно такое понимание движения было характерно для всего периода Средневековья и Возрождения. Черты такого понимания нетрудно обнаружить и в творчестве Галилея. В таком смысле возникновение и уничтожение являются не движением, а мутацией (mutatio) — процессом, который происходит мгновенно.
То, что для движения характерна последовательность, постепенность, является чрезвычайно важной и характерной чертой этого понятия, причем, как подчеркивает А. Майер, фундаментальная последовательность предыдущих и последующих состояний не отождествляется в принципе с течением времени {1, с. 23}. Аристотель и схоластики рассматривали время как нечто вторичное по отношению к движению и выводимое из него. Время «является мерой движения по отношению к предыдущему и последующему». Время делает явным элемент последовательности, присущий явлению движения. «Эта мысль,— продолжает Майер, столь чуждая современности, имела первостепенную важность для теории движения, развитой в период поздней схоластики» {1, с. 23}.
Таким образом, движение рассматривалось как непрерывное постадийное изменение одной из трех категорий — количества, качества и места; оставалось теперь выяснить, к какой из этих категорий принадлежит само движение. Иначе говоря, является ли движение особой отдельной категорией, или же оно принадлежит той же самой категории формы — количества, качества или места, в которой оно рассматривается. В дальнейшем для схоластики эта проблема приобрела характер дилеммы: является ли движение «текущей формой» (forma fluens) или же «течением формы» (fluxus formae)? Такая постановка вопроса принадлежит Альберту Великому, который пришел к ней, анализируя сочинения Аверроэса. После Альберта почти повсеместным было мнение, что движение представляет собой forma fluens, т. е. движение и его результат с онтологической точки зрения идентичны. Но наиболее важным в разработке понятия движения в это время было возникновение подхода, пытавшегося рассмотреть движение и с точки зрения forma fluens, и с точки зрения fluxus formae.
В ходе таких попыток наиболее интересны исследования Жана Буридана и его последователей (особенно Альберта Саксонского), которые выделили местное движение из всех других видов движения, и с этого времени местное движение стало объектом углубленного анализа. Буридан и его последователи стали на ту точку зрения, что изменение места не является аналогичный изменению качества или количества, что по отношению к месту невозможно говорить о стремлении формы к «совершенству» (а это было одной из характерных черт представления о движении как о forma fluens). Здесь, однако, имеется одна интересная параллель. Когда говорили, например, об изменении (движении) качества, предполагали, что зародыш «совершенства» уже изначально присущ движущемуся объекту, который в конце движения и в результате его достигает этого «совершенства». Но в случае местного движения это не так, ибо, согласно Буридану, поскольку движение присуще движущемуся объекту, а не месту, куда объект попадает в результате движения, невозможно говорить об идентичности конечного результата движения и движения как такового. Тем не менее для случая местного движения можно предположить, что по аналогии с другими видами движения движущийся объект также содержит в себе нечто внутренне ему присущее. Дальнейшее развитие этого представления сыграло важную роль в создании теории импетуса.
С другой стороны, отождествление движения с качествами, внутренне присущими телу, создавало возможность для анализа скорости как интенсивности движения в рамках теории качеств.
Основные результаты в разработке этих проблем принадлежат ученым двух знаменитых университетских школ — Парижской и Оксфордской, которые достигли своего расцвета в XIV в. Среди оксфордцев наиболее замечательной фигурой был Томас Брадвардин (1290—1349), который знаменит своими попытками определить количественную зависимость скорости от величины движущей силы и сопротивления с помощью своеобразной словесной алгебры. Последователи Брадвардина, в первую очередь его непосредственные ученики — Ричард Киллингтон, Ричард Суиссет (Суайнсхед), Уильям Хейтесбери и Джон Дамблтон, создали вместе с ним научное направление, которое получило название «калькуляторства» — по названию основного трактата Суиссета «Калькулятор», написанного во второй четверти XIV в. Калькуляторы не только достигли определенных успехов в анализе понятия скорости, рассматриваемой как интенсивность движения, но и создали предпосылки для математического описания функциональных зависимостей. Метод словесной алгебры, используемый калькуляторами, представлял, однако, значительную трудность для понимания. Более наглядное выражение тот же подход нашел в работах Никола Орема (1323—1382), выдающегося представителя Парижской школы, предложившего метод геометрического описания процессов, связанных с изменением интенсивностей качества.
Другая проблема, о которой говорилось выше, а именно представление, что движение определяется внутренним свойством, присущим самому телу, получила развитие в теории импетуса, разработанной в трудах Жана Буридана (1300—1358), который являлся основателем Парижской школы и учителем Орема.
Усилиями ученых Оксфордской и Парижской школ была создана механика, во многом являющаяся уникальной, отличающаяся в равной мере и от представлений античности, и от классической механики, созданной впоследствии Галилеем и Ньютоном. Рассмотрим ее некоторые характерные положения.
Прежде чем перейти к закону Брадвардина, заметим, что, согласно точке зрения Аристотеля, целиком принятой в схоластике, для объяснения явлений, происходящих в мире природы, особо важную роль играла так называемая эффективная причина, т. е. реально действующий физический агент. «Схоластическая теория природы была целиком основана на эффективной причинности, так же как это имеет место в современной физике. Натурфилософы XIV столетия, безусловно, принимали универсальную обоснованность принципа причинности: все, что существует, и все, что случается, имеет достаточное основание в реальности, т. е. эффективную причину» {1, с. 42}. А поскольку все должно иметь эффективную причину, то такую причину должно иметь и движение. Одним из основных принципов схоластической натурфилософии было поэтому правило: «Все, что движется, движется посредством чего-то» (omne quod movetur ab alio movetur). Это «что-то», тот самый активный принцип, который дает возможность одному телу двигать другое, называется движущей силой. Хотя мы используем здесь термин «сила» для обозначения понятий средневековой физики, следует иметь в виду, что его смысл только весьма приблизительно отражается этим современным термином. Движущая сила такова, что она является причиной движения, и в том случае, если она постоянна, вызываемое ею движение будет равномерным. Большая сила движет данное тело быстрее при прочих равных условиях, а в отсутствие действия силы движение прекращается.
Так как аристотелевская и средневековая физика отвергала для земных процессов существование сил, действующих на расстоянии, необходимо, чтобы движитель был способен передавать свою силу двигаемому телу непосредственно, т. е. находясь с ним в контакте. Такое представление казалось удовлетворительным для объяснения большинства движений, с которым человек сталкивался в своем повседневном опыте. Однако существуют два вида движения, объяснение которых немедленно сталкивается с трудностями, в процессе преодоления которых и формировалась средневековая механика, как, впрочем, и механика нового времени.
Этими видами движения являются свободное падение тел и полет снаряда. Поскольку и в том и в другом случае движение совершается в отсутствие видимого контакта между телом и каким-либо движителем, решение проблемы неизбежно предполагало усложнение и усовершенствование теории.
В аристотелевской физике падение тел объяснялось стремлением тел к естественному месту, т. е. к центру мира, или к центру Земли, поскольку именно там он помещался. Однако стремление тела к своему естественному месту рассматривалось как конечная причина падения, а натурфилософы-схоластики были заинтересованы в том, чтобы определить эффективную причину, которая соответствует этой конечной, т. е. найти движущую силу, вызывающую это естественное движение к центру мира и поддерживающую его в течение всего пути. Ответ на этот вопрос может показаться неудовлетворительным для современного читателя, но в Средневековье его считали вполне приемлемым: движение падающего тела поддерживается непосредственным движителем (motor proximus), который является субстанциальной формой тяжелого объекта и вызывает движение посредством качества тяжести (поскольку субстанциальная форма не может оказывать действие на тело непосредственно). В защиту средневековых мыслителей добавим, что современное объяснение падения — «тело падает потому, что находится в поле тяготения»,—тоже может показаться неубедительным непредвзятому критику, свободному от привычного взгляда на вещи.
В процессе обсуждения этой проблемы натурфилософами XIV в. они все более склонялись к тому, чтобы объяснять движение падающего тела не постоянным контактом непосредственного движителя (motor proximus) с телом, а передачей телу движущего начала движителем, передачей, в результате которой движущая сила помещается в самом движимом объекте. «Гравитационное движение, следовательно, не вызывается внешней силой, ни толчком, ни давлением силы, приложенной извне, как это предполагали при попытках механистического объяснения в семнадцатом веке, ни силой, действующей на расстоянии; вместо этого падение является движением, которое содержит движущую силу внутри себя, в котором движущийся объект как бы внутренне стремится к внешней цели» {1, с. 51}.
Что касается полета снаряда, то эта проблема будет проанализирована позднее, здесь мы только ограничимся замечанием, что ее решение шло по тому же пути, что и в случае проблемы падения.
Итак, можно сказать, что схоластическая механика различала два вида движущих сил. Во-первых, это внешняя движущая сила, которая предполагает, что движитель и движимое тело находятся в непосредственном контакте; во-вторых, это внутренняя движущая сила, которая вносится движителем в движимое тело, и затем тело содержит причину своего движения внутри себя. Примером таких внутренних сил является тяжесть (или легкость) — в случае естественных движений и импетус — в случае насильственных.
Теперь обратимся к проблеме скорости в позднесредневековой механике. Модернизируя высказывания Аристотеля, можно сказать, что он считал скорость прямо пропорциональной движущей силе и обратно пропорциональной сопротивлению, т. е. v ~ F/R. Понятие сопротивления было существенно для аристотелевской и схоластической физики, так как именно сопротивление обусловливало тот факт, что движение совершалось не мгновенно, и таким образом делало возможным само движение (мгновенное движение, как мы помним, не есть движение в строгом смысле, а мутация). Под сопротивлением обычно понималось сопротивление среды, и невозможность мгновенного движения часто приводилась Аристотелем как доказательство невозможности существования пустоты.
Модернизация представлений Аристотеля, заключающаяся в написании приведенной выше формулы, состояла, кроме того, и в самом утверждении существования пропорциональной зависимости. На самом деле у Аристотеля мы можем лишь встретить утверждения, что двойная сила продвинет тело на вдвое большее расстояние за то же самое время или же что та же самая сила продвинет вдвое меньшее тело на вдвое большее расстояние при прочих равных условиях. Аналогичные утверждения делались и относительно изменения сопротивления.
Именно схоластические натурфилософы XIV в. придали этим частным утверждениям вид функциональной зависимости, как это мы увидим позднее.
Кроме того, существовала еще и другая проблема: всегда ли этот процесс деления на два движущей силы или удвоения сопротивления допустим? Ведь движение может происходить только в том случае, если движущая сила больше сопротивления, и если процесс манипулирования с двойной или половинной величиной приводит к тому, что это правило нарушается, то очевидно, что рассуждения Аристотеля в таком случае неправомерны. Следовательно, правило Аристотеля нуждалось не только в обобщении, но и в исправлении.
И то и другое было сделано Томасом Брадвардином в его «Трактате о пропорциях», написанном в 1328 г. «Трактат» содержит четыре главы. Первая глава представляет математическое введение, касающееся теории пропорций; во второй рассматриваются различные усовершенствования теории Аристотеля, которые затем отвергаются как неправильные; в третьей излагается собственно теория Брадвардина, и, наконец, в четвертой обсуждаются проблемы вращательного движения.
Брадвардин вначале останавливается на попытках улучшить теорию Аристотеля. Эти попытки состояли, грубо говоря, в том, что первоначальная зависимость заменялась пропорциональностью скорости и разности между движущей силой и сопротивлением, или пропорциональностью отношения этой разности а сопротивления, т. е. v ~ F - R, или v ~ (F - R)/R.
Оба эти варианта делают скорость зависимой от разности двух разнородных количеств (вернее сказать, величин интенсивностей), что было недопустимо уже в аристотелевской и схоластической физике, поэтому Брадвардин отвергает такие предложения. Вместо этого он выдвигает свое предложение, которое заключается в том, что увеличение скорости вдвое соответствует возведению в квадрат отношения силы и сопротивления, утроение скорости — возведению в куб этого отношения и т. д. Соответственно уменьшение скорости в данное число раз ведет к извлечению корня данной степени из первоначального отношения. Пользуясь современной терминологией, чтобы выразить функциональную зависимость Брадвардина между скоростью, движущей силой и сопротивлением, можно сказать, что скорость предполагается пропорциональной логарифму отношения силы и сопротивления, т. е. v ~ log (F/R), ибо функциональное уравнение n∙f(x) = f(xn) имеет решением f(x) = log x.
Решение, найденное Брадвардином, является обобщением и улучшением аристотелевского правила безотносительно к тому, насколько верно оно в смысле современной физики. Действительно, любое движение предполагает, что движущая сила превосходит сопротивление, поэтому первоначальное отношение F/R всегда больше единицы. А раз так, то оно всегда останется большим единицы: и в случае уменьшения, и, естественно, в случае увеличения скорости, ибо любой корень из числа, большего единицы, также больше единицы. Современному читателю это сразу видно из самого вида закона Брадвардина: v ~ logF/R, т. е. логарифм отрицательного числа при положительном основании не имеет смысла, значит, и закон имеет смысл, только когда F > R, а при F = R v = 0, т. е. логарифм единицы равен нулю, и движение при равенстве движущей силы и сопротивления не имеет места.
Итак, Брадвардин определенно улучшил правило Аристотеля в рамках аристотелевской физики, но важно подчеркнуть другой аспект его работы: это была едва ли не первая попытка, пользуясь доступным в то время математическим аппаратом, вывести количественную функциональную зависимость между рассматриваемыми величинами. Именно этот факт имел, вероятно, в виду Ф. Хунд, когда говорил в своей «Истории физических понятий» о «переходе от качественных к количественным характеристикам» в эпоху позднего Средневековья. Майер выразилась еще яснее: «Брадвардин, как и все его современники, полагал, что аристотелевская физическая теория правильна, и он пытался найти формулу, которая была бы применима для всех значений переменных и удовлетворяла бы всем условиям. И он этого добился» {1, с. 75}.
Как это ни странно, но понятие скорости, кажущееся нам интуитивно столь ясным, претерпело на пути к современному представлению значительные видоизменения, и его определение представляло трудности для многих поколений исследователей вплоть до Галилея. Причина этих трудностей коренилась не только в том, что движение рассматривалось в широком смысле слова, но и в том обстоятельстве, что со времен Аристотеля любое отношение имело в глазах философов смысл только тогда, когда в него входили величины одного рода, т. е. путь сравнивался с путем, время — со временем и т. п., поэтому отношение пути ко времени — а именно так мы определяем скорость сегодня — было им абсолютно чуждо. Как замечает В. П. Зубов, «нашу формулу v = s/t древние просто не поняли бы» {2, с. 60}. Единственное место, где Аристотель оперирует с отношением разнородных величин, это там, где он обсуждает зависимость скорости от движущей силы и сопротивления. Традиционно это исключение осталось единственно приемлемым для последующих исследователей, включая Брадвардина.
Единственным путем сколько-нибудь полного, математического анализа понятия скорости в таком случае остается возможность оперирования со скоростью как с отвлеченной величиной, некоторым числом. (При этом вначале подразумевается, что такое число выражает отношение движущей силы к сопротивлению — это число понимается просто как отвлеченная характеристика.) Именно таким образом и поступает Брадвардин. У него скорость выражается величиной, представляющей, как он говорит, интенсивность качества движения. В дальнейшем такой подход позволил рассматривать скорость, взятую не в отношениях, а как таковую. Примером может служить тот факт, что у Хейтесбери уже вводится понятие мгновенной скорости для неравномерного (дифформного) движения. В его трактате «О местном движении» дается следующее определение: «В пространственном дифформном движении в любое мгновение скорость определяется по линии, которую прочертила бы наиболее быстро движущаяся точка, если бы на протяжении она стала бы двигаться униформно (т. е. равномерно. — В. К.) с тем градусом скорости, с которым она движется в это мгновение — какое бы мгновение ни взять» {2, с. 69}. В определении подразумевается, что скорость как интенсивная величина может иметь меру (градус), что, в свою очередь, отражает характерную точку зрения для ученых Оксфордской школы.
Указанные представления являлись частью более широкого учения «об усилении и ослаблении качеств», в котором обсуждались также свойства равномерного (униформного) и равноускоренного (униформно-дифформного) движения. Попытка сопоставить равномерное и неравномерное движения очевидна из приведенного выше определения мгновенной скорости.
Другим результатом подобного рода было знаменитое «мертонское правило», определяющее возможность сопоставления равномерного и равноускоренного движений. В формулировке Суиссета это правило гласит: «Всякая широта движения, униформно приобретаемая или теряемая, соответствует своему среднему градусу, так что столько же в точности будет пройдено благодаря этой приобретаемой широте, сколько и благодаря ее среднему градусу, если бы тело двигалось все время с этим средним градусом» {2, с. 136}. Терминология Суиссета нуждается в пояснении — под «широтой» калькуляторы понимали интенсивность качества, а «градус», как и выше, есть мера этой интенсивности, значение которой может изменяться от нуля до бесконечности. Поэтому теория усиления и ослабления качеств называлась также учением о «широте форм», где под «формой» подразумевалось некое качество, подлежащее рассмотрению, Имея в виду эти соображения, мертонское правило можно интерпретировать таким образом, что путь, пройденный во время равноускоренного движения, равен пути, проходимому в равномерном движении со средней скоростью.
НИКОЛА ОРЕМ
Результаты ученых Оксфордской школы, пользовавшихся языком словесной алгебры, чтобы математизировать учение об интенсивности качеств, были переформулированы на более наглядном и потому более понятном языке в трудах парижских ученых. В этом предприятии основная заслуга принадлежит Никола Орему.
Около 1350 г. им был написан «Трактат о конфигурации качеств и движения», в котором используется другой по сравнению с трудами калькуляторов подход к проблеме. Интенсивность любого качества, согласно Орему, можно изобразить в виде отрезка прямой, и если место (extensio) мыслить как долготу (longitudo) на горизонтальной прямой, тогда интенсивность (intensio) любой точки будет изображаться соответствующим вертикальным отрезком прямой, а зависимость интенсивности от места (точки) — множеством таких отрезков. Верхние концы отрезков будут тогда располагаться на некоторой кривой, которая и определяет «конфигурацию» качества. Конфигурации означали у Орема качество как целое, причем ценность качества зависит от красоты конфигурации.
Хотя графическое представление интенсивностей у Орема очень похоже на современное использование системы координат для изображения функциональной зависимости, у него не было понятия о. системе координат как таковой — речь в его трактате шла лишь о расстояниях между точками и отрезками прямой. Тем не менее «графический метод Орема предполагал понимание функциональной зависимости; эту идею можно найти во множестве его работ, и она никоим образом не была необычной для середины четырнадцатого столетия» {1, с. 64}.
Во второй части своего трактата Орем рассматривает движение; в этом случае долгота соответствует времени, а интенсивность — скорости. Тогда получается, что равномерному движению соответствует постоянная интенсивность и конфигурацией, отражающей его, является четырехугольник; аналогично конфигурацией равноускоренного движения будет треугольник или прямоугольная трапеция (в зависимости от того, отличается или нет начальная скорость от нуля).
В третьей части обсуждается проблема эквивалентности движений, и Орем приходит к мертонскому правилу: униформно-дифформное движение эквивалентно униформному движению со средней скоростью, основываясь на предположении, что движения эквивалентны, если площади их конфигураций равны. Равенство соответствующих конфигураций он доказывает с помощью конгруэнтных треугольников, и мертонское правило получает, таким образом, ясный геометрический смысл. Отметим, что Орем не сделал следующий шаг и не применил свой чертеж к исследованию проблемы падения, что спустя два с половиной столетия сделал Галилей, который, впрочем, исходил из совершенно других, чем Орем, предпосылок.
Конфигурации Орема
К выводу мертонского правила
Заслуживает внимания представление Орема о площади фигуры как о мере пройденного пути. Он использует это представление при обсуждении мертонского правила, а в дальнейшем применяет его к доказательству двух важных положений: можно представить движение, в котором скорость бесконечно растет, но пройденный путь является при этом конечным; возможно также движение, длящееся бесконечно долго, при котором проходится конечный путь.
Возможность графического изображения, показанная Оремом, обусловила более ясное понимание характера непрерывного изменения и облегчило в дальнейшем введение понятия функции.
Перейдем теперь к теории импетуса, роль которой в эволюции физической мысли трудно переоценить. Однако чтобы эта оценка была адекватной, нам придется более детально остановиться на ключевых моментах теории, а также сделать несколько предварительных замечаний. Сразу же оговоримся, что средневековая теория импетуса рассматривается современной историей науки как отправная точка для развития новой теории, результатом которой было создание закона инерции, но при этом подчеркивается, что теория импетуса представляла собой независимый этап развития науки от аристотелевской к классической механике. Было бы неправильно рассматривать импетус как средневековый аналог закона инерции, как это делал, например, Пьер Дюэм в своих «Исследованиях по Леонардо да Винчи». Поэтому вопрос о сходстве и различии понятий импетуса и инерции потребует специального анализа. С другой стороны, необходимо иметь в виду, что современная терминология неадекватна: импетус не является ни силой, ни энергией, ни количеством движения в современном смысле, хотя и несет в себе черты каждого из этих понятий.
Проблема разделенного движения (motus separatus), которая привела в XIV в. к созданию теории импетуса, восходит к аристотелевскому принципу: «Все движущееся должно необходимо приводиться в движение чем-нибудь» {3, с. 124}. Этот принцип был усвоен и целиком разделялся схоластической натурфилософией, равно как и следующее из него положение, что любое движение предполагает наличие движущей силы, оно продолжается лишь в течение действия этой силы и заканчивается, как только сила перестает действовать. Все объяснения движения в случае разделенного движения (например, стрелы, пущенной из лука, или брошенного рукой камня) со времен Аристотеля сводились к тому, что передача движения от движителя к движимому телу обусловливалась через посредство среды. Таким образом, движитель передавал движение среде, сообщая ей движущую силу, которая затем преобразовывалась в движение снаряда. В такой трактовке «сила» понималась скорее как форма энергии.
Первым, кто подробно рассмотрел понятие импетуса, был францисканский монах Франческо ди Маркиа, это было сделано в его комментариях к «Сентенциям» Петра Ломбардского ъ 20-х годах XIV в. Существенно новым в его представлении было то, что движущая сила (он называл ее vis derelicta) передавалась не среде, а самому телу непосредственно. Десятилетие спустя Жан Буридан придал представлениям об импетусе характер настоящей теории, а затем она получила распространение в трудах Орема, Альберта Саксонского (1316—1390) и Марсилия Ингена. (Альберт Саксонский — основатель Венского университета (1356), Марсилий Инген — первый ректор Гейдельбергского университета; в изложении теории импетуса они строго следовали буридановым представлениям).
Буридан с самого начала задается вопросом: «Что такое импетус?» (quae res est ille impetus?)—и после длительного анализа приходит к следующим выводам, которые, впрочем, не дают прямого ответа на поставленный вопрос:
«Первый вывод заключается в том, что импетус не есть само местное движение, в котором участвует снаряд, потому что импетус движет снаряд, а движитель производит движение. Следовательно, импетус производит это движение, а одна и та же вещь не может производить себя.
Второй вывод состоит в том, что импетус не есть чисто последовательная вещь (res successiva), потому что такой вещью является движение, и определение движения как последовательной вещи весьма подходяще, о чем говорится повсюду. А только что утверждалось, что означенный импетус не есть само местное движение. Кроме того, так как чисто последовательная вещь непрерывно разрушается (уничтожается) и возникает (создается), она непрерывно требует производителя. Но невозможно приписать роль такого производителя импетусу, который всегда продолжал бы существовать с ним одновременно.
Третий вывод гласит, что означенный импетус является вещью, перманентной по своей природе (res naturae permanentis), отличной от местного движения, в котором участвует снаряд. Это очевидно из двух вышеприведенных выводов, а также из последующих утверждений. Возможно, что импетус является качеством, присутствующим естественно (т. е. физически) и предназначенным для движения тела, в которое он внедрен, так же, как говорится, что качество, внедренное в железо магнитом, движет железо к магниту. А также возможно, что раз это качество — импетус — внедрено в движущееся тело вместе с самим движением движителем, то вместе с движением оно ослабляется (разрушается) или задерживается (замедляется) посредством сопротивления или посредством противоположной склонности» {4, с. 536-537}.
Это определение импетуса нуждается в пояснении. В первом предложении Буридан говорит, что, поскольку ничто не может быть своей собственной причиной, импетус, являющийся причиной местного движения, не может быть ему идентичен. Второе предложение использует средневековое представление о движении как о последовательном процессе (т. е. процессе, происходящем в последовательные стадии), или потоке. Ранее Буридан показал, что согласно его теории местное движение есть не только последовательный процесс, но и в действительности «последовательная вещь» (res successiva). Его второе положение равносильно утверждению, что импетус не есть поток, содержащий в себе движущийся объект как акциденцию.
Что касается третьего положения, то большинство историков его интерпретирует как придание понятию импетуса качества неизменности, постоянства (от permaneo — сохраняться, длиться, продолжаться). Однако существует и другая интерпретация этого утверждения, принадлежащая С. Дрейку {5, с. 28—46}. Дрейк говорит, что слово «перманентный» можно трактовать не только как противоположность слову «временный» от глагола permaneo, поскольку «это слово в XIII и XIV столетиях имело также и совершенно другой смысл и обозначало в данном случае „присутствующий внезапно" и „существующий раз и навсегда" (от permano — проникать, протекать). В этом смысле термин „перманентный" противоположен не слову „временный", а слову „последовательный", которым обозначаются вещи — например, движение,— которые не могут существовать в одно лишь мгновение. Скорость или интенсивность движения, с другой стороны, может присутствовать внезапно. Смысл этого может стать нам ясен, если мы посмотрим, что мы вкладываем в слова типа „шестьдесят миль в час". Часовая прогулка не может быть осуществлена сразу, но каким-то образом все шестьдесят миль относятся к тому мгновению, о котором мы говорим. Средневековые авторы не использовали такие выражения (они говорили скорее о „градусах скорости"), но это не значит, что они не проводили четкого разделения между сущностями, длящимися во времени, и сущностями, представленными в данное мгновение» {5, с. 30}.
Вопрос о том, что мы должны понимать под перманентностью импетуса, является существенным, так как он является одним из главных пунктов разногласий в теории импетуса. Большинство ученых XIV в. во главе с Оремом считали, что импетус не является перманентным, а противоположную точку зрения Буридана разделяли немногие (в их число входил тем не менее Альберт Саксонский).
В одной интерпретации перманентность импетуса мыслилась как присущая ему по природе неизменность. В этом случае замедление движения объяснялось результатом сопротивления движению, сводящего в конце концов на нет движущую силу импетуса. Отсутствие перманентности означало, в свою очередь, что импетус по природе своей убывает по мере движения.
Вторая точка зрения кажется нам более обоснованной прежде всего потому, что уже Франческо ди Маркиа говорил об импетусе (вернее, движущей силе, переданной движителем снаряду,— термин «импетус» был введен Буриданом) как о некоей промежуточной форме (forma quasi media) между чисто последовательной формой (forma simpliciter successiva), которой является движение, и чисто перманентным качеством (forma simpliciter permanens) {1, с. 86}. Здесь налицо то самое противопоставление «последовательности» и «перманентности», на которое ссылается Дрейк.
С другой стороны, понятие перманентности как неизменности по своей природе входит в противоречие с тем, как об импетусе говорит сам Буридан, подчеркивая, что импетус «разрушается или замедляется посредством сопротивления или посредством противоположной склонности». Поскольку средневековые схоласты, как и Аристотель, мыслили движение происходящим исключительно в сопротивляющейся среде, невозможно понять, как они могли решиться на такую идеализацию земных движений и устранить сопротивление из теоретического рассмотрения. Вне такой идеализации понятие перманентности как неизменности по своей природе вообще теряет всякий смысл. Буридан, однако, рассматривает импетус и для небесных движений, утверждая, что в этом случае «импетус существовал бы бесконечно долго, если бы он не уменьшался и не разрушался противодействующим сопротивлением или склонностью к противоположно направленному движению». Показательно, что здесь Буридан не употребляет слово permanens, а использует слова in infinitum duratet для обозначения неизменности импетуса. Следовательно, «перманентный» в трудах средневековых схоластов, скорее всего, означало не слово «неизменный», а использовалось для обозначения качества, противоположного тому, которое выражается словом «последовательный».
Буридан ясно понимал различие между естественными круговыми движениями на небе и насильственным движением брошенного рукой камня на земле, и то, что он употребляет для их объяснения одно и то же понятие импетуса, говорит о его желании объяснить все движения во Вселенной с помощью механических законов. В этом его великая заслуга. Средневековая наука не могла избежать введения «интеллигенции», или «ангелов», для объяснения небесных движений, ибо только таким образом оказывалось возможным говорить о движении в среде без сопротивления, которое без вмешательства «интеллигенции» не могло быть таковым (т. е. движением, длящимся во времени), а должно было бы представлять собой мутацию.
Попытка Буридана объединить с помощью импетуса объяснение земных и небесных движений была затем продолжена Оремом. Нововведение Орема состояло в том, что он наделил небесную сферу особым видом сопротивления, которое действует таким образом, что скорость объекта сохраняется неизменной, «ибо сопротивление, которое действует на небесах, выражается не в склонности к покою или какому-либо другому движению, а лишь в том, что (первоначальное) движение не убыстряется» {1, с. 97}.
Это предложение Орема явилось следствием рассмотрения проблемы, поставленной Буриданом в его анализе небесных движений. Мы могли бы сформулировать эту проблему так: в какой степени объяснение Буридана является аналогом закона инерции? Буридан говорит, что в отсутствие сопротивления для небесных движений импетус сохранялся бы бесконечно долго. Значит ли это, что небесные тела должны в таком случае двигаться бесконечно долго? Эту проблему и анализирует Орем. С точки зрения схоластической философии такой импетус мог вызвать только движение с бесконечной скоростью, а не длящееся бесконечно движение. Поэтому Орем хочет спасти буриданово механическое объяснение (а с точки зрения схоластики оно невозможно в среде без сопротивления без введения в рассмотрение «интеллигенции») и делает это, вводя сопротивления особого рода.
Роль сопротивления в позднесредневековой физике очень важна. Ее важность определяется не только самой концепцией движения, но и тем, как понималось сопротивление в ту эпоху. Согласно общепринятой точке зрения любое насильственное движение на земле испытывало два вида сопротивления: внешнее сопротивление среды и внутреннее сопротивление, складывающееся, в свою очередь, из двух компонент — тенденции к противоположно направленному движению, т. е. тяжести, и тенденции к покою, т. е. инерциального сопротивления. Если от внешнего сопротивления среды (возникающего в результате трения) теоретически и можно было бы освободиться, как и от влияния тяжести (например, на горизонтальной плоскости), то от инерциального сопротивления в принципе освободиться нельзя.
Понятие такого сопротивления существовало почти у всех натурфилософов XIV в., но наиболее отчетливо оно было сформулировано Оремом в его комментариях к «Физике» Аристотеля. Комментарии Орема были, к несчастью, утеряны, но ход его мыслей оказалось возможным восстановить по некоторым местам из других его комментариев — к трактату Сакробоско «О сфере» и к трактату Альберта Саксонского «О небе и мире» {1, с. 92—93}. Орем называет его «склонностью к покою» (inclinatio ad quietem), причем предполагается, что эта склонность к покою остается постоянной вне зависимости от того, движется ли тело или покоится. В одном месте Орем говорит, что «каждый движущийся объект, который оказывает сопротивление движителю, стремится к покою или же к противоположно направленному движению» {1, с. 92}, и это высказывание дает основание А. Майер утверждать, что Орем был первым, кто проводил различие между инерционной и тяжелой массой и осознал, таким образом, наличие двух инерционных свойств тела, участвующего в насильственном движении {1, с. 95}.
Другой важной проблемой, возникающей при обсуждении понятия импетуса, является ускорение. Многим философам Средневековья казалось, что снаряд, брошенный рукой или каким-либо орудием, достигает наибольшей скорости в течение некоторого времени после броска, т. е. он сначала ускоряется, достигает максимума скорости, а затем уже его скорость начинает убывать. Такая точка зрения основывалась, как считали, на опыте; однако Буридан ее не разделял и говорил, что он никогда не делал таких наблюдений. С другой стороны, Орем был ее ревностным защитником, и что наиболее интересно, такая неправильная точка зрения привела его к замечательному выводу: чтобы объяснить ускорение тела, он провозгласил, что импетус надо рассматривать как причину не постоянной скорости, а постоянного ускорения. Такая точка зрения не может не вызвать аналогии с ньютоновым понятием силы. Как бы то ни было, подобные аналогии показательны в том смысле, что многие понятия классической механики, пусть неявно или случайно, но содержались в своеобразном конгломерате идей и теорий доклассической науки. Творцам новой науки предстояло отобрать из него наиболее ценные и поместить в новые концептуальные рамки.
Буридан также обсуждает проблему ускоренного движения в связи с понятием импетуса, но он приходит к ней, исходя из совершенно других предпосылок, чем Орем, анализируя случай снаряда, брошенного вверх. Здесь он исходит из общего положения своей теории, что в процессе любого насильственного движения снаряд необходимо теряет свой импетус вследствие всеобщей и естественной склонности тяжелых тел двигаться вертикально вниз. Но если освободиться от этой «склонности» и рассмотреть движение снаряда, падающего вертикально вниз, тогда, согласно Буридану, тело будет ускоряться (движение лишено сопротивления), а причиной ускорения будет непрерывное увеличение импетуса.
«Нужно представить, что тяжелое тело не только само приобретает движение от основного движителя, т. е. своей тяжести, но оно также приобретает для себя некоторый импетус в процессе этого движения. Этот импетус имеет способность двигать тяжелое тело наряду с перманентной естественной тяжестью. А поскольку такой импетус приобретается в процессе движения, то чем быстрее движение, тем больше и сильнее становится импетус. Итак, следовательно, тяжелое тело движется в начале движения только вследствие своей естественной тяжести, поэтому оно движется медленно. В дальнейшем оно движется как вследствие той же самой тяжести, так и вследствие импетуса, приобретенного за некоторое время; в результате оно движется более быстро. А так как движение становится быстрее, импетус также становится больше и сильнее, и таким образом тело движется быстрее вследствие своей естественной тяжести и этого большего импетуса, и снова оно будет двигаться быстрее; и таким образом оно будет всегда и непрерывно ускоряться до самого конца» {4, с. 560-561}.
Здесь у Буридана, как и ранее у Орема, импетус приобретает характерные черты современного понятия силы: импетус (хотя и не постоянный) является причиной ускорения тела. Но что самое важное в этом отрывке — это то, что анализ Буридана «вводит в рассмотрение ускорения необходимую разрывность, факт, на который не обратили внимания историки и который является ключом к средневековой теории импетуса, а также к пониманию его развития много позже» {5, с. 37}.
Обсуждая роль дискретности в физических представлениях Средневековья, Дрейк подчеркивает, что для них была характерна существенная разница между физическим и математическим понятиями мгновения. Лучшим примером этому является проблема «первого мгновения» движения, т. е. можно ли считать первое мгновение движения идентичным с последним мгновением покоя? Если да, то такое заключение содержит противоречие, ибо в таком случае тело будет одновременно находиться и в состоянии покоя, и в состоянии движения. Если мгновение мыслится математически, то задача не имеет смысла, однако физическое мгновение всегда имеет некоторую длительность, как бы мала она ни была, поэтому проблема решается просто — легко отделить последнее мгновение, когда тело еще находится в покое, от первого мгновения, когда тело уже движется. С таким представлением, замечает при этом Дрейк, вполне согласуется молчаливое предположение средневековых физиков, что физическое время имеет квазиатомную структуру и что физические моменты делимы только потенциально {5, с. 31}.
Возвращаясь к задаче о падении тела, теперь можно показать, что Буридан решал ее в чисто аристотелевском стиле. Действительно, если бы движение вниз зависело только от веса, то, как и предполагал Аристотель, оно совершалось бы с неизменной скоростью, т. е. было бы равномерным. Таковым, согласно Буридану, является движение вниз в начальный момент движения, когда импетус еще не оказывает на движение (и скорость) никакого воздействия. В дальнейшем накопление импетуса и приращение скорости идет последовательными квантовыми скачками, а не совершается непрерывно. Графиком скорости такого ускоренного движения была ступенчатая функция, а не треугольник, и, возможно, именно вследствие различия между физическими (т. е. реальными) явлениями и явлениями, мыслимыми в абстракции, представители Парижской школы не применяли найденные ими треугольные конфигурации к анализу реального падения. (Отметим, что, когда Орем обсуждает действительное движение, он использует ступенчатые функции, как в случае движения с бесконечно увеличивающейся скоростью или в случае движения, длящегося бесконечно.)
Первым, кто использовал треугольную конфигурацию для анализа реального падения, был Галилей.
2
Галилео Галилей родился в Пизе 15 февраля 1564 г. в знатной, но обедневшей семье флорентийца Винченцо Галилея. Винченцо был высокообразованным человеком, профессиональным музыкантом, а также торговцем. Некоторые его сочинения по теории музыки пользовались известностью и после его смерти, а его обширные познания в языках и математике были общеизвестны. Галилей унаследовал от отца вместе с любовью к музыке и некоторые черты характера, в том числе независимость и агрессивность.
Галилей получил начальное образование дома под руководством некоего Якопо Боргини, но затем отец отдал его в иезуитскую школу знаменитого монастыря св. Марии в Валломброзо (к этому времени семья переехала во Флоренцию). Галилей отнесся к своему пребыванию в монастыре гораздо серьезнее, чем того желал Винченцо, и в 1578 г. вступил в орден как новиций. Однако отец Галилея вовсе не желал видеть своего сына монахом и забрал его домой под предлогом того, что тот нуждается в лечении глаз. Некоторое время Винченцо сам занимается с сыном, а впоследствии домашними учителями Галилея вновь становятся монахи из монастыря Валломброза.
ГАЛИЛЕО ГАЛИЛЕЙ
В 1581 г. Галилей поступил на факультет искусств Пизанского университета, чтобы стать врачом. Его семья оставалась жить во Флоренции, в то время как он сам обосновался у сестры своей матери в Пизе. В университете он слушал лекции Франческо Буонамико (по астрономии) и Джироламо Боро (по физике), которые строго придерживались воззрений Аристотеля, а также лекции Андреа Чезальпино по медицине. Математики в университете не читали — кафедра математики оставалась вакантной в течение почти всего времени пребывания Галилея в университете. Но случилось так, что к медицине Галилей особого интереса не выказал, зато в нем обнаружился неподдельный интерес к математике. Он сам нашел себе учителя: во время летних каникул 1583 г. он попросил Остилио Риччи, близкого друга своего отца и учителя математики при Тосканском дворе, помочь ему в овладении этой наукой. Риччи согласился, и они приступили к занятиям втайне от Винченцо. Страсть, с которой Галилей занимался математикой, заставила Риччи обратиться к его отцу и убедить того разрешить продолжать занятия. А у Риччи было чему поучиться: ученик Николо Тартальи, он передал Галилею свою любовь к произведениям греческих математиков, и в первую очередь к Архимеду, который в глазах Тартальи и его учеников был идеалом, соединяющим в себе выдающиеся способности теоретика и экспериментатора. Его преподавание математики включало занятия военной и строительной механикой, астрономией, физикой и другими естественными науками. Вскоре Галилей настолько освоился с новой наукой, что уже сам мог вести самостоятельные исследования.
В первый год своего пребывания в Пизанском университете (1582) Галилей сделал и свое первое открытие: он обнаружил изохронность колебаний маятника, т. е. что время колебаний маятника всегда одинаково и не зависит от амплитуды. Согласно легенде он пришел к этой мысли, наблюдая за качаниями тяжелой люстры в кафедральном соборе (люстру отводили в сторону, чтобы зажечь свечи, а когда отпускали, она продолжала качаться). Галилей заметил, что период колебаний сохраняется, несмотря на то что размах качаний уменьшается, причем время он отсчитывал по своему собственному пульсу. В действительности люстры, о которой идет речь, не существовало в соборе до 1587 г. Более того, «нынешняя люстра, хотя сейчас она электрифицирована, первоначально была устроена таким образом, что ее не нужно было отводить в сторону, чтобы зажечь свечи, ибо это привело бы к тому, что при обратном движении пламя бы погасло» [6, с. 63]. Верна эта легенда или нет, не так уж важно, важно то, что Галилей первым в Европе открыл это явление и эксперименты с маятником сыграли важную роль в его исследованиях законов падения тел. (А. Мюллер в своем исследовании о Галилее утверждает, что явление изохронизма маятника было известно до Галилея на арабском Востоке, в частности оно было знакомо Ибн-Юнису (950—1009). Но сочинения Ибн-Юниса не были тогда известны в Европе, и Галилей об этом знать не мог [7]Формула согласия — одна из символических книг протестантской церкви, представляющая собой компромисс между взглядами Лютера и Меланхтона.
.)
Итак, в университете Галилей увлеченно занимается точными науками, медицина его не интересует, и в 1584 г., не получив положенной докторской степени, он покидает университет и возвращается во Флоренцию. В течение четырех с лишним лет он не занимает никакой официальной должности, дает временами частные уроки, а основное время посвящает математике и философии. В это же время обнаруживается яркое литературное дарование Галилея, которое впоследствии определит его славу как одного из создателей итальянской прозы. Вот как описывает литературные интересы молодого Галилея один из его биографов: «Любовь и хорошее знание классиков — Вергилий, Овидий и Сенека были его любимыми писателями — совмещались в нем с интересом к современной ему литературе. То, что Галилей искал в ней (и что существенно для поэзии в отличие от науки), — это свободная игра воображения, которая, вырываясь из сложностей и условностей реальности, расцветает в хитроумной мудрости сатирических эссе Верни или комедиях Руццанте и освобождает дух от тягот и условностей повседневной жизни; или же — это создание своего собственного мира (как в стихах Ариосто), который дает жизнь воображаемым образам, бесчисленным мифам, в которых человек ищет и находит себя» [8, с. 72].
В этом высказывании, дающем характеристику творческой индивидуальности Галилея, можно увидеть черты той связи, которая соединяла Галилея — платоника, наследника античных традиций (вспомним, что Аристотель упрекал пифагорейцев за то, что они вели себя как сотворцы Вселенной, оперируя фактами в зависимости от той или иной полюбившейся им концепции) и Галилея — создателя новой физики, примирившего идеал с реальностью и измерившего реальность с помощью идеала. В этой связи показательно его увлечение Данте. В 1588 г. он был приглашен Флорентийской академией прочесть лекции о топографии дантова ада; первая из них называлась «О форме, положении и величине дантова ада». В этих лекциях Галилей выступил как арбитр в старом споре относительно интерпретации ряда картин «Божественной комедии», и замечательно то, что его выступление свелось к обсуждению геометрических проблем, рассмотренных со строгой математической точностью, причем интерпретация поэтического текста оставалась абсолютно адекватной.
Люстра, благодаря которой Галилей, по преданию, установил изохронизм колебаний маятника
Что касается занятий собственно наукой, то Галилей продолжал свои исследования по физике и математике и написал свою, по-видимому первую, научную статью «Маленькие весы» (1586), в которой, следуя Архимеду, описал изобретенные им гидростатические весы для определения удельного веса. Эта работа не была опубликована, но Галилей распространил ее в рукописи среди своих друзей. Другой работой, также носившей следы влияния Архимеда, был ряд теорем относительно центров тяжести параболоидов вращения. Эти теоремы были созданы около 1587 г., но опубликованы лишь в 1638 г. в качестве приложения к его знаменитой книге «Беседы и математические доказательства». А пока они также были распространены в рукописи и создали Галилею репутацию уважаемого математика. Среди тех, на кого работа произвела впечатление, были известный астроном Кристоф Клавий, а также друг Галилея маркиз Гвидобальдо дель Монте (1543—1607), известный математик и механик (ему, в частности, Лагранж приписывает формулировку принципа виртуальных перемещений).
Галилей считает себя уже достаточно опытным математиком и предлагает свою кандидатуру ряду итальянских университетов для получения места профессора математики. Однако, несмотря на приобретенную высокую репутацию, он повсюду терпит неудачу: в Болонье, например, ему предпочитают второстепенного математика Джованни Антонио Маджини. Вполне возможно, что недоброжелательное отношение, которое встречал Галилей со стороны университетских властей, определяется не его профессиональными данными, а, как указывал Артур Кестлер, «чертами его характера — той холодной и едкой заносчивостью, которая ему вредила всю жизнь» [9, с. 173]. Но у Галилея всегда были не только недоброжелатели, но и друзья. Гвидобальдо дель Монте рекомендует его своему брату, кардиналу Франческо, и по ходатайству кардинала Галилей в 1589 г. получает должность профессора математики в Пизанском университете, том самом, где ему четыре года назад было отказано в стипендии. По указанию правящего герцога Тосканского Фердинандо I университет заключает с ним контракт на три года, причем как профессор математики Галилей получал довольно мизерное жалованье — 60 скуди в год (около 160 золотых рублей, но это было вчетверо больше того, что в это же время получал Кеплер в Граце). Добавим, что профессор медицины в том же университете получал 2000 скуди. Каким бы малым ни было его жалованье, Галилей, став университетским профессором, приобретает в городе прочное общественное положение.
Преподавание математики предполагало обязательное изложение в лекционном курсе либо геометрии Евклида, либо астрономии Птолемея. Мы помним, что Кеплер со студенческой скамьи стал пылким коперниканцем, но в случае Галилея дело обстояло иначе. Хотя еще во времена студенчества Галилей приобрел в университете репутацию бунтаря, выступавшего против авторитета Аристотеля в философии, его позиция в отношении Птолемея в период первого пребывания в Пизе не ясна. Некоторые исследователи, например ватиканский астроном и автор капитальных трудов о Галилее Адольф Мюллер, считают, что в это время он был искренним последователем Птолемея (см. [6, с. 182—185]). Другие, например Эмиль Вольвилль и автор предисловия ко второму тому миланского собрания сочинений Галилея Себастьян Тимпарано [10, с. 110], придерживаются взгляда, что в "Пизе Галилей уже был коперниканцем. Современные историки науки обычно придерживаются промежуточной точки зрения, полагая, что обращение Галилея в коперниканство началось с его работ по механике, сделанных в Пизе. Это мнение было впервые высказано А. Койре в его «Галилеевских исследованиях» [11, III, с. 45].
Галилей провел в Пизе три года (1589—1592), и в это время начинают выкристаллизовываться его научные интересы и склонности. Как и все физики того времени, он ясно понимает, что главной проблемой науки является проблема движения, и именно она становится предметом его изучения. Пизанские исследования Галилея подытожены в его раннем трактате «О движении», написанном около 1590 г. и опубликованном лишь после его смерти. Для этой работы характерна резкая антиаристотелевская направленность, но вместе с тем подход Галилея к проблеме еще остается во многом в рамках позднесхоластической физики. Некоторые исследователи (среди них упомянем А. Койре и Л. Джеймоната) считают, что в это время Галилей находился под влиянием идей своего старшего современника Джамбаттисты Бенедетти (1530—1590), труд которого «Различные размышления о математике и физике» был, как считают, настольной книгой Галилея. С другой стороны, С. Дрейк считает сходство взглядов Галилея и Бенедетти на природу движения случайным и говорит, что, хотя книга Бенедетти и была опубликована в Турине в 1585 г., «ни Галилей, ни кто-либо из его корреспондентов даже не упоминает имени Бенедетти» в своей обширной научной переписке [12, с. 228].
Как бы то ни было, Бенедетти является одной из ключевых фигур на заре новой физики, и Галилей прямо или косвенно не мог избежать его влияния. Уже в первой своей книге Бенедетти впервые дает доказательство того, что тела разного веса, но одинакового удельного веса должны падать с одинаковой скоростью [2, с. 101 и далее]. Поскольку такое утверждение находится в совершенном противоречии с воззрениями Аристотеля (согласно которому тела различного веса при прочих равных условиях должны иметь различную скорость), Бенедетти переходит в дальнейших своих работах от сомнения в правильности аристотелевской доктрины к ее обстоятельной критике. Свои представления о движении Бенедетти развивает в духе идей теоретиков Парижской школы и своего учителя Тартальи. Он отстаивает представление об импетусе как о «вложенной силе» (vis impressa), помещенной в движущееся тело, причем у него импетус характеризуется и величиной, и направлением. Затем он отвергает возможность вечного движения, хотя бы и кругового, на том основании, что любое движение продолжается лишь до тех пор, пока не истрачен импетус, его обусловливающий. В этом утверждении содержится первая попытка устранения аристотелевской дихотомии насильственного и естественного движений.
Пизанский трактат Галилея во многом напоминает представления Бенедетти. Рассматривая падение тел, он, как и Бенедетти, приходит к выводу, что скорость падения зависит от соотношения между весом тела и плотностью среды или, точнее говоря, избытком веса над весом — равного ему объема окружающей среды. Идея такого закона, без сомнения, была навеяна сочинениями Архимеда по гидростатике, согласно которым равновесие тела, погруженного в жидкость, определяется равенством его веса и веса вытесненной им жидкости. Как и Бенедетти, Галилей в своем трактате стремится устранить разделение всех движений на естественное и насильственное с помощью введения так называемого нейтрального движения. По его мысли, примером такого движения является вращение любой сферы, центр тяжести которой находится в центре Вселенной. Соответственно и движение по поверхности такой сферы также является нейтральным. В этом представлении легко усмотреть зародыш идеи круговой инерции, которая позднее легла в основу его физических представлений.
Рассуждения Галилея о вращении сфер показывают, что он еще остается приверженцем геоцентрической модели Вселенной, а его объяснение явления падения — что он еще находится в рамках средневековой теории импетуса. Тем не менее в его трактате содержатся и замечательные утверждения, например, о равенстве действия и противодействия в статике или же высказанная им аналогия между падением по вертикали, спуском по дуге и по наклонной плоскости для бесконечно малых расстояний. Галилей вывел также правило равновесия на наклонной плоскости, а затем попытался с его помощью получить выражение для скорости падающего тела. Полученная им закономерность была проверена экспериментально, но результат опыта не совпал с расчетом, и это, по-видимому, послужило причиной тому, что трактат «О движении» так и не был опубликован.
В связи с этими экспериментами Галилей в трактате упоминает об опытах по падению тел с башни, что как будто подтверждает позднейший рассказ Вивиани о «многочисленных экспериментах, произведенных с высоты пизанской колокольни в присутствии других профессоров, философов и всех студентов». Правда, у Галилея нет ни слова об аудитории и о том, что это была именно Пизанская башня.
Последнее десятилетие XVI в. началось для Галилея печально: в 1591 г. умер отец и на плечи Галилея легла забота о многочисленной семье (шесть братьев и сестер). К этому добавились и другие неприятности. Расположение великого герцога Тосканы было утрачено после того, как Галилей дал отрицательное заключение о проекте углубления гавани, сделанном одним из членов семейства Медичи; университетские власти были им также недовольны — полемический темперамент Галилея и его едкая насмешливость явно пришлись им не по вкусу (особенное раздражение вызвала шуточная поэма Галилея, в которой высмеивался обычай университетских профессоров носить тогу). Таким образом, по окончании в 1592 г. срока контракта с университетом Галилей был вынужден искать себе новую должность и новое место жительства. На помощь снова приходит высокопоставленный друг маркиз Гвидобальдо дель Монте. По его рекомендации Галилей получает кафедру математики в Падуанском университете, во владениях Венецианской республики. Отметим, что и на этот раз, как когда-то в Болонье, его соперником сновал был Маджини, но теперь победу одержал Галилей. В декабре 1592 г. он официально вступил в должность, прочтя в университете свою первую лекцию.
Позднее Галилей говорил, что годы, проведенные им в Падуе, были лучшими годами его жизни. И действительно, эти 18 лет были временем творческого подъема и счастливой порой в его личной жизни. Открытие квадратичной зависимости пути падения от времени, установление параболической траектории для движения снаряда, астрономические наблюдения с помощью телескопа и множество других достижений — все это было сделано в период жизни Галилея в Венецианской республике. Как и впоследствии Ньютон, Галилей отложил публикацию главных своих открытий в науке — то, что сегодня историки науки называют «падуанской механикой», — на 20 лет, но именно Падуя и Венеция дали главные импульсы его творческому воображению. Такому ходу событий способствовало то обстоятельство, что интеллектуальная атмосфера в Венецианской республике была на редкость свободной и терпимой. Различие во взглядах на научные проблемы не мешало профессорам университета находиться в самых дружеских отношениях друг с другом. Ярким примером этому могут служить отношения между Галилеем и Чезаре Кремонини, который резко отрицательно относился к антиаристотелевским взглядам Галилея. Имя Кремонини часто используется в популярной литературе как синоним узколобого фанатизма, поскольку он, руководствуясь своими научными убеждениями, отказался смотреть в телескоп Галилея. Действительно, этот эпизод доказывает, что оба ученых стояли на совершенно различных научных позициях, но не более того, Галилея и Кремонини связывала тесная и сердечная дружба, и они не раз приходили друг другу на помощь в трудных обстоятельствах. Отметим, что в глазах официальной доктрины Кремонини, проповедовавший Аристотеля в аверроистском духе, рассматривался как склонный к ереси, и, когда инквизиция начала против него судебный процесс.
ЧЕЗАРЕ КРЕМОНИНИ
Галилей, находившийся с ним в близких отношениях, оказался в числе лиц, которых коснулось судебное разбирательство. Впрочем, Кремонини был оправдан, и не в последнюю очередь благодаря тому, что правительство Венеции стало на его защиту.
Процесс Кремонини показателен для характеристики политической ситуации в Венецианской республике, где во время пребывания Галилея развернулась борьба против засилья римской курии. Эту борьбу, которая привела к изгнанию иезуитов из Республики, возглавлял Паоло Сарпи, бывший советником правительства по теологическим вопросам. Сарпи был не только искушенным политиком и теологом, но и высокообразованным математиком, в лице которого Галилей также нашел искреннего друга.
В Венеции Галилей встретил Марину Гамба, которая стала вскоре его женой (хотя официальный обряд бракосочетания так и не имел места). Их совместная жизнь длилась более 10 лет. Гамба родила Галилею двух дочерей, Вирджинию (1600) и Ливию (1601), и сына Винченцо (1606). Впоследствии, по переезде Галилея во Флоренцию, Гамба вышла замуж за некоего Джованни Бартолуцци, к которому Галилей относился с неизменной симпатией. Наиболее тесные и трогательные отношения связывали Галилея с его старшей дочерью, Вирджинией, чья безрадостная жизнь (будучи незаконнорожденной, она была вынуждена тринадцати лет постричься в монахини) была озарена светом нежной привязанности к отцу, а для Галилея в пору тяжелых испытаний и преследований инквизиции она оставалась единственным утешением. Вирджиния приняла в монашестве имя Марии Челесты, Ливия — Арканджелы; Винченцо же был признан законным сыном Галилея, что дало ему возможность вести светскую жизнь: он окончил Пизанский университет, стал юристом и благополучно женился. Сохранившиеся письма Марии Челесты к отцу рисуют трогательную картину их взаимоотношений (см. об этом в [13, гл. IX]).
В течение жизни в Падуе Галилей много и плодотворно занимался механикой, им был изобретен пропорциональный циркуль, написаны два руководства по фортификации и несколько трактатов, из которых сохранился лишь один. В настоящее время он известен как «Механика», причем существуют три его редакции — 1593, 1594 и 1600 гг. Трактат посвящен в основном теории простых механизмов; в частности, важной для дальнейшего развития науки является высказанная в нем идея о связи между статикой и динамикой, а именно что равновесие на наклонной плоскости может быть нарушено действием сколь угодно малой силы.
Но, как уже говорилось, наиболее существенным достижением Галилея в механике в течение падуанского периода было открытие закона падения и параболической траектории снаряда.
3
Ошибки механики пизанского периода определялись среди прочего тем, что Галилей не считал падение ускоренным движением и не рассматривал явление ускорения. Но первые годы XVII столетия застают его в Падуе над разработкой именно этих проблем, связанных с ускорением падающего тела. В письме к Паоло Сарпи, относящемся к 1604 г., содержится уже правильный закон падения, выражающий зависимость пути, пройденного падающим телом, от квадрата времени падения. Правда, в этом же письме Галилей указывает, что вывод, сделанный им, основывается на предпосылке, что скорость пропорциональна пройденному пути, что, как мы знаем сегодня, является неправильным. Письмо к Сарпи вместе с тем фактом, что формулировка закона появилась лишь спустя почти 30 лет в «Диалоге», вызвало у исследователей творчества Галилея недоумение, которое пытались прояснить с помощью разных гипотез.
Некоторые историки полагали, что Галилей пришел к закону падения, используя приемы теоретиков Парижской и Оксфордской школ. Действительно, средневековые авторы имели в своем арсенале мертонское правило, которое, как мы помним, можно интерпретировать таким образом, что равноускоренное движение эквивалентно равномерному движению со средней скоростью (при этом равноускоренное движение мыслится начинающимся из состояния покоя, а эквивалентность понимается как равенство путей, пройденных за одинаковое время). Мертонское правило означает тот факт, что в рассматриваемом равноускоренном движении в первую половину времени движения проходится четверть всего пути, т. е. отношение путей, пройденных в первую и вторую половину времени, равно 1:3. Такое соотношение было доказано Оремом, который затем продолжил его до 1, 3, 5, 7, ... и т. д. для равных времен. Все это дало основание Эдварду Гранту утверждать:
«Геометрическое доказательство Орема теоремы о средней скорости и многочисленные ее арифметические доказательства были широко распространены в Европе в течение XIV и XV столетий и были особенно популярны в Италии. Весьма вероятно, что благодаря печатным текстам конца XV и начала XVI вв. они стали хорошо знакомы Галилею. Он сделал теорему о средней скорости первым предложением Третьего Дня в своих „Беседах о двух новых науках", где она служит фундаментом новой науки о движении» [14, с. 246].
Однако оксфордские и парижские теоретики пришли к мертонскому правилу, исходя из представления, что равноускоренное движение является таким движением, в котором скорость получает равные приращения в равные промежутки времени. С другой стороны, как следует из письма к Сарпи, Галилей ошибочно полагал, что скорость пропорциональна пути, а не времени. Поэтому совершенно справедливо замечает Дрейк: «Если предположить, что средневековые авторы были источником работы Галилея, то как объяснить, что он принял и разработал их ранние результаты, в то же самое время отвергая самую основу, из которой они были получены. Точно так же, если он позднее познакомился с сочинениями средневековых авторов, то почему он так и не использовал мертонское правило для доказательства своего предложения ни в своих заметках, ни в своей книге?» [15, с. 85]. Более того, как указывалось ранее, Орем никогда не связывал равноускоренное движение со свободным падением, и ни один средневековый автор не утверждал, что пройденные отрезки пропорциональны квадратам времен, что легко выводимо из прогрессии Орема: 1, 3, 5, 7,...
Другой гипотезой относительно реконструкции создания закона падения Галилеем является предположение, что он пришел к нему чисто математическим путем аналогично тому, как это впоследствии сделал Гюйгенс. Действительно, если принять, что в равноускоренном движении скорость увеличивается в равные промежутки времени на равные величины, то такое правило должно сохраняться для любых равных промежутков времени. А это означает, что в числовой последовательности, которая отображает величину пройденных отрезков пути, отношение первого члена ко второму должно быть таким же, как отношение суммы первых двух членов к сумме следующих двух членов или же как отношение суммы первых трех членов к сумме следующих трех членов и т. д. Другими словами, задача сводится к отысканию такой арифметической прогрессии, для которой отношение предыдущего члена к последующему равняется отношению суммы любого числа предыдущих членов к сумме такого же числа последующих членов. Единственной последовательностью целых чисел, удовлетворяющей этому замечательному свойству, является последовательность 1, 3, 5, 7,...
Наконец, Галилей мог прийти к своему закону чисто случайно в процессе опытов с движением шарика по наклонной плоскости, которые, согласно его книге, он многократно производил.
В действительности, как следует из находки Стиллмана Дрейка, ни одно из этих предположений не оказалось верным: обнаруженный им в Национальной библиотеке Флоренции документ (обозначенный как f 152 тома 72 галилеевских рукописей) свидетельствует, что Галилей при выводе своего закона не ссылался и не использовал ни мертонское правило, ни рассуждения арифметического толка [15, с. 85—92].
В найденном документе, который датируется не позднее октября 1604 г. и представляет лист с заметками Галилея, рассматривается задача об ускоренном движении, в котором величина скорости по прошествии выбранного промежутка времени увеличивается на единицу. В соответствии со средневековым представлением об ускоренном движении Галилей вначале полагает, что нарастание скорости идет не непрерывно, а скачками и по прошествии одной мили скорость возрастает на один градус. Он записывает условие: «4 мили с 10 градусами скорости за 4 часа».
Это означает, что первая миля проходится с одним градусом скорости, вторая — с двумя, третья — с тремя и четвертая — с четырьмя градусами скорости. Отсюда необычная для нас запись характеристики скорости: 1+2+3+4=10 градусов, которая в зависимости от условий задачи может соответствовать различным ускорениям и не представляет собой в нашем сегодняшнем понимании значения скорости по прошествии 4 миль. Время, указанное в условии (4 часа), выбирается им произвольно.
Затем Галилей как бы ставит вопрос: за какое время будет пройдена дистанция в 9 миль с 15 градусами скорости? Сперва он пытается решить задачу с помощью обычных числовых пропорций, но это ему не удается, и тогда он выбирает совершенно иной подход к решению проблемы. Он рисует чертеж, иллюстрирующий процесс падения. Точки А, В и С представляют расстояния, пройденные по вертикальной прямой при падении из состояния покоя, причем АВ предполагается равным 4, а АС — 9. Эти два числа, выбранные Галилеем произвольно, представляют собой квадраты, и не удивительно, что в попытках сопоставить двум числам, каждое из которых является квадратом, третье Галилею приходит на ум число, которое является средним пропорциональным в соответствующей пропорции. В данном случае средним пропорциональным будет 6 (4:6 = 6:9, тогда 62 = 4x9 и 6 = √(4x9). Если крайние члены пропорции есть квадраты, тогда среднее пропорциональное выразится целым числом. Этот факт, по-видимому, и имел в виду Галилей, когда числам 4 и 9 он поставил в соответствие число 6). И он помещает точку D между В и С так, что AD равно 6. Ему кажется, что такой выбор может решить проблему и 9 миль с 15 градусами скорости будут пройдены за 6 часов.
В данном случае выбор двух квадратов в качестве чисел условия можно считать счастливым совпадением, но следует отметить, что это было в обычае древних и средневековых математиков — практически все задачи решались с помощью числовых примеров, и очень часто в качестве значений выбирались первые числа натурального ряда или их квадраты. Как бы то ни было, Галилею удалось получить правильную зависимость пути от времени для равноускоренного движения: у него получалось, что скорости относятся как 10:15, т. е. как 2:3, в таком же отношении находятся и времена, отсчитываемые с начала падения, — 4:6 = 2:3, откуда следует, что пути относятся как 4:9 = 22:32, т. е. как квадраты времен.
Дрейк приводит по поводу этого результата Галилея слова Джойса: гений не совершает ошибок, его ошибки являются вратами в открытие. И действительно, результат Галилея парадоксален: исходя из того что скорость пропорциональна пути (предположения явно ошибочного), он приходит к заключению (совершенно истинному), что путь пропорционален квадрату времени! Парадокс объясняется замечанием самого Галилея, что вначале он не видел разницы в том, пропорциональна ли скорость пути или скорости, потому что к началу XVII в. еще не было в точности известно, как должна измеряться скорость, и Галилей делал по этому поводу разные предположения. Так, в рассматриваемом документе он оперирует с величиной, которую называет по-латыни gradus velocitatis (то, что мы сегодня обозначили бы через у), а в письме к Сарпи он использует итальянский термин velocita, предполагая, что это v2 в нашем сегодняшнем обозначении.
В письме к Сарпи Галилей подчеркивал, что ему известен квадратичный закон зависимости пути от времени, но он не знает неоспоримого принципа, из которого он мог бы этот закон вывести, хотя в промежуток времени, прошедший с момента написания рассматриваемого документа и до письма к Сарпи, Галилей определенно более уверен в правильности своего результата.
Но и с самого начала он видит в соотношении, получившемся благодаря совпадению, общую закономерность — он не ограничивается взятыми наугад двумя значениями пути, а продолжает вниз вертикальную ось и вычисляет, исходя из свойств пропорций, что точки, соответствующие увеличивающимся значениям скорости (а следовательно, и времени, так как в модели Галилея t1 : t2 = v1 : v2), должны лежать на параболе, имеющей осью начерченную им вертикаль. Таким образом, документ, хранящийся в Национальной библиотеке Флоренции, доказывает, что квадратичная зависимость между временем и путем равноускоренного движения была установлена Галилеем не позднее 1604 г.
Вопрос о том, как и когда Галилей пришел к представлению о параболической траектории движения снаряда, тесно связан с вопросом, какие эксперименты по падению тел Галилей в действительности проводил. Многие исследователи высказывали по этому поводу различные мнения, которые можно суммировать следующим образом: несомненно, что некоторые эксперименты (с маятником, движением на наклонной плоскости) Галилей проводил, что же касается опытов с вертикальным падением тела, то их существование сомнительно; при этом важно отметить, что в его сочинениях нигде не приводится точных экспериментальных данных, а величины, которые упоминаются, например, в «Беседах», являются результатом мысленных экспериментов, не имевших места в действительности.
Особенное недоумение вызывали до самого последнего времени обстоятельства открытия параболической траектории движения снаряда. С одной стороны, когда ученик Галилея Бонавентура Кавальери опубликовал в 1632 г. (в год выхода «Диалога») в своей книге «Зажигательное зеркало» правильный закон движения снаряда, это вызвало у Галилея взрыв возмущения. Он обвинил Кавальери в плагиате, и конфликт был улажен после того, как Кавальери принес свои извинения и признал приоритет Галилея. С другой стороны, во Втором дне «Диалога» он утверждает, что линия, которую описывает свободно падающее тело (брошенное вниз с башни на вращающейся вокруг своего центра Земле), будет полуокружностью, заканчивающейся в центре Земли. Он приходит к такому выводу на основе принципа независимости движений и представления о круговой инерции [16, I, с. 264].
Теперь благодаря исследованиям Дрейка стало возможным прояснить эту загадку. Обнаруженные и проанализированные им заметки Галилея (которые находятся в Национальной библиотеке Флоренции под шифром f114, f116 и f117 тома 72 собрания галилеевских рукописей) неопровержимо доказывают, что Галилей не позднее 1608 г. открыл, что снаряд, пущенный горизонтально, падает по параболе, а в начале 1609 г. доказал это математически, хотя и опубликовал свой результат лишь спустя 30 лет.
Чтобы получить траекторию тела, брошенного горизонтально, ему необходимо было знать, помимо принципа независимости движений, два закона: закон падения и закон инерции. Первый был установлен Галилеем, как мы теперь знаем, в 1604 г. Что касается второго, то точный смысл его Галилею был еще неясен. Как следует из его ранних трактатов, в начале 90-х годов XVI в. он пришел к заключению, что на горизонтальной плоскости в отсутствие трения шар может быть приведен в движение сколь угодной малой силой. Затем он рассудил, что если движение началось, то никаких усилий для его продолжения не требуется (силу приходится прикладывать лишь для преодоления сопротивления), поэтому в принципе шар, движущийся по горизонтальной плоскости, должен двигаться равномерно и бесконечно долго, если, конечно, он не будет встречать сопротивления движению. Таков, по-видимому, был ход мыслей Галилея, предшествовавший экспериментам 1608 г., которые должны были бы подтвердить правильность его концепции, а заодно ответить на вопрос, что случится в отсутствие плоскости, удерживающей шар на горизонтальной поверхности.
Итак, у Галилея созревает план эксперимента: если заставить падать шар, брошенный горизонтально, то, измеряя пройденные им горизонтальные отрезки, можно убедиться в том, является ли движение по горизонтали равномерным; если же результат окажется положительным, это будет веским аргументом в пользу его концепции об инерциальном движении. В начале XVII в. Галилей много времени посвящает исследованию движения на наклонной плоскости, и ему кажется вполне подходящим использовать наклонную плоскость для планируемого эксперимента.
Мы знаем, что время падения тела (если пренебречь сопротивлением) не зависит то того, брошено ли тело отвесно или горизонтально с одной и той же высоты. Следовательно, расстояние, проходимое телом по горизонтали, при прочих равных условиях будет зависеть только от горизонтальной скорости тела в момент начала падения. Разную скорость можно получить при скатывании шара с различной высоты по наклонной плоскости, а горизонтальное направление в конце пути движению шара можно придать с помощью нехитрого направляющего устройства, или дефлектора. Величины горизонтальных скоростей (вернее, их отношения), приобретенных в результате скатывания с различной высоты по одной и той же наклонной плоскости, могут быть подсчитаны из результатов первого измерения при использовании закона свободного падения.
Прибор Галилея (реконструкция)
Реконструкция прибора, который использовал Галилей для своих экспериментов, изображена на рисунке. Основной его частью была деревянная планка с желобом длиной около 2 м, сечением 10x15 см. Планка устанавливалась на столе над утлом 30° к горизонтали, который на 77,7 см возвышался под уровнем пола. С получившейся наклонной плоскости Галилей пускал массивный гладкий шар и отмечал точку его падения на пол. Позднее в «Беседах» он так описывал аналогичный прибор: «Вдоль узкой линейки или, лучше сказать, деревянной доски длиною около двенадцати локтей, шириною пол-локтя и толщиною около трех дюймов был прорезан канал шириною немного больше одного дюйма. Канал этот был прорезан совершенно прямым и, чтобы сделать его достаточно гладким и скользким, оклеен внутри возможно ровным и полированным пергаментом; по этому каналу мы заставляли падать гладкий шарик из твердейшей бронзы совершенно правильной формы» [16, II, с. 253].
Единицей измерения в этих экспериментах Галилею служил пунто, который, как это можно заключить из градуировки шкал пропорционального циркуля, сделанного Галилеем и хранящегося в Музее истории науки во Флоренции, равен 0,938 мм.
Документ f 116 представляет собой запись эксперимента, который Галилей проводил с помощью описанного прибора: он пускал шар по наклонной плоскости с различной высоты, отмеченной им как 300, 600, 800 и 1000 пунти над уровнем стола; в конце движения шар приобретал горизонтальное направление, и для каждой из высот Галилей отмечал точку, в которой шар касался пола. Эти расстояния, отсчитываемые от края стола, он отметил как 800, 1172, 1328 и 1500 соответственно.
Кроме этого, в документе содержится запись расчета, проделанного Галилеем, — он вычислил расстояния, которые шар, падая с различных высот, проходил по горизонтали. Расстояния рассчитывались в предположении, что горизонтальное движение было равномерным при использовании данных первого опыта (800 пунти при падении с высоты 300 пунти), а также квадратичной зависимости пути от времени. Пусть h1 и h2 — высоты, с которых шар последовательно скатывается с наклонной плоскости; s1 — расстояние, пройденное шаром по горизонтали при скатывании с высоты h1. Для того чтобы вычислить расстояние s2, соответствующее высоте h2, поступаем следующим образом.
Согласно Галилею, времена падения шара по вертикали и вдоль наклонной плоскости относятся как высота к длине наклонной плоскости, т. е. tверт./tн.п. = h/l. А поскольку опыты производятся на одной и той же наклонной плоскости, то это отношение сохраняется постоянным для всех высот и t1/t2 = h1/h2 где t1, t2 — времена движения шара по наклонной плоскости. Но если шар движется по наклонной плоскости, можно сказать, что он падает вдоль этой плоскости, и согласно закону квадратичной зависимости для пути падения, установленной Галилеем,
v 1 2 /v 2 2 =h 1 /h 2 , (1)
где v1, v2 — скорости, которые шар приобретает в конце движения по наклонной плоскости (ибо h ~ t2, a v ~ t и h ~ v2). С другой стороны,
s 1 /s 2 =v 1 t/v 2 t=v 1 /v 2 ; s 1 2 /s 2 2 =v 1 2 /v 2 2 . (2)
Комбинируя (1) и (2), получаем:
s 1 /s 2 = h 1 /h 2
и
Вычисленные Галилеем горизонтальные пути для высот, равных 600, 800 и 1000 пунти, оказались равными соответственно 1131, 1306 и 1460 пунти, в то время как его собственный эксперимент дал для этих величин значения 1172, 1328 и 1500 пунти. Столь близкое совпадение данных эксперимента и результатов расчета дало возможность Галилею утверждать впоследствии, что движение по горизонтали сохраняется бесконечно долго и является равномерным. Наряду с вычислениями в документе f 116 содержится рисунок Галилея, изображающий траектории движения шара в его опытах. Без сомнения, эти кривые являются параболами, что подтверждается дальнейшими его записями.
Галилею легко было математически вывести параболическую форму траектории, поскольку он хорошо был знаком с параболами: его деятельность началась с изучения центра тяжести параболоидов вращения. В документе, хранящемся под номером f117 тома 72 его рукописей, приводится такой геометрический вывод: он рисует пересекающиеся горизонтальную и вертикальную прямые, затем откладывает по горизонтали равные отрезки, а по вертикали — отрезки, соответствующие квадратам. Проводя затем соответствующие горизонтальные и вертикальные прямые, он получает точки пересечения, которые и определяют параболу.
Итак, записи Галилея, относящиеся к 1608—1609 гг., дают нам основание утверждать, что к этому времени Галилей вывел теоретически и доказал экспериментально факт движения по параболе для тела, брошенного горизонтально. Подтверждение тому, что Галилей в действительности проводил эксперименты и интерпретация его записей, предложенная Дрейком, справедлива, мы находим в других документах, относящихся к этому же времени.
Дело в том, что данные, полученные Галилеем в одном из опытов, зафиксированных в документе f116, его не удовлетворили. Несколькими годами ранее он теоретически установил правило: если тело движется по наклонной плоскости в течение некоторого времени, а затем, приобретя горизонтальную скорость, падает, то путь, пройденный в свободном падении за то же время по горизонтали, будет вдвое больше первоначального пути вдоль наклонной плоскости. Чтобы проверить это правило, Галилей пускал шар с высоты 828 пунти на наклонной плоскости и отмечал путь, пройденный шаром по горизонтали в свободном падении также с высоты 828 пунти. Так как угол наклона плоскости равнялся 30°, он был вправе ожидать, что, согласно его правилу, путь этот должен был бы быть равен 2x868, т. е. 1656 пунти, однако в опыте он получил значение 1340 пунти (при угле 30° высота вдвое меньше длины наклонной плоскости, следовательно, вдвое меньшее время требуется шару для падения по высоте, чем вдоль плоскости; поэтому, согласно правилу Галилея, при высоте плоскости, равной 828 пунти, шар пройдет по ней расстояние 1656 пунти за вдвое большее время, чем то, за которое он упадет затем на пол с высоты, также равной 828 пунти, пройдя по горизонтали расстояние, также равное 1656 пунти).
Неудовлетворенный расхождением эксперимента (1340 пунти) и теории (1656 пунти), Галилей, по-видимому, приписал его влиянию дефлектора, т. е. закругления, с помощью которого шару придается горизонтальное направление, и решил провести опыты без дефлектора. В действительности ошибка определялась тем, что для тяжелого бронзового шара, который использовался в опытах Галилеем, не справедлива в точности пропорциональность времен отношению высоты и длины наклонной плоскости, так как лишь 5/7 потенциальной энергии шара превращается в кинетическую энергию горизонтального движения, а 2/5 превращается в кинетическую энергию вращения. Но Галилей этого знать не мог и решил обойтись без дефлектора. Запись этих опытов с наклонной плоскостью, где шар, прокатившись по плоскости, падал под углом к горизонту, содержится в документе под номером f114 того же 72 тома галилеевских рукописей, хранящихся в Национальной библиотеке во Флоренции.
В этом отрывке содержится лишь запись экспериментальных данных, так как Галилей еще не знал, как рассчитывается путь, пройденный по горизонтали, для тела, брошенного под углом к горизонту. Галилей приводит лишь ряд цифр, обозначающих величину горизонтального пути, пройденного шаром при падении с различных высот. В 1975 г. Стиллман Дрейк и Джеймс Маклечлан повторили эксперименты Галилея и получили прекрасное совпадение с результатами Галилея [17]Приводим его определение силы: «Сила есть давление или толкание одного тела другим» — и количества движения: «Одинаковые силы вызывают одинаковое изменение в одинаковых телах... ибо при потере или приобретении одного и того же количества движения тело претерпевает одинаковые изменения и в том же самом теле равные силы приводят к равным следствиям; говорят, что тело имеет больше или меньше движения, если больше или меньше силы требуется, чтобы приобрести или уничтожить это движение целиком» [2, с. 146].
.
Эти данные убедительно доказывают, что Галилей уделял большое внимание эксперименту, тщательно продумывал опыты и рассматривал эксперимент как необходимое подтверждение теории. Опыты, проведенные им в 1608—1609 гг., послужили экспериментальной основой его представления об инерциальном движении, позволив ему сделать одновременно вывод, что траекторией горизонтально брошенного снаряда является парабола.
4
Великий Кеплер научил людей «измерять небеса». И почти одновременно с выходом в свет его «Новой астрономии» в истории науки произошло другое замечательное событие: Галилей направил телескоп на звездное небо, началась новая эпоха в наблюдательной астрономии, которая непредсказуемо расширила наши представления о Вселенной.
Изобретение телескопа, относящееся, по-видимому, к концу первого десятилетия XVII в., принято считать случайным открытием. Таким оно и было, если под этим понимать, что человек, первым построивший телескоп, не намеревался с его помощью наблюдать звездное небо. Но можно посмотреть на это событие и с другой стороны, и тогда в появлении телескопа можно увидеть закономерность.
Дело в том, что конец XVI и начало XVII в.— это период, когда в среде людей, так или иначе связанных с научными исследованиями, все сильнее обнаруживается стремление сделать науку полезной. Мысль о том, что результаты научных исследований могут и должны служить основой улучшения условий человеческого существования,— один из главных результатов эпохи Возрождения. К такому выводу приводили различные интеллектуальные тенденции. Гуманистическая традиция прославляла ученого-ремесленника, отбросившего бесплодные схоластические упражнения ради реального дела. Наука и практика в рамках этой традиции рассматривались как взаимосвязанные и взаимодополняющие области человеческой деятельности. Ярким примером этому служит личность Леонардо, соединявшего в себе гений философа и инженера, математика и живописца. Он говорил, что науки бессмысленны и полны ошибок, если они возникли не из эксперимента — «матери всякой определенности» — и если они не заканчиваются экспериментом, ясным и доказательным. С другой стороны, только наука дает определенность и силу. Те, кто полагаются на практику без науки, подобны морякам, отправляющимся в плавание без руля и компаса. С этим мнением Леонардо перекликаются взгляды находившегося в русле герметической традиции Джован Батисты Порты, рассматривавшего науку как магическое искусство. Он говорил, что идеалом человека является личность, которая делает, чтобы знать, и знает, чтобы делать [18, с. 41].
Представление об ученом как о homo faber в значительной степени обусловило тот факт, что ремесло и искусство, ремесло и наука стали параллельными занятиями для многих интеллектуалов. Более того, научный инструмент рассматривался и как произведение искусства, и как плод науки. Выполненный ремесленником, он повышал общественный престиж изготовившего его мастера, и поэтому изготовление научных инструментов стало одним из престижных и популярных занятий. Здесь можно вспомнить Тихо Браге, украсившего фреской свой знаменитый гигантский квадрант, или Региомонтана, посвятившего много времени усовершенствованию типографской техники.
Итак, изобретение телескопа было подготовлено всей тенденцией интеллектуального развития эпохи. И хотя мы не знаем точно имени изобретателя, этому человеку, как утверждал Гюйгенс в своей «Диоптрике», необходимо должен был помочь случай. Среди претендующих на честь открытия телескопа несколько имен из четырех стран — Англии, Италии, Голландии и Германии, и каждая из них пытается приписать честь открытия своему соотечественнику.
Свойство выпуклых прозрачных тел увеличивать видимые через них предметы было известно еще в древности, во всяком случае, Роджер Бэкон уже упоминает об этом, добавляя, что это свойство выпуклых стекол может использоваться людьми для исправления слабого зрения. В XIV в. очки получили довольно широкое распространение. Методом проб и ошибок научились изготовлять очки для дальнозорких и близоруких, поэтому не так уж удивительно, что к началу XVII в. пришла очередь телескопа.
Создание первого телескопа традиционно приписывают голландцу Хансу Липперсхею, изготовителю очков из Мидленбурга, знаменитого тем, что он делал линзы не из стекла, а из горного хрусталя. 2 октября 1608 г. он обратился к принцу Морицу Нассаускому с просьбой выдать ему патент на изобретение прибора, который приближает рассматриваемые через него предметы. Для приобретения патента ему было предложено усовершенствовать свой телескоп так, чтобы в него можно было смотреть двумя глазами, что Липперсхей вскоре и сделал. Тем не менее патента он так и не получил, зато за свой бинокулярный телескоп получил крупную сумму от правительства Нидерландов.
В июле следующего года об этом открытии узнал Галилей через своих друзей. В это время он находился в Венеции и сразу же попытался сам изготовить такой инструмент. Первая же попытка удалась, и Галилей построил телескоп, дающий трехкратное приближение. В конце августа он вновь приезжает в Венецию, на этот раз с десятикратным телескопом. Вначале он использует телескоп как подзорную трубу — он демонстрирует прибор венецианским сенаторам с башни св. Марка, показывая, что с его помощью можно заметить корабли задолго до того, как они становятся видны простым глазом. Эксперимент Галилея производит сенсацию. Затем он дарит свой телескоп Венецианской республике, а сам, в свою очередь, получает кафедру в университете (теперь уже пожизненно), а также прибавку к жалованью, которое становится беспрецедентно высоким для профессора математики.
Телескопы Галилея
До конца года Галилей посвящает все свое время попыткам совершенствовать прибор, пока не получает, наконец, телескоп с тридцатикратным приближением, увеличивающий в 1000 раз. Это был предел того, что можно было достичь для инструмента подобной конструкции. Наконец, в январе 1610 г. Галилей направил свой телескоп на небо. То, что он там увидел, превзошло любые догадки. Оказалось, что Луна покрыта горами, Млечный Путь состоит из звезд, Юпитер окружен четырьмя спутниками и многое другое достойное удивления.
Сам факт того, что Галилей с помощью телескопа стал рассматривать Вселенную, чрезвычайно показателен как для самого Галилея, так и для всего нового интеллектуального направления, представителем и вождем которого он был. «Чтобы взглянуть в телескоп, нужно было быть не только гениальным ученым, но ученым нового толка. Увидеть то, что увидел Галилей (и поверить своим глазам), мог только ученый, свободный от власти традиции и авторитета, с иным представлением о человеческом достоинстве, об индивидуальном праве на истину, добытую своими руками и своим умом, а не полученную из божественного откровения и освященного веками текста. Именно в этом — больше, нежели в литературных вкусах и эстетических высказываниях Галилея, проявилась его глубочайшая связь с гуманистической культурой итальянского Возрождения» [19, с. 30].
Понимая всю важность и сенсационность увиденного, Галилей торопится опубликовать результаты своих наблюдений, и уже в марте появляется его книга (впервые за много лет!), и уже в самом ее заглавии Галилей спешит сообщить, что же именно он увидел. Название гласило: «Звездный вестник, возвещающий великие и очень удивительные зрелища и предлагающий на рассмотрение каждому, в особенности же философам и астрономам, Галилео Галилеем, Флорентийским патрицием, Государственным математиком Падуанской гимназии, наблюденные через подзорную трубу, недавно им изобретенную, на поверхности Луны, бесчисленных неподвижных звездах, и прежде всего на четырех планетах, вращающихся вокруг звезды Юпитер на неодинаковых расстояниях с неравными периодами и с удивительной быстротой; их, неизвестных до настоящего дня ни одному человеку, автор недавно первый открыл и решил именовать их Медицейскими звездами — в Венеции, у Фомы Бальони 1610 с разрешения властей и привилегией».
Книга была написана по-латыни и предназначалась прежде всего ученым; это отчет об увиденном, а не широкое и страстное изложение собственного научного мировоззрения, каким будут его «Диалог» и «Беседы», написанные по-итальянски и рассчитанные на самый широкий круг читателей. Но и в этом коротком, всего в 29 страниц, отчете содержатся весьма веские свидетельства тому, что традиционная аристотелевская картина мира не соответствует действительности. Галилей видит Луну гористой и тут же отмечает, что она «не в совершенстве сферическая, как полагал в отношении ее великий легион философов». Он направляет телескоп на Млечный Путь, который оказывается «скоплением бессчетного множества звезд», и добавляет при этом, «что споры, в течение веков мучившие философов, умолкли сами собой благодаря наглядности и очевидности». Доказательство того, что Млечный Путь состоит из звезд, не видимых простым глазом, было еще одним ударом по представлениям Аристотеля, согласно которому Млечный Путь есть огненное испарение наподобие хвоста комет. Галилей не упускает из внимания и тот факт, что открытие им спутников Юпитера есть «великолепный и наияснейший довод к устранению сомнений у тех, которые спокойно относятся к вращению в коперниковской системе планет вокруг Солнца, но настолько смущаются движением одной Луны вокруг Земли... что даже считают необходимым отвергнуть такое строение Вселенной как невозможное» [16, I, с. 53].
Титульный лист «Звездного вестника»
Фазы Луны (рисунок из «Звездного вестника»)
«Звездный вестник» создал Галилею европейскую славу. Кеплер восторженно отозвался о книге и вскоре опубликовал «Разговор со „Звездным вестником”», широкий отклик она получила и среди высокопоставленной аудитории: монархи и высшее духовенство выказали к открытиям Галилея большой интерес. Книга помогла Галилею получить место придворного математика великого герцога Тосканского — место, которого он давно добивался. Поэтому он и назвал открытые им спутники Юпитера Медицейскими звездами — по имени Козимо Медичи, правителя Тосканы.
Но открытия Галилея заставили и его самого по-иному взглянуть на соотношение между наблюдаемыми фактами и теорией. Система Коперника получила в его глазах недвусмысленное подтверждение, поэтому он не решается продолжать преподавание в университете старой астрономии по Птолемею и летом 1610 г. отказывается от кафедры в Падуе. Кроме того, он остался не удовлетворен тем, как венецианский сенат оценил его деятельность, и открытие телескопа в частности, несмотря на пожизненное профессорство и необычно высокое жалованье, которое ему было предложено. Галилей возвращается в родную Флоренцию, где становится придворным математиком и философом великого герцога Тосканского, а также получает должность первого математика Пизанского университета без обязательства читать лекции.
5
Над своей первой, главной, книгой Галилей работал около шести лет и закончил ее в начале 1630 г. Два года прошли в хлопотах по ее изданию, главным образом в получении всевозможных одобрений и разрешений со стороны властей. Наконец, в 1632 г. она была напечатана во Флоренции в типографии Лондини. На титульном листе значилось imprimatur, т. е. разрешение на публикацию генерального викария Флоренции, цензора тосканского двора и папского цензора Риккарди. Столь необычное число разрешений было вызвано тем, что и Галилей, и его друзья хорошо знали о революционном характере книги и хотели себя обезопасить от возможных отрицательных последствий. Как показало будущее, это оправдало себя лишь наполовину. Книга называлась «Диалог Галилео Галилея Линчео, Экстраординарного Математика Пизанского университета и Главного Философа и Математика Светлейшего Великого Герцога Тосканского, где в четырехдневных беседах ведется обсуждение Двух Основных Систем Мира, Птолемеевой и Коперниковой, и предлагаются неокончательные философские и физические аргументы как с одной, так и с другой стороны».
Книга написана на итальянском языке; изложение ведется в форме беседы между тремя венецианскими патрициями — Сальвиати, Сагредо и Симпличио — во дворце Сагредо на Большом канале. Такие имена выбраны Галилеем не случайно: первые два имени напоминают о двух умерших друзьях Галилея — флорентийском дворянине Филиппо Сальвиати (1583—1614), которому Галилей посвятил свои «Письма о солнечных пятнах», и венецианском патриции Джованфранческо Сагредо (1571—1620). Третий персонаж «Диалога» носит имя, которое означает по-итальянски «простак», в разговоре он неизменно отстаивает аристотелевскую точку зрения, и недаром, поскольку, с другой стороны, это имя выдающегося комментатора Аристотеля, жившего в VI в.,— Симпликия.
Для космологического трактата это была довольно странная книга. Во-первых, она была написана утонченной итальянской прозой (а не по-латыни) и уже этим одним подчеркивалось, что предназначена она для широкой аудитории, а не только для астрономов. Во-вторых, изложение ведется в форме диалога. Это позволило Галилею, с одной стороны, избежать многих затруднений, связанных с необходимостью (в противном случае) проводить строгий математический анализ систем Коперника и Птолемея, с другой — сохранить, хотя бы внешне, нейтральную позицию. Хотя в названии и говорится, что беседы ведутся в основном о птолемеевской системе, в действительности же речь идет отнюдь не об эпициклах, эксцентрах, деферентах, эквантах и прочих необходимых аксессуарах математической астрономии. По мере знакомства с книгой становится все более ясным, что основная проблема, которая в ней обсуждается,— это физика, а точнее, проблема движения. Обсуждение этой проблемы в значительной степени определяется защитой коперниканства, и внимание Галилея сосредоточено на фундаментальном вопросе: можно ли представить, что Земля вращается вокруг своей оси и вокруг Солнца, а если да, то почему такое движение возможно?
В процессе ответа на этот фундаментальный вопрос Галилей подвергает логическому анализу не кинематические конструкции Птолемея, а основные положения физики Аристотеля.
Книга распадается на четыре главы по числу дней, в продолжение которых ведется дискуссия. Первый день начинается с обсуждения той исключительности, которую Аристотель и пифагорейцы приписывали определенным числам. Галилей относится скептически к спекуляциям подобного рода (например, что число 3 есть число совершенное), хотя и соглашается с Аристотелем в том, что мир совершенен и имеет три измерения. Очень скоро дискуссия отвлекается от общих проблем и переходит к конкретным физическим вопросам. Галилей обращает внимание на наличие в аристотелевской физике двойной дихотомии — разделение космоса на две различные по своему статусу области, надлунную и подлунную, а также соответственное разделение движений на прямолинейное и круговое. В надлунной сфере, по Аристотелю, тела движутся совершенным образом — их движение вечно и совершается по окружностям. В подлунной сфере тела движутся по прямым линиям — к центру или от центра Земли.
Изучение коперниканской теории и собственные астрономические наблюдения уже убедили Галилея в том, что в природе существует фундаментальное единство материи и движения, и теперь он пытается доказать это, исходя из логических предпосылок, а не с помощью одних наблюдений, которые, вообще говоря, могут быть истолкованы по-разному.
Перед ним открываются два пути: он может или распространить земные движения на весь космос, или же распространить небесные движения на земную область. Первый путь означает для него непреодолимые трудности, ибо без ясного понимания понятия силы и закона инерции, а также без владения аппаратом исчисления бесконечно малых криволинейное движение невозможно вывести из прямолинейного. Все это будет сделано позднее Ньютоном, а пока Галилей выбирает другую альтернативу и провозглашает, что все движения — и на Земле и в небесах — являются круговыми, в то время как прямолинейность движений представляется ему иллюзорной. Галилей (устами Сальвиати) уже согласился с Аристотелем, что мир представляет собой наилучшим образом упорядоченную систему, и теперь это положение служит для него краеугольным камнем доказательства того, что все движения в мире являются круговыми.
Фронтиспис «Диалога»
Сальвиати продолжает: «Установив такое начало (т. е. что в мире господствует совершенный порядок), мы можем непосредственно из него сделать вывод, что если тела, составляющие Вселенную, должны по своей природе обладать движением, то невозможно, чтобы движения их были какими бы то ни было, кроме как круговыми; основание этого просто и ясно. Ведь то, что движется прямолинейным движением, меняет место, и если движение продолжается, то движущееся тело все больше и больше удаляется от своей исходной точки и от всех тех мест, которые оно последовательно прошло; а если такое движение ему естественно присуще, то оно с самого начала не находилось на своем естественном месте, и, значит, части Вселенной не расположены в совершенном порядке; однако мы предполагаем, что они подчинены совершенному порядку; значит, невозможно допустить, чтобы им как таковым по природе было свойственно менять места, т. е., следовательно, двигаться прямолинейно» [16, I, с. 115—116].
Разрушение дихотомии небесного и земного движений происходит с помощью именно этого доказательства от противного, которое, заметим, ведется в рамках аристотелевского метода и основано на аристотелевской аксиоме. В этом проявляется талант Галилея-полемиста.
Из этого доказательства, которое отнюдь не является физическим, следует тем не менее фундаментальный физический вывод: поскольку различив между естественными движениями на небе и на Земле лежит в основе аристотелевского разграничения между земной и небесной физикой, оно также оказывается неправильным, и отныне существует только один набор законов, управляющих как небом, так и Землей. Установление универсальности законов, управляющих движением, разрушает и аристотелевское иерархическое пространство. Поскольку не существует привилегированного места во Вселенной, то пространство становится евклидовым, безразличным к предметам, в нем находящимся. Верх и низ не являются более абсолютными направлениями, а всего лишь произвольно выбранными по отношению к данной системе отсчета.
В Первом дне содержится и первая формулировка закона круговой инерции. Галилей говорит, что если круговое движение «тем или иным образом приобретено, оно будет продолжаться непрерывно и с равномерной скоростью» [16, I, с. 125—126]. Понятно, почему в этом месте Галилей говорит лишь о «круговой» инерции — ведь не существует иных движений, кроме круговых, и «движение по горизонтальной линии, у которой нет ни наклона, ни подъема, есть круговое движение вокруг центра» [16, I, с. 126].
Установив логическим путем отсутствие различий между земным и надлунным миром, Галилей затем подтверждает это положение многочисленными данными, полученными с помощью телескопа. Эти доводы являются недвусмысленной ссылкой на его открытия, изложенные в «Звездном Вестнике» и в работе о солнечных пятнах. Эти доказательства столь убедительны, что, как полагает Галилей, они «заставили бы Аристотеля, если бы он жил в наше время, переменить свое мнение» [16, I, с. 148]. Более того, «мы можем много лучше Аристотеля рассуждать о небесных вещах, так как... сам он признает для себя такого рода познание затруднительным из-за удаленности неба от органов чувств... мы же благодаря телескопу стали теперь ближе к небу в тридцать или сорок раз, чем Аристотель, и теперь можем заметить на небе сотню таких предметов, коих он не мог видеть; среди них есть и указанные пятна на Солнце; они, безусловно, были для него невидимы; значит, о небе и о Солнце мы можем говорить гораздо увереннее Аристотеля» [16, I, с. 154].
Первый день заканчивается интересным рассуждением о способностях человеческого разума, которое весьма показательно для характеристики методологии Галилея, и в частности для его отношения к неоплатонизму. Он различает в человеке способность к интенсивному и экстенсивному познанию. Хотя в смысле экстенсивности человеческое познание уступает божественному разуму, в интенсивном познании, т. е. в понимании конкретных частных проблем человек может достичь истинного совершенства: «Я утверждаю, — говорит Галилей, — что человеческий разум познает некоторые истины столь совершенно и с такой абсолютной достоверностью, какую имеет сама природа; таковы чистые математические науки, геометрия и арифметика; хотя божественный разум знает в них бесконечно больше истин, ибо объемлет их все, но в тех немногих, которые постиг человеческий разум, я думаю, его познание по объективной достоверности равно божественному, ибо оно приходит к пониманию их необходимости, а высшей достоверности не существует» [16, с. 201].
Как указывает профессор Джеймонат, в этом утверждении можно увидеть желание Галилея отмежеваться от неоплатонизма. Ибо для неоплатоников путь достижения абсолюта заключался единственно в мистическом познании целого, в то время как для Галилея этот путь заключается скорее в рациональном понимании некоей ограниченной области знания [12, с. 129].
Приведенное высказывание Галилея вообще для него весьма характерно. Он не раз подчеркивал, что для него истинный путь исследования природы состоит в поисках не глобальных решений, а конкретных ответов на конкретные вопросы. Еще одним примером подобного высказывания может служить известное место из заметок Галилея, где он говорит: «Я нахожу, что лучше найти какую-нибудь простую истину, чем долго спорить о высочайших вопросах, не достигнув никакой истины» [20, IV, с. 738].
Второй день «Диалога» посвящен обсуждению проблемы суточного движения Земли. Вначале подробно рассматриваются возражения против такого представления, выдвигаемые Аристотелем, Птолемеем и их последователями. Симпличио излагает пять возражений Аристотеля, из которых можно выделить два основных: 1) для Земли естественным движением является движение по прямой линии, если же она движется по окружности, то такое движение ее будет насильственным и противоестественным, а потому не может быть вечным; 2) опыты с падением тяжелых тел доказывают, что, «падая сверху вниз, они идут перпендикулярно к поверхности Земли, и совершенно также тела, брошенные перпендикулярно вверх, возвращаются по тем же самым линиям вниз, даже если они были брошены на огромную высоту» [16, I, с. 223]. По мнению Аристотеля, если бы Земля двигалась, то камень, брошенный вертикально вверх, никогда не смог бы вернуться в ту точку, из которой он был брошен.
Сальвиати, который говорит от имени Галилея, разбивает эти доводы, основываясь частично на результатах бесед Первого дня, а частично на работах Галилея тридцатилетней давности, в которых он установил законы падения и принцип независимости движений. Что касается первого возражения Аристотеля, то опровержение его не представляет труда, поскольку в дискуссиях Первого дня уже было установлено, что все движения на Земле и на небе необходимо являются круговыми, то нет никаких оснований полагать, будто круговое же движение Земли будет являться для нее противоестественным. Более того, согласно принципу круговой инерции, равномерное движение по окружности необходимо будет вечным.
Второй довод против суточного вращения Земли является предметом гораздо более внимательного и подробного рассмотрения. По мнению Сальвиати, это самое сильное возражение его противников. Действительно, говорит он, «ведь если бы Земля обладала бы суточным обращением, то башня, с вершины которой дали упасть камню, перенесется обращением Земли, пока падает камень, на много сотен локтей к востоку, и на таком расстоянии от подножья башни камень должен был бы удариться о Землю» [16, I, с. 224]. Аналогичное явление можно наблюдать, если бросать свинцовый шар с мачты движущегося корабля. «Когда корабль движется, то место падения шара должно будет находиться на таком удалении от первого (т. е. от подножия мачты.— В. К.), на какое корабль ушел вперед за время падения свинца» (Там же).
Выход из этого затруднения также хорошо известен Галилею. Здесь он неясно использует принцип независимости движений, а также принцип относительности движения, который впоследствии он изложит весьма пространно. Сальвиати говорит, что при падении камня с вершины башни его движение «слагалось бы из двух, а именно из того, которым он отмеривает башню (т. е. движения по вертикали, свободного падения. — В. К.), и из другого, которым он за ней следует (т. е. суточного вращения Земли, в котором участвует и башня, и камень.— В. К.). Из такого сложения вытекало бы, что камень описывает не простую прямую и отвесную линию, а наклонную, и, может быть, не прямую» [16, I, с. 238]. При этом Галилей прекрасно знает, что относительно неподвижной системы координат камень опишет параболу — это он выяснил не позднее 1608 г., но здесь он решает не вдаваться в математические или экспериментальные доказательства этого факта, который поясняет лишь качественно.
Интересно, что Галилей-Сальвиати в этом споре с Симпличио относительно камня, падающего с мачты движущегося корабля, ведет себя так же, как падуанский профессор Кремонини, его друг и неизменный оппонент в космологических вопросах, который отказался смотреть в телескоп Галилея, ибо, согласно его представлениям о мироздании, ничего нового он увидеть там не мог. Точно так же и Сальвиати на вопрос Симпличио, как же он берется настаивать на правильности своего утверждения, если не проделал ни одного эксперимента для его подтверждения, отвечает: «Я и без опыта уверен, что результат будет такой, как я вам говорю, так как необходимо, чтобы он последовал» [16, I, с. 243]. Мы видим, что и Галилей, и Кремонини обладают одинаковым темпераментом, но их научная убежденность зиждется на разной основе, и в этом коренное отличие между университетской философией, базирующейся на тысячелетнем авторитете аристотелевской доктрины, и новой физикой Галилея, которая основывается — явно или неявно — на экспериментальной процедуре, не имеющей антецедентов в прошлом.
В продолжение дискуссии Второго дня Галилей критикует представление Аристотеля, что среда является причиной движения брошенного тела. Он говорит, что среда может только препятствовать движению, а не вызывать его. Это дает ему повод продолжить свои рассуждения о характере движения брошенных тел, а затем перейти к опровержению аргументов Птолемея против движения Земли вокруг собственной оси. Возражения Птолемея сводятся к тому, что, во-первых, птицы и облака, не связанные с Землей и потому ею не увлекающиеся, не испытывают никакого влияния вследствие ее движения с огромной скоростью, хотя они, очевидно, должны были бы отставать от нее; во вторых, «скалы, здания и целые города» должны были бы разрушиться вследствие центробежного эффекта при вращении.
Первый довод Птолемея опровергается Галилеем на том основании, что с физической точки зрения одушевленные предметы не отличаются от неодушевленных, и поэтому движение птиц не должно отличаться от движения камня — птица не может не касаться Земли, а как только это происходит, ей тотчас же передается суточное движение Земли. В следующем за этим рассуждении описывается мысленный эксперимент, объясняющий также и движение облаков. По сути дела он является красочным описанием того, что сегодня мы называем принципом относительности Галилея: физические законы инвариантны относительна систем отсчета, движущихся равномерно и прямолинейно.
Описание Галилея столь замечательно, что приведем его целиком: «Уединитесь с кем-либо из друзей в просторное помещение под палубой какого-нибудь корабля, запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нем маленькими рыбками; подвесьте, далее, наверху ведерко, из которого вода будет падать капля за каплей в другой сосуд с узким горлышком, поставленный внизу. Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в поставленный сосуд, и вам, бросая какой-либо предмет, не придется бросать его с большей силой в одну сторону, чем в другую, если расстояния будут одни и те же; и если вы будете прыгать сразу двумя ногами, то сделаете прыжок на одинаковое расстояние в любом направлении. Прилежно наблюдайте все это, хотя у вас не возникает никакого сомнения в том, что, пока корабль стоит неподвижно, все должно происходить именно так. Заставьте теперь корабль двигаться с любой скоростью, и тогда (если только движение будет равномерным и без качки в ту или другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно. Прыгая, вы переместитесь на полу на то же расстояние, что и раньше, и не будете делать больших прыжков в сторону кормы, чем в сторону носа, на том основании, что корабль быстро движется, хотя за то время, что вы будете в воздухе, пол под вами будет двигаться в сторону, противоположную вашему прыжку, и, бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, чем когда ваше взаимное положение будет обратным; капли, как и - ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей; рыбы в воде не с большим усилием будут плыть к передней, чем к задней части сосуда; настолько же проворно они бросятся к пище, положенной в какой угодно части сосуда; наконец, бабочки и мухи по-прежнему будут летать во всех направлениях, и никогда не случится того, чтобы они собрались у стенки, обращенной к корме, как если бы устали, следуя за быстрым движением корабля, от которого они были совершенно обособлены, держась долгое время в воздухе; и если от капли зажженного ладана образуется немного дыма, то видно будет, как он восходит вверх и держится наподобие облачка, двигаясь безразлично в одну сторону не более, чем в другую. И причина согласованности всех этих явлений заключается в том, что движение корабля обще всем находящимся на нем предметам, так же как и воздуху» [16, I, с. 286].
Так Галилей справляется и с возражением Птолемея относительно облаков. Отметим, что в современной трактовке принципа относительности мы говорим, что физические законы не изменяются безразлично к тому, описывают ли они события в покоящейся системе координат или движущейся равномерно и прямолинейно. У Галилея мы не встретим слова «прямолинейно», но это и понятно, ведь для него пока все движения круговые!
Мы видим, что на пути решения космологических проблем выкристаллизовывается физическая система Галилея, причем введенный им принцип относительности имеет в его глазах, помимо прочего, и методологическую ценность. Чтобы оправдать теорию Коперника, он вначале показывает, что «для порождения решительно одинаковых явлений безразлично, движется ли Земля и остается неподвижным весь остальной мир, или же Земля стоит неподвижно, а весь остальной мир движется тем же самым, движением» [16, I, с. 215]. Затем преимущество и предпочтительность теории Коперника доказываются уже с помощью критерия простоты — некоего варианта «бритвы Оккама»: «Природа не употребляет многих средств там, где она может обойтись немногими» (Там же). Этот постулат имеет, безусловно, применение, не ограничивающееся лишь защитой коперниканства; критерий простоты становится одним из фундаментальных критериев физической теории.
Гораздо большие трудности приходится преодолевать Галилею при попытке устранить второе возражение Птолемея против суточного вращения Земли: почему Земля не разрушается в результате центробежного эффекта. Галилей предлагает здесь два объяснения, ни одно из которых не является ни полностью правильным, ни исчерпывающим. Остается предположить все же, что для современников Галилея оба они казались достаточно убедительными.
Первый аргумент имеет в своей основе правильную идею, что тела на Земле удерживаются тяготением. Галилей называет это свойство тел gravità — тяжестью, и физический смысл этого понятия еще не вполне ясен. По мнению Галилея, то, что тела не срываются с поверхности Земли, обусловлено фактом, что любое тело отлетает по касательной к окружности вращения: «Таким образом, если бы камень, отброшенный вращающимся с огромной скоростью колесом, имел такую же естественную склонность двигаться к центру этого колеса, с какой он движется к центру Земли, то ему нетрудно было бы вернуться к колесу или, скорее, вовсе не удаляться от него, ибо раз в начале отрыва удаление столь ничтожно из-за бесконечной остроты угла касания, малейшего уклонения по направлению к центру колеса было бы достаточно, чтобы удержать его на окружности» [16, I, с. 294].
По-видимому, сам Галилей чувствует неудовлетворенность таким доказательством, потому что тут же он приводит другое объяснение, которое кажется более удовлетворительным с точки зрения повседневного опыта. Он говорит, что вращение, при котором полный оборот совершается за 24 часа, является столь медленным, что оно не может являться причиной какого-либо смещения предметов, участвующих в таком вращении, точно так же как камень не может слететь с колеса, вращающегося с такой скоростью. Ясно, что Галилей в этом пункте совершает ошибку — центробежная сила у него получается зависящей исключительно от угловой скорости [16, I, с. 311, 317].
Непосредственно за опровержениями аргументов противников суточного движения Земли Сальвиати сообщает читателям об открытых Галилеем законах падения. Доказательство здесь не приводится, а просто говорится, что правило возрастания скорости в равноускоренном движении «до нашего времени оставалось неизвестным для всех философов и впервые было найдено и доказано трудами Академика, нашего общего друга, который в некоторых своих сочинениях, еще не обнародованных, но доверительно показанных мне и некоторым другим его друзьям, доказывает, что ускорение прямолинейного движения тяжелых тел совершается соответственно ряду нечетных чисел, начиная с единицы... иначе говоря, что пройденные пространства относятся друг к другу как квадраты времен» [16, I, с. 322].
Другое важное замечание относительно характера равноускоренного движения состоит в том, что впервые ускорение рассматривается как непрерывный процесс. Это обстоятельство, важность которого часто ускользала от внимания историков науки, было особенно существенным для современников Галилея. Дело в том, что, как указывалось выше, в эпоху позднего Средневековья и Возрождения ускорение мыслилось многими учеными как скачкообразный процесс — тело приобретало определенный «градус скорости», затем в течение некоторого времени двигалось равномерно с этим градусом скорости, затем приобретало новый градус скорости, с которым вновь двигалось равномерно некоторое время, и т. д. Не избежал влияния такого представления и Галилей, что можно увидеть в его рукописях, относящихся к раннему периоду творчества, но вот в «Диалоге» он вносит полную ясность в представление о процессе. Он говорит: «Ускорение движения свободно падающего тела растет постоянно с мгновения на мгновение» — и поясняет далее, очевидно имея в виду идеи своих предшественников: «В самом деле, если приращение скорости в ускоренном движении идет непрерывно, то нельзя разбить его на какое-то определенное число постоянно возрастающих степеней скорости, потому что, изменяясь каждое мгновение, они бесчисленны» [16, I, с. 328].
Здесь же Галилей дает геометрическое доказательство того факта, что тело, движущееся равноускоренно, проходит за некоторое время путь, вдвое меньший, чем путь, пройденный тем же телом, движущимся равномерно, за то же время, но со скоростью, равной конечной скорости равноускоренного движения. Этот результат, эквивалентный известному мертоновскому правилу, позднее им был предсказан в «Беседах».
Наконец, во Втором дне «Диалога» находит свое отражение еще один результат, полученный Галилеем еще в юности, а именно изохронизм движения маятника: «Колебания одного и того же маятника происходят одинаково часто, велики эти колебания или малы» [16, I, с. 330].
Третий день «Диалога» посвящен проблеме годового движения Земли. Главное возражение против такого движения заключается в том, что если бы Земля двигалась вокруг Солнца, то должно было бы наблюдаться изменение положения неподвижных звезд, чего на самом деле не наблюдается. Галилей так отвечает на этот аргумент: смещения неподвижных звезд неощутимы из-за огромного расстояния между ними и Землей, расстояния, которое в невообразимо большое число раз превышает размер земной орбиты. В продолжение дискуссии о величинах межзвездных расстояний он выдвигает также предположение о бесконечности Вселенной, которое, впрочем, не получает дальнейшего развития.
Третий день в большей степени, чем любая другая глава в «Диалоге», связан непосредственно с защитой коперниканского учения, этот день венчает все предыдущие рассуждения, и Галилей, суммируя полученные результаты, показывает, каким образом предположение о суточном и годовом вращении Земли дает наиболее простое объяснение всех явлений на небе, включая и открытия, сделанные с помощью телескопа. На вопрос Симпличио, каким же образом в системе Коперника устраняются несоответствия геоцентрической системы, Сальвиати дает следующий замечательный ответ (который является одним из немногих в «Диалоге» мест, где обсуждается кинематическая схема Птолемея):
«У Птолемея мы находим болезни, а у Коперника — лекарство от них. Во-первых, разве не назовут все философские школы великой несообразностью то, что тело, естественно движущееся по кругу, движется неравномерно вокруг собственного центра и равномерно вокруг другой точки? И все же такие уродливые движения существуют в построениях Птолемея; у Коперника же все тела движутся равномерно вокруг собственного центра. У Птолемея небесным телам нужно приписывать противоположные движения и заставлять их всех двигаться с востока на запад и вместе с тем с запада на восток, в то время как у Коперника все небесные обращения совершаются в одном направлении от захода к восходу. И что скажем мы о видимом движении планет, столь уродливом, что они не только движутся то быстро, то медленнее, но иногда совсем останавливаются и даже возвращаются далеко назад? Чтобы объяснить такое явление, Птолемей ввел множество эпициклов, назначив их один за другим для каждой планеты с особыми правилами несогласованных движений; все они устраняются одним чрезвычайно простым движением Земли. И не назовете ли вы, синьор Симпличио, величайшим абсурдом то, что в построении Птолемея, где для каждой планеты намечены собственные орбиты, одна выше другой, слишком часто приходится отмечать, как Марс, помещенный над сферой Солнца, падает настолько, что, прорывая солнечную орбиту, опускается ниже нее и приближается к Земле больше, чем солнечное тело, и немного спустя опять поднимается чрезмерно высоко? А эта и другие несообразности чрезвычайно легко устраняются годовым движением Земли» [16, I, с. 437].
Относительно короткий Четвертый день отводится для обсуждения приливов и отливов. Галилей предполагал, что объяснение этих явлений, выдвинутое им, послужит наилучшим доказательством движения Земли, никак не связанным с астрономическими наблюдениями, и потому наиболее веским доводом в пользу коперниканской теории. Он никак не склонен был приписывать причину приливов действию Луны, так как считал такое действие мистическим качеством, которому не место в научных объяснениях. Его объяснение является чисто механическим: Галилей считает, что вследствие участия Земли в двух движениях части земной поверхности испытывают попеременные ускорения и замедления (в течение половины суток некоторая часть земной поверхности будет в результате вращения вокруг своей оси обладать движением, направленным в ту же сторону, что и годовое движение Земли, а в следующую половину суток эти направления будут противоположны). Эти ускорения и замедления и будут являться причиной соответственно отливов и приливов точно так же, как это имеет место в лодке, которая перевозит воду и внезапно натыкается на препятствие; в таком случае вода, находящаяся в лодке, устремляется к носу, а если: лодка внезапно ускоряется, то вода откатывается к корме [16, I, с. 517-518].
Четвертый день «Диалога» весьма показателен для характеристики стиля мышления Галилея (что англичане называют scientific personality). Его приверженность механистическому объяснению более сильна, определенна и бескомпромиссна, чем у последующих создателей механистической философии, включая Ньютона. Именно поэтому правильное объяснение явления приливов на основе притяжения Луны (что позднее неопровержима было доказано Ньютоном) было для Галилея неприемлемым — действия на расстоянии вошли как составная часть в механицизм значительно позднее,— а в то же время неправильное объяснение приливов на основе суммарного эффекта суточного и годового движений Земли имеет в его глазах столь высокую убедительность именно потому, что оно чисто механическое (несмотря на то что оно не соответствовало фактам наблюдений: из теории Галилея получалось, что приливы и отливы достигают максимальной величины во время солнцестояний, а не равноденствий, а в действительности правильно обратное).
Итак, повторим еще раз, что в процессе защиты коперниканства Галилей оказался вовлеченным в построение новой науки о движении. Но это и неудивительно. Ведь чтобы опровергнуть возражения против движения Земли (а некоторые из них казались весьма убедительными), ему было необходимо создать по крайней мере интуитивно, новую механику, с помощью которой можно было бы проанализировать следствия, вытекающие из наличия такого движения. Галилей не создал цельной системы; может быть, он к этому и не стремился, если вспомнить его отношение к попыткам решения глобальных проблем, но интуитивно он должен был основываться на каких-то общих принципах, лежащих в основе всего теоретизирования.
Помимо методологических принципов, вроде критерия простоты, в «Диалоге» можно выделить три основных принципа, лежащих в основе того, что профессор Макмаллин назвал «механикой „Диалога"». Это принцип независимости движений, принцип относительности и закон инерции. Первые два принципа в значительной степени основываются на эксперименте, и даже там, где Галилей утверждает, что логика его доказательства столь безупречна, что не нуждается в реальном подтверждении опытом, как нам теперь известно, действительный эксперимент давно был проведен Галилеем, но он об этом умалчивает из полемических соображений.
6
Обсуждение приливов и их роли в утверждении теории Коперника играли важнейшую, если не самую важную, роль в истории написания «Диалога». Сейчас достоверно известно, что первоначально книга имела название «Диалог об отливах и приливах на море»: рукопись именно с таким заголовком Галилей привез в Рим в 1630 г. Свидетельство этому можно найти в сохранившемся письме Никколо Риккарди, доверенного лица папы к главному инквизитору Флоренции [20, 19, с. 327]. Очевидно, по требованию церковных властей (а вполне вероятно, что рукопись Галилея подверглась переработке по прямому указанию самого Урбана VIII) следовало изменить вступление, а также порядок повествования, не говоря уже о том, что необходимо было поправить и исключить множество мелких несоответствий первоначального замысла с окончательным текстом. Тем не менее одно из таких несоответствий осталось незамеченным, и сам этот факт говорит в пользу того, что первоначальный замысел был иным. Суть неувязки заключается в следующем. В конце вступления, адресованного «благоразумному читателю», говорится, что три высокоученых синьора «приняли мудрое решение собраться как-нибудь вместе и, отрешившись от всяких других дел, заняться более последовательно рассмотрением чудес творца на небе и на земле» [16, I, с. 103]. Но поразительно, что свою первую беседу в Первый день Сальвиати начинает словами, идущими вразрез с только что процитированным высказыванием: «В заключение вчерашней нашей беседы мы решили, что нам следует сегодня рассмотреть, насколько возможно тщательнее и подробнее, существо и действительность тех естественных оснований, которые до сего времени приводились, с одной стороны, защитниками позиции Аристотеля и Птолемея, а с другой — последователями коперниковой системы» [16, I, с. 105].
Если судить по словам Сальвиати, то беседы уже велись, и на самом деле это вовсе не литературный прием, как это считают комментаторы русского перевода [16, I, с. 609]! Куда более разумно предположить, что это результат поспешной перекомпоновки книги, работы, которая наверняка имела место. Более того, вполне вероятным является предположение, что «вчерашний» день был посвящен обсуждению того, какие действия Природы являются наиболее удивительными и заслуживающими внимания; в результате собеседники остановились на явлении приливов, которое, по мысли Галилея, могло бы служить неоспоримым доводом в пользу движения Земли. Дальнейшие детальные рассуждения, составляющие содержание первых трех дней-глав печатного текста «Диалога», есть не что иное, как прелюдия к рассмотрению этого главного феномена, доказывающего истинность коперниканского учения. Недаром Сальвиати в конце Третьего дня заключает: «И так как мне кажется, что за эти три дня мы достаточно долго рассуждали о системе Вселенной, то теперь наступило время перейти к главному вопросу, с которого начались наши рассуждения: я говорю о морских приливах и отливах, причину которых, как кажется, можно с большей вероятностью отнести к движениям Земли» (курсив мой. — В. К.) [16, I, с. 506]. Следовательно, не только свидетельства современников указывают на то, что «Диалог» был первоначально задуман и написан как книга о приливах, но и сам текст переделанной книги дает этому ясное подтверждение.
Папа УРБАН VIII
С историей написания и переделки текста «Диалога» связана наиболее драматическая глава жизни Галилея, которая до сих пор представляет тайну для историков. Цепь событий, последовавших после опубликования «Диалога», общеизвестна. Галилей получил строгий приказ явиться в Рим на суд инквизиции, в результате которого его книга «Диалог» была запрещена, а сам он был приговорен к пожизненному заключению после унизительной процедуры отречения от коперниканского учения и покаяния. Все это, случившееся с Галилеем, вызывает недоумение даже с точки зрения ортодоксальной католической законности.
Во-первых, «Диалог» как таковой не мог рассматриваться в качестве предмета обвинения, потому что книга прошла тройную цензуру и получила разрешение на публикацию от всех возможных авторитетов, включая Никколо Риккарди, магистра Святейшего дворца, а, кроме того, обсуждение теории Коперника вовсе не считалось ересью. На самом деле эдикт 1616 г. не запрещал книгу Коперника «О вращении небесных сфер», в нем было четко указано, что разрешение на ее публикацию временно задержано вплоть до исправления, причем эти исправления должны были коснуться не научной сути, а теологических импликации. Обо всем этом церковные власти были прекрасно осведомлены: как сказал Урбан III флорентийскому послу в Риме Никколини, существует много католических догматов, однако неподвижность Земли в центре Вселенной не является одним из них [20, XIV, с. 391—393].
Итак, не публикация «Диалога» и не его содержание послужили действительной причиной инквизиционного процесса над Галилеем в 1633 г.; историки науки полагают, что истинной причиной был гнев папы Урбана VIII, который теперь вдруг узнал, что когда Галилей около десяти лет назад приезжал в Рим, чтобы поздравить своего старого друга Маффео, кардинала Барберини, с избранием на престол св. Петра, то Галилей был с ним недостаточно откровенен в разговорах, касавшихся теории приливов и возможной публикации книги на эту тему.
Однако более детальное рассмотрение этого вопроса нимало не проясняет дела, поскольку непонятно, что именно в поведении Галилея могло так оскорбить Урбана VIII, чтобы тот из его искреннего друга и почитателя мог превратиться во врага и преследователя. Формально, как полагают, причина папского гнева коренилась в том, что Галилей скрыл от него, что в 1616 г. генеральным комиссаром инквизиции в присутствии кардинала Беллармина и других лиц ему было предписано никогда впредь не обсуждать учение Коперника, письменно или устно, под страхом тюремного заключения. Когда в августе 1633 г., 17 лет спустя, Галилей предстал перед судом инквизиции, ему было предъявлено обвинение в нарушении именно этого предписания, а не обвинение, связанное с содержанием «Диалога» как таковым.
Современные биографы Галилея считают, что это обвинение было абсолютной неожиданностью прежде всего для папы, гнев которого, по свидетельству тосканского посла, не имел пределов. Урбан не мог простить своему старому другу не столько сам факт нарушения, сколько неискренность и утаивание столь важного происшествия, о котором, по его убеждению, Галилей обязан был ему сообщить в то время, когда вопрос о публикации «Диалога» только обсуждался, а возможно, и много раньше. Психологически такое объяснение может считаться весьма вероятным, особенно если учесть необузданный характер Урбана, который самым большим грехом считал нелояльность по отношению к себе.
Однако поведение Галилея, опять-таки психологически, совершенно несовместимо с такой версией: в то время как папа, а за ним и герцог Тосканский были буквально вне себя от ярости, Галилей оставался совершенно спокоен и как будто бы не придавал этому никакого значения. У него для этого были веские основания, и чтобы во всем этом разобраться, следует возвратиться на 20 лет назад.
Распространение учения Коперника в Италии постоянно наталкивалось на жестокое сопротивление наиболее влиятельного и вместе с тем наиболее реакционного крыла католицизма — ордена доминиканцев. В отличие от соперничавшего с ними ордена иезуитов (которые строили свою стратегию на стремлении к овладению научным знанием и на большей терпимости к новому в рамках католического вероучения) доминиканцы слепо «следовали метафизике св. Фомы и смотрели с подозрением на любое новшество, даже если оно было чисто астрономическим. Поэтому, в частности, они были так настроены против Галилея, который рассматривал теорию Коперника не только как поворотный пункт в астрономии, но и во всей новой науке. Другими словами, в период, который мы рассматриваем, доминиканцы представляли собой арьергард ультраконсервативных и реакционные элементов католицизма. И не случайно, что первые, наиболее невежественные и наиболее непримиримые противники Галилея принадлежали к этому ордену» [12, с. 76—77].
В конце октября 1612 г. доминиканец Никколо Лорини впервые выступил против Галилея и его сторонников, однако его обвинения были завуалированы и имя ученого не было названо. К тому же он вскоре прислал Галилею оправдательное письмо, в котором уверял, что против него персонально он ничего не имеет. Как показывают дальнейшие события, Лорини просто лгал, а причиной его реверансов был страх перед Галилеем, который имел могущественных покровителей как среди церковных иерархов, так и среди светских государей, и в первую очередь к нему благоволил Козимо II, «умник и практик, знавший цену Галилею» [22, с. 117]. Но с годами ситуация ухудшалась, и в 1614 г. доминиканец Томмазо Каччини выступил с новыми нападками на Галилея. Свою рождественскую проповедь, в которой он утверждал, что математика является дьявольским искусством и представляет серьезную опасность для веры, Каччини закончил словами из Деяний апостолов: «Мужи Галилейские, что вы стоите, глядя на небо?» По евангельскому преданию, с такими словами ангелы обратились к жителям Галилеи, желая внушить им, что Иисус, свидетелями вознесения которого они были, больше уже виден не будет. В проповеди Каччини эта фраза звучит каламбуром — он как бы передает сторонникам Галилея божественный наказ не предаваться еретическим занятиям астрономией.
Две недели спустя Лорини послал донос на Галилея, на этот раз прямо обвиняя Галилея в опасных заблуждениях, высказанных в письме Бенедетто Кастелли, и призывая церковные власти принять меры, чтобы «малая ошибка в начале не превратилась в большую ошибку в конце». Как только донос Лорини был получен святейшей канцелярией, немедленно началось расследование, которое проходило в обстановке строгой секретности. Первые результаты расследования говорили в пользу Галилея; в его письме Кастелли не было найдено ничего серьезного, и дело вроде бы должно было быть прекращено, однако вскоре ему был дан новый импульс: 12 марта 1615 г. сам Каччини, появился в Риме, чтобы свидетельствовать против Галилея.
К этому времени Галилей понимал всю опасность, которая ему грозила, он понимал также, что Лорини и Каччини лишь инструменты в руках большой и могущественной партии, в которой доминиканцы играют ведущую роль. Поэтому он обратился с письмом к кардиналу Дини с просьбой о поддержке со стороны иезуитов — давних соперников доминиканцев в борьбе за определяющее влияние в церкви. Борьба иезуитов и доминиканцев отражала более широкий социально-политический конфликт, связанный с противоборством Испании и Франции на международной арене. В Италии существовали две влиятельные политические партии — французская и испанская, причем с первой были связаны иезуиты, а со второй — доминиканцы. К французской партии принадлежала и аристократическая семья Барберини (а в их числе кардинал Маффео, будущий папа Урбан VIII), которые были друзьями Галилея.
Ситуация, определяемая закулисной войной, становилась все напряженнее, и Галилей в декабре 1615 г. решает отправиться в Рим, чтобы самому убедить влиятельных церковных вельмож в преимуществах коперниканской теории. Но тем временем разбирательство его дела приняло неожиданный оборот: церковники занялись не Галилеем персонально, как того желал Каччини, но самим вопросом о допустимости гелиоцентрической доктрины. В феврале 1616 г. святейшая канцелярия представила на рассмотрение теологов два суждения, относительно которых им следовало высказаться:
1) Солнце является центром мира и не участвует ни в каком местном движении;
2) Земля не является центром мира и не неподвижна, но движется как целое, а также участвует и в суточном движении.
24 февраля комиссия из одиннадцати теологов — квалификаторов инквизиции — постановила, что первое предложение является глупым, с философской точки зрения — абсурдным, а с формальной — еретическим. Относительно второго предложения было принято, что оно столь же философски абсурдно, как и первое, но с теологической точки зрения не является еретическим, а представляет собой заблуждение в вере. Ответ комиссии был на следующий день передан в святейшую канцелярию, а затем в конгрегацию индекса, в результате чего декретом 5 марта книга Коперника была «задержана» вплоть до исправления.
Такой исход событий означал явную победу реакции, но Галилей избежал открытого осуждения и запрещения каких-либо своих сочинений благодаря защите со стороны влиятельных покровителей. Тем не менее в покое его не оставили. 25 февраля 1616 г. папа Павел V приказал кардиналу Беллармину призвать к себе Галилея и увещевать его оставить осужденное теологами мнение о движении Земли и неподвижности Солнца, что тот не замедлил сделать и уже 3 марта на заседании конгрегации инквизиции сообщил, что он увещевал Галилея, который со всем согласился. Однако через некоторое время до Галилея дошли слухи о том, что он подвергался судебному преследованию со стороны инквизиции, в результате чего был принужден отречься от своих воззрений, и на него наложено церковное покаяние. Обеспокоенный Галилей тотчас обратился к Беллармину с просьбой о помощи, и кардинал в ответ прислал ему следующий документ:
«Так как мы, Роберт, кардинал Беллармин, услышали, что синьор Галилей подвергся клевете и ему приписали, что он перед нами отрекся, а также что на него было наложено спасительное покаяние, то, стремясь к засвидетельствованию истины, заявляем: вышеназванный синьор Галилей ни перед нами, ни перед кем-нибудь другим здесь в Риме, ни также, поскольку мы это знаем, в другом месте не отрекался от какого бы то ни было своего мнения или учения и на него не было возложено ни спасительного покаяния, ни чего-либо другого в этом роде; ему лишь было объявлено сделанное Господином нашим и опубликованное священной конгрегацией индекса постановление, в котором сказано, что учение, приписываемое Копернику, что Земля движется вокруг Солнца, Солнце же стоит в центре мира, не двигаясь с востока на запад, противоречит Священному писанию, поэтому его нельзя ни защищать, ни придерживаться. В свидетельство чего мы написали и подписали настоящее нашей собственной рукой 26 марта 1616 года. Вышеназванный Роберт, кардинал Беллармин» [22, с. 210].
Галилей взял с собой этот документ, уезжая во Флоренцию, хранил его в течение многих лет, а когда его в январе 1633 г. заставили отправиться в Рим, он захватил с собой копию свидетельства Беллармина, и, как выяснилось, не напрасно.
Когда Галилей прибыл в Рим; ему пришлось ждать еще два месяца, пока 12 апреля не началось слушание его дела. Это время он жил во дворце тосканского посла и был относительно спокоен. Действительно, если его вызов связан с «Диалогом», то с точки зрения закона максимум того, что могут сделать папские власти, это изъять тираж из продажи, поскольку книга прошла официальную цензуру, и автор в таком случае осужден быть не может; если же это отголоски давних лет, то у него есть оправдательное письмо Беллармина. Но того, что ему было предъявлено на первом же допросе, он никак не мог ожидать при всей своей проницательности и предусмотрительности. А случилось то, что комиссар инквизиции, доминиканец Винченцо Макулано, прочел ему текст протокола инквизиции от 26 февраля 1616 г., который гласил:
«Во дворце пресветлейшего кардинала Беллармина, именно в его приватных покоях, упомянутый пресветлейший господин кардинал, после того как был приглашен и предстал перед его светлостью вышеозначенный Галилей, и в присутствии достопочтенного брата Михаила, Ангело Сегеция де Лауда из ордена доминиканцев, генерального комиссара святого судилища, увещевал вышеназванного Галилея в ошибочности указанного мнения в том, чтобы он его оставил, и вслед за тем в моем и свидетелей присутствии, а также в присутствии того же пресветлейшего господина кардинала вышеупомянутый отец комиссар вышеупомянутому, доселе здесь же находившемуся и приглашенному Галилею предписал и повелел от собственного имени святейшего Господина нашего папы и всей конгрегации святого судилища, чтобы он от вышеупомянутого мнения, что Солнце — центр мира и неподвижно, а Земля же движется, совершенно отказался и в дальнейшем каким бы то ни было образом его не придерживался, его не преподавал и его не защищал ни устно, ни письменно, в противном случае против него будет возбуждено дело в святом судилище. С этим предписанием оный Галилей согласился и обещал повиноваться» [22, с. 126].
Кардинал БЕЛЛАРМИН
Галилей очень скоро понял, чем грозит ему этот документ. Если предположить, что все описанное в протоколе действительно имело место, то нет сомнения в том, что в «Диалоге» он «каким-то образом преподавал» коперниканскую доктрину, и нельзя сказать, что он от нее «совершенно отказался». Далее, как видно из протокола, дело не ограничивается отеческим внушением, как это следовало бы из свидетельства Беллармина, но налицо строгий приказ, приговор, грозящий в случае нарушения судом. Отсюда следует, что даже не публикация «Диалога», а само создание этой книги является сознательным нарушением приказа инквизиции, что говорит о наличии в действиях автора «злой воли» согласно теории инквизиционного судопроизводства. Обвиняемый, в действиях которого суд обнаруживает наличие злой воли, автоматически объявляется «закоренелым еретиком» и приговаривается к смерти «без пролития крови», т. е. к сожжению на костре.
Неудивительно, что Галилей был ошеломлен — его жизнь внезапно оказалась висящей на волоске, поэтому он решительно отказывается признать протокол инквизиции и в доказательство своей правоты предъявляет свидетельство Беллармина. Теперь приходит очередь инквизиторов удивляться. Подлинность свидетельства не оставляет сомнений, хотя под протоколом отсутствуют подписи присутствовавших, как того требовала официальная процедура.
Без сомнения, предусмотрительность Галилея отчасти разрушила планы обвинения, подготовленного со всей методичностью и тщательностью, — недаром Галилею пришлось ждать два месяца до начала процесса. Инквизиторы не могли и вообразить, что существует документ, подобный тому, который представил Галилей и который сводил на нет всю тщательно отработанную схему.
Дальнейший ход процесса был мучительным для Галилея и нелегким для инквизиторов. Они хорошо понимали, что неподписанный протокол не может считаться столь же доказательным, как и документ, написанный рукой Беллармина, свидетельство которого не подвергалось сомнению. С другой стороны, они уже не могли дать делу обратный ход. Все это прекрасно понимал и сам Галилей. Поэтому он вынужден был согласиться на компромисс: ссылаясь на нетвердость памяти, он признал, что все описанное в протоколе действительно могло иметь место; в свою очередь, инквизиторы не стали рассматривать Галилея «закоренелым еретиком» (что по логике вещей они должны были бы сделать), а признали его лишь «грешником, подлежащим исправлению». Такой исход дела гарантировал Галилею жизнь.
Обстоятельства появления протокола инквизиции от 26 февраля 1616 г. до сих пор неясны. Некоторые исследователи считают, что он является фальшивкой, сфабрикованной в 1632 г., а сам процесс в целом — интригой против Урбана VIII, хитроумно сплетенной испанской партией во главе с кардиналом Гаспаром Борджа, послом Испании при папском дворе и председателем судилища над Галилеем (см. [10, 22]). Однако, уже утверждает С. Дрейк, «неподписанный оригинал протокола был неоднократно подвергнут экспертами тщательному анализу; он не является подделкой, он не был сначала сфабрикован, а затем включен в архивы инквизиции, как привыкли думать некоторые» [29, с. 258]. Как же в таком случае мог появиться этот документ?
Наиболее вероятным представляется следующее объяснение. События, описанные в протоколе, действительно имели место. Комиссар инквизиции Сегицци, присутствовавший при разговоре Беллармина с Галилеем, в нарушение папского предписания прочел Галилею приказ «не придерживаться, не защищать и не преподавать учение Коперника» под страхом сурового наказания. Этот поступок инквизитора был не только бестактным по отношению к Беллармину, в доме которого все происходило, но и абсолютно незаконным. По-видимому, этот демарш и дал повод слухам, в результате которых Галилей обратился к Беллармину за защитой, и тот прислал ему оправдательное письмо. В этом письме Беллармин как бы говорил Галилею, что все сказанное комиссаром инквизиции тот не должен считать имевшим места, а принимать во внимание лишь то, что было сообщено им, кардиналом Беллармином. Галилей так и поступил. Но, к несчастью, в архивах инквизиции сохранился полный отчет о действиях Сегицци. Возможно, из-за вмешательства Беллармина он не был подписан, и Галилей надеялся, что кардинал позаботится изъять его из архивов, но последнего не произошло.
Теперь можно более определенно утверждать, что послужило причиной резкой перемены отношения Урбана VIII к Галилею: папу не столько заботила законность выдвинутого против Галилея обвинения, сколько тот факт, что Галилей скрыл от него в 1624 г., когда речь шла о замысле «Диалога», все обстоятельства разговора с кардиналом Беллармином. Косвенным подтверждением, что конфликт носил глубоко личный характер, служит то обстоятельство, что среди трех кардиналов, отказавшихся подписать приговор Галилею, был Франческо Барберини, племянник Урбана VIII и министр иностранных дел Ватикана.
Но интрига все-таки существовала. В тайной войне, которая велась между Урбаном VIII и сторонниками испанской партии, к моменту публикации «Диалога» позиции папы резко пошатнулись: союз с протестантским королем Швеции после смерти Густава-Адольфа стал бесполезным, Ришелье, его единственный могущественный единомышленник, был серьезно болен, католическая реакция торжествовала в Испании и Германии. По словам современника, «эти события не образумили, а разъярили Урбана VIII, он потерял голову и начал делать величайшие глупости» [20, XIX, с. 278].
Процесс Галилея оказался не только трагической ошибкой самого Урбана VIII: ущерб, нанесенный авторитету католической церкви в результате осуждения Галилея, был столь велик, что она теперь вряд ли могла надеяться оправиться от него.
7
Сразу после осуждения Галилея инквизицией в 1633 г. началась работа над новой книгой. Галилей провел несколько месяцев в Сиене по пути во Флоренцию, и здесь, по его собственным словам, он приступил к созданию трактата на совершенно новую тему, полного любопытных и полезных рассуждений. Через год работа была фактически закончена, о чем Галилей так писал своему венецианскому другу Фульдженцо Миканцио: «Трактат о движении, совершенно новый, полностью готов; но мой беспокойный ум не может воздержаться от того, чтобы не размышлять о нем снова и снова, тратя на это массу времени, потому что каждая новая мысль, которая мне приходит в голову, заставляет меня отбросить все прошлые открытия» [20, XVI, с. 163].
На самом деле законченная Галилеем книга, которую он продолжал править и дополнять, отнюдь не была «совершенно новой» — в ней излагались результаты прошлых его исследований, в основном относящиеся к падуанскому периоду, причем спектр там был очень широк — от статики и сопротивления материалов до законов движения маятника и законов падения. Галилей не пришел даже к окончательному решению, как назвать книгу, и она вышла в 1638 г. в Лейдене у Эльзевиров под тем заглавием, которое ей дал Луи Эльзевир. Галилею оно не нравилось, и он даже хотел его изменить, хотя до этого дело так и не дошло. На титульном листе последней книги Галилея стояло:
БЕСЕДЫ
и
МАТЕМАТИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА,
касающиеся двух новых
отраслей науки, относящихся
к механике и местному движению,
синьора
Галилео Галилея Линчео,
философа и первого математика
светлейшего великого герцога Тосканского
с приложением о центрах тяжести различных тел
Строение книги во многом напоминает «Диалог» — она написана в форме свободной дискуссии между знакомыми нам персонажами — Сальвиати, Сагредо и Симпличио, но имеется и различие: Третий и Четвертый день «Бесед» представляют собой обсуждение старого трактата Галилея «О местном движении», написанного по-латыни, отрывки из которого читает вслух Сальвиати, и лишь обсуждение их ведется по-итальянски. Уже самим этим приемом Галилей хотел, по-видимому, подчеркнуть академический характер «Бесед», в отличие от «Диалога» его новая книга в гораздо большей степени адресовалась научному сообществу, чем широкой публике. И если он, поступая таким образом, имел в виду избежать нареканий со стороны духовенства, ему это полностью удалось. Как заметил по этому поводу С. Тимпанаро в предисловии ко второму тому собрания сочинений Галилея: «„Беседы” — книга не менее коперниканская, чем „Диалог". Теологи не осудили ее, потому что они ее не поняли» [23, II, с. 97].
Титульный лист «Бесед»
Две новые науки, обозначенные в заглавии, — это сопротивление материалов, которому посвящены в основном первые два дня (напомним, что главы называются у Галилея днями), и кинематика равноускоренного движения, которая является темой Третьего и Четвертого дней. Уже после смерти Галилея в книгу были включены еще две главы. Пятый день был опубликован в 1674 г. в книге ученика Галилея Винченцо Вивиани «Пятая книга „Начал" Евклида, или же Общее учение о пропорциях, рассматриваемое согласно Галилею и изложенное новым образом и впервые опубликованное Винченцо Вивиани, последним учеником Галилея, с приложениями, принадлежащими Галилею и Торричелли». Последняя глава, в которой обсуждается проблема удара, появилась как Шестой день в 1718 г. при переиздании сочинений Галилея во Флоренции. Существуют, однако, основания полагать, что сам Галилей намеревался вставить ее перед Пятым днем, что подтверждается также некоторыми сюжетными особенностями Четвертого, Пятого и Шестого дней.
Тема Первого дня значительно шире предмета, обозначенного в тексте книги, а именно «науки, касающейся сопротивления твердых тел разрушению». Главный вопрос — почему тела сопротивляются разрушению при растяжении и изгибе — не находит в этой главе определенного ответа, но зато он является поводом для обсуждения многих так или иначе примыкающих к нему проблем. Например, вопрос о сопротивлении предполагает рассмотрение причин связности тел, а они, в свою очередь,— анализ строения материи. Атомистические представления, положенные в основу такого анализа, заставляют Галилея перейти к проблеме дискретного и непрерывного и обсуждению структуры бесконечности. Здесь, в частности, им высказывается замечательная мысль, что мощность множества натуральных чисел равна мощности множества квадратов натуральных чисел — результат поразительный, если учесть, что теория множеств была создана лишь в XIX в. Георгом Кантором. Обсуждая строение материи, Галилей не может не коснуться проблемы пустоты и среды — здесь он опровергает взгляды Аристотеля относительно падения тел в пустоте, отсюда переходит к рассмотрению падения как такового и, наконец, к законам движения маятника.
Что же касается основной темы обсуждения, то результаты даются лишь в продолжение Второго дня. Наиболее интересным результатом является исследование сравнительной прочности на изгиб геометрически подобных стержней. Галилей, основываясь на предположении, что все усилия в зоне разлома являются растягивающими и распределенными равномерно по сечению,, пришел тем не менее к совершенно правильному выводу, что прочность стержня прямоугольного сечения пропорциональна ширине стержня и квадрату его высоты, а для круглого стержня она пропорциональна кубу диаметра.
Благодаря своим исследованиям, содержащимся в первых двух днях «Бесед», Галилей справедливо считается основателем науки о прочности материалов, но нас интересует сейчас другая линия его рассуждений, нашедшая развитие в следующих двух днях дискуссий, линия, связанная с разработкой нового учения о движении.
Именно в Первом дне закладываются основы триумфа математической кинематики Третьего дня. Здесь Галилей опровергает точку зрения Аристотеля на связь движения и существование пустоты. Вначале Симпличио формулирует утверждение Аристотеля, согласно которому существование движения противоречит допущению пустоты. Его доводы таковы: «Он (Аристотель) рассматривает два случая: один — движение тела различного веса в одинаковой среде, другой — движение одного и того же тела в различных средах. Относительно первого случая он утверждает, что тела различного веса движутся в одной и той же среде с различными скоростями, которые относятся между собой как веса тел... Относительно второго случая он принимает, что скорость движения одного и того же тела в различных средах различна и обратно пропорциональна степени густоты, или плотности, среды». Из этого второго положения следует уже знакомый нам вывод, что в пустоте тела «должны были бы передвигаться мгновенно, но мгновенное движение невозможно, поэтому вследствие движения невозможна пустота» [16, II, с. 164].
Галилей последовательно, шаг за шагом, опровергает доводы Аристотеля. Он начинает с того, что заявляет, что скорость падения не зависит от веса тела. В ответ на замечание Симпличио, что подобные утверждения должны иметь экспериментальную основу, Сагредо говорит: «Однако я, синьор Симпличио, который производил эти испытания, могу вас уверить, что пушечное ядро, весящее одну или две сотни фунтов, или даже больше, не достигнет земли быстрее, чем всего лишь на пядь впереди мушкетной пули, весящей всего полфунта, если они будут сброшены с высоты двухсот локтей» [20, VIII, с. 106]. Эта фраза вызывала недоумение многих историков, поскольку было непонятно, на какие испытания ссылается Галилей. Скорее всего, он и правда не проводил испытаний с телами данного веса, но наверняка те эксперименты, которые он ставил с наклонными плоскостями и движением маятника, вполне оправдывают это утверждение Сагредо. Этому служит подтверждением и вся логика дальнейшего мысленного эксперимента.
Итак, провозгласив, что скорость падения не зависит от веса тела (что противоречит первому доводу Аристотеля), он поясняет затем свой тезис в несколько этапов. Сперва он высказывает уже знакомую мысль, что тезис справедлив для тел равного удельного веса: «Если бы меньший (камень), положенный на большой камень той же плоскости, двигался бы медленнее (в процессе падения по отношению к большему камню той же плотности), то он замедлил бы отчасти движение большего; таким образом, целое двигалось бы медленнее, будучи больше своей части, что противно нашему положению. Выведем из всего этого, что тела большие и малые, имеющие одинаковый удельный вес, движутся с одинаковой скоростью» [16, II, с. 166].
Теперь Галилею нужно распространить свое правило и на тела разного веса; сделать это впрямую нельзя, поэтому ему приходится обратиться ко второму доводу Аристотеля, чтобы ввести в рассмотрение среду и в процессе этого рассмотрения разом покончить и с первым и со вторым доводом.
Галилей показывает, что утверждение Аристотеля: скорость падения в среде обратно пропорциональна ее плотности — ведет к логическому противоречию, ибо одно и то же тело (например, дерево) может падать в менее плотной среде (воздухе) и подниматься вверх в среде более плотной (воде) [16, II, с. 167—168]. А раз так, то именно среда, а вовсе не вес тела играет основную роль в вопросе о скорости падения. Логика мысленного эксперимента немедленно приводит Галилея к вопросу: что произойдет со скоростями падающих тел, если устранить вообще среду? «Что произойдет с различными движущимися телами различного веса в среде, сопротивление которой равняется нулю; при таких условиях всякую разницу в скорости, которая может обнаружиться, придется приписать единственно разнице в весе» [16, II с. 172].
Дальнейший ход рассуждений Галилея полностью аналогичен работе современного физика, стремящегося выделить феномен в чистом виде, отбросить второстепенные факторы и приблизить условия опыта к идеальным: «Для того чтобы доказать требуемое, необходимо было бы пространство, совершенно лишенное воздуха или какой бы то ни было другой материи, хотя бы самой тонкой и податливой. Так как подобного пространства мы не имеем, то станем наблюдать, что происходит в средах, более податливых, и сравнивать с тем, что наблюдается в средах, менее тонких и более сопротивляющихся. Если мы найдем действительно, что тела различного веса будут все менее и менее отличаться друг от друга по скорости падения, по мере того как последнее будет происходить в средах, представляющих все меньшее сопротивление, пока наконец в среде, наиболее легкой, хотя и не вовсе пустой, разница в скорости получится самой малой и почти незаметной, то отсюда с большой вероятностью можно будет заключить, что в пустоте скорость падения всех тел одинакова» [16, II, с. 172-173].
В этом отрывке замечательно также и то, что для науки оказывается необязательным достижение идеала на опыте — достаточно к нему приблизиться как можно ближе, и тогда доказательность утверждения следует с большой вероятностью. Если и можно в каком-то смысле говорить о платонизме Галилея, то это будет скорее платонизм наоборот: в рамках платоновской доктрины мир чувственно воспринимаемых вещей оказывается ложным, не соответствующим идеальному миру, который и есть подлинная реальность; для Галилея, напротив, мир ощущений это и есть реальный мир, который тем не менее допускает идеализацию. Говоря словами Сальвиати в «Диалоге», «наши рассуждения должны быть направлены на действительный мир (в оригинале: al mondo sensibile — на мир ощущений.— В.К.), а не на бумажный» [16, II, с. 211]. Нарисовав впечатляющую картину мысленного эксперимента, Галилей не проводит его, а лишь подробно рассказывает, как его можно провести. Мы не находим в дальнейшем обсуждении рассказа о том, как Галилей постепенно меняет плотность среды и измеряет соответственные скорости падающих тел. Вместо этого он останавливается на некоторых очевидных фактах, ссылку на которые считает, по-видимому, достаточной. Например, он указывает, что, наблюдая за падением шаров из свинца и слоновой кости в воздухе и в воде, легко заметить, что разница их скоростей в воде будет намного больше разницы скоростей в воздухе.
Но затем, чтобы подкрепить свой вывод, и без того кажущийся ему неоспоримым, он еще раз описывает опыт, который должен дать ответ на вопрос, зависит ли скорость падения от веса, но на этот раз он объясняет, каким образом опыт должен быть поставлен. Если просто бросать, скажем, с высокой башни шар из свинца и шар из пробки, то разница в скоростях падения будет чересчур велика из-за того, что пробковый шар будет испытывать слишком большое сопротивление воздуха, а если их бросать с небольшой высоты, разница будет неощутима. «Поэтому, — пишет Галилей,— я пришел к мысли повторить опыт с падением с малой высоты столько раз, чтобы, отмечая и складывая незначительные разницы, могущие обнаружиться во время достижения конца пути тяжелым и легким телом, получить в итоге разницу не только просто заметную, но и весьма заметную» [16, II, с. 181].
Галилей пытается избавиться от влияния среды посредством уменьшения скорости падения, но ему недостаточно для этого уменьшить высоту. «Затем, чтобы иметь дело с движением по возможности медленным, при котором уменьшается сопротивление среды, изменяющее явление, обусловливаемое простой силой тяжести, я придумал заставлять тело двигаться по наклонной плоскости, поставленной под небольшим углом к горизонту; при таком движении совершенно так же, как и при отвесном падении, должна обнаружиться разница, происходящая от веса. Идя далее, я захотел освободиться от того сопротивления, которое обусловливается соприкосновением движущихся тел с наклонной плоскостью. Для этого я взял в конце концов два шара — один из свинца, другой — из пробки, причем первый был в сто раз тяжелее второго, и прикрепил и подвесил их на двух одинаковых тонких нитях длиной в четыре или пять локтей; когда я затем выводил тот и другой шарик из отвесного положения и отпускал их одновременно, то они начинали двигаться по дуге круга одного и того же радиуса, переходили через отвес, возвращались тем же путем обратно и т. д.; после того, как шарики производили сто качаний туда и обратно, становилось ясным, что тяжелый движется столь согласованно с легким, что не только после ста, но после тысячи качаний не обнаруживается ни малейшей разницы во времени, и движение обоих происходит совершенно одинаково» [16, II, с. 181].
Итак, Галилей, наконец, дает полное доказательство того, что падение тела не зависит от веса тела. В этом доказательстве все вызывает восхищение: и сам метод постепенного поэтапного устранения помех, и простота конечного опыта, и более всего — сам результат! Ведь то, что получил Галилей в конце концов — это закон изохронизма маятника, гласящий, что период маятника не зависит от его массы, а зависит лишь от длины нити (точнее, Т = 2π∙√(l/g)). Формулу в таком виде получил позднее Гюйгенс, Галилей лишь указывал, «что длины маятников обратно пропорциональны квадратам чисел их качаний, совершаемых в течение определенного промежутка времени» [16, II, с. 190], т. е. Т 2 ~ l . Действительно, независимость скорости падения от массы (веса) тела однозначно определяется тем свойством маятника, что его период также не зависит от массы (веса), и Галилей, который не мог вывести эту связь теоретически, тем не менее, интуитивно это мгновенно осознал. Более того, как следует из его дальнейших рассуждений, его не обескуражило, что скорости оказались в действительности неравными (так как амплитуды качаний получились у обоих маятников различными); он отнес эту разницу за счет влияния среды, в то время как изохронизм маятников счел за бесспорное доказательство своего тезиса.
Результат, полученный Галилеем, имел далеко идущие последствия. Поскольку вес и плотность, как было доказано, не оказывают влияния на свободное падение, стало возможным чисто кинематическое рассмотрение падения в терминах пути, времени, скорости и ускорения. Как указывает Макмаллин, «никогда ранее не было ясно, как мертоновская кинематическая геометрия может быть использована для исследования реального падения, поскольку невозможно было взять в расчет такие негеометрические величины, как вес и плотность. А предполагалось, что именно эти параметры определяют естественное движение — падение согласно формуле F/R . Показав, «что ускорение падения не зависит от веса, Галилей доказал применимость геометрического подхода к кинематике» [6, с. 17].
После того, как в дискуссиях Первого дня было показано, что падение тел не зависит ни от их веса, ни от — в идеальном случае — среды, Галилею представляется возможность рассматривать характеристики падения — скорость, ускорение и пройденный путь как чисто геометрические понятия. В Третьем дне он анализирует динамические закономерности, выводя их из чисто кинематических представлений. Так он приходит к доказательству закона падения, а в следующем, Четвертом дне — к закону параболического движения брошенного тела.
Как-то Макс Джеммер остроумно заметил, что «в новейшей теории первоначальные положения и аксиомы, несмотря на то, что они логически предшествуют выводам, эпистемологически следуют за ними» [24, с. 691]. Именно так поступает Галилей в выводе закона падения: он уже давно знает конечный результат и начинает его доказывать с помощью положения, которое эпистемологически, в развитии его творческой мысли, следовало из уже найденной им квадратичной зависимости. Речь идет о правиле средней скорости, которое хорошо уже было знакомо математическим схоластикам XIV в. и получило в дальнейшем известность как «мертонское правило».
Этот факт послужил основанием Пьеру Дюэму утверждать, что Галилей лишь переформулировал то, что было сделано два столетия до него Оремом. То, что такое утверждение неправильно, обусловливается, во-первых, тем, что Галилей пришел к закону падения, исходя не из мертонского правила, а из евдоксовой теории пропорций, а во-вторых, ученые Парижской школы, равно как и калькуляторы Оксфорда, никогда не применяли это правило к случаю действительного падения тел, или даже вообще к случаю любого действительного движения. Мертонское правило оставалось для них абстрактной закономерностью, применяемой в рамках теории интенсификации и ремиссии качеств. Аннелизе Майер подчеркивает, что для ученых Средневековья было чрезвычайно характерно понимание различия между тем, что мы наблюдаем в действительности, и тем, как мы говорим о том, что наблюдаем [1, с. 30]. В связи с этим существовало два подхода к понятию скорости. «С одной стороны, скорость можно было рассматривать как расстояние, проходимое в определенное время. Такое представление хорошо согласовалось не только с эмпирическим восприятием движения, но также и общим определением «velocitas». С другой стороны, скорость могла рассматриваться в контексте теории качеств как интенсивность движения» [1, с. 38].
К выводу правила средней скорости
Галилей был первым, кому пришла в голову мысль объединить эти два подхода. Суть того, что позднее будет названо «мысленным экспериментом», в этом и состоит. Конфигурации качеств Орема и его геометрическая интерпретация мертонского правила обрели у Галилея физический смысл. Обратимся теперь к тексту «Бесед».
Весь анализ падения основывается на следующем утверждении: «Теорема I. Предложение I. Время, в течение которого тело, вышедшее из состояния покоя и движущееся равномерно-ускоренно, проходит некоторое расстояние, равно времени, в течение которого это же расстояние было бы пройдено тем же телом при равномерном движении, скорость которого равняется половине величины наибольшей конечной скорости, достигаемой при первом равномерно-ускоренном движении» [16, II, с. 248].
Галилей доказывает это утверждение с помощью чертежа, весьма напоминающего чертеж Орема. Но здесь уже нет никаких неясностей относительно того, что представляют собой элементы Срисованной фигуры. Итак, отрезок прямой АВ представляет время, в течение которого тело проходит путь CD; горизонтальные отрезки, заключенные внутри треугольника ЛЕВ изображают скорость равноускоренного движения, соответствующую любому данному моменту времени (в начале движения скорость равна нулю, в конце — своей максимальной величине ЕВ). При этом ясно, что путь, пройденный телом, будет изображаться площадью треугольника AEB (Галилей говорит здесь о «сумме», или «совокупности» линий, заключенных внутри треугольника). Аналогичным образом прямоугольник AGFB представляет собой путь, пройденный тем же телом в равномерном движении со средней скоростью FB = ½∙EB. Желаемое равенство времен следует из равенства треугольников IGA и IEF. Равенство треугольников означает равенство путей: «Отсюда следует, что два тела пройдут равные расстояния в одно и то же время, если одно, выйдя из состояния покоя, будет двигаться равномерно-ускоренно, а другое просто равномерно со скоростью, равною половине максимальной скорости, достигнутой при ускоренном движении, что и требовалось доказать» [16, II, с. 249].
Затем Галилей обращается непосредственно к доказательству квадратичной зависимости пути от времени. В нем он опирается на другое положение, выдвинутое им ранее, а именно, что скорость падения пропорциональна времени падения. Трактовка доказательства этого положения, данного в «Беседах», заслуживает отдельного рассмотрения, поскольку она является ошибочной в большинстве историко-научных работ, посвященных этому вопросу.
К моменту написания «Бесед» Галилей уже давно пришел к ясному пониманию скорости движения, а следовательно, и к пониманию того, что скорость падения пропорциональна времени. Все это, как показано выше, еще не было достигнуто тогда, когда он впервые пришел к установлению квадратичной зависимости пути от времени около 30 лет назад. И вот, в «Беседах» он специально останавливается на выборе альтернативы: чему пропорциональна скорость — времени или пути, и отвергает второе предположение с помощью следующего доказательства от противного:
«Если бы скорости были пропорциональны пройденным или имеющим быть пройденными расстояниям, то такие расстояния проходились бы в равные промежутки времени; таким образом, если бы скорость, с которой падающее тело проходит расстояние в четыре локтя, была вдвое больше скорости, с которою оно проходит расстояние в первых два локтя (на том основании, что одно расстояние вдвое больше другого), то промежутки времени для прохождения того и другого расстояния должны были бы быть одинаковыми. Но прохождение одним и тем же телом четырех локтей и двух локтей в один и тот же промежуток времени могло бы иметь место лишь в том случае, если бы движение проходило мгновенно; мы же видим, что падающее тело совершает свое движение во времени и что два локтя оно проходит в меньший срок, нежели четыре локтя. Следовательно, утверждение, что скорости растут пропорционально пройденным путям, ложно» [16, II, с. 245].
Некоторые исследователи творчества Галилея рассматривают этот отрывок из «Бесед» как пример неправильного доказательства истинного утверждения. Одни связывали доказательство Галилея с использованием мертоновского правила [11, II, с. 95—99; 25]; предполагалось, что здесь Галилей оперирует с понятием средней скорости. В другом случае указывалось, что рассуждение Галилея неубедительно по той причине, что «Галилей рассуждает так, как будто весь путь s, пройденный за время t, проходится со скоростью, достигаемой лишь в конце пути!» [16, II, с. 461]. На самом деле Галилей имел в виду совершенно другое, а неверная интерпретация возникает в результате неточного перевода, когда слово «скорости», стоящее в оригинале во множественном числе, переводится словом «скорость», стоящим в единственном числе. Эта ошибка, как ни странно, имеется во многих переводах «Бесед», в частности, во французском 1970 г., немецком 1891 г. и позднейших изданиях, английском 1914 г. и позднейших изданиях, и наконец, русском 1964 г. Весьма удивительно, что правильный перевод, как и правильная интерпретация данного отрывка ускользнули от внимания исследователей, тем более, что уже в 1649 г. и то и другое было сделано в книге Ж. А. Тенера «Об ускоренном движении». Тенер дает следующее исчерпывающее объяснение ходу мыслей Галилея:
«Пусть тяжелое тело падает (из состояния покоя) и проходит при этом два равных расстояния АВ и ВС, так что скорость в С вдвое больше, чем в В, Без сомнения, на линии АС невозможно найти точку, скорость которой не была бы вдвое больше скорости соответствующей точки на линии АВ. Следовательно, скорость на протяжении всего пути АС будет вдвое больше скорости вдоль всего пути АВ, именно потому, что расстояние АС вдвое больше ВС: а следовательно, АС и АВ проходятся в равное время» [26, с. 8]. Таким образом, вместо понятия средней скорости Галилей основывается на идее взаимно однозначного соответствия между двумя бесконечными множествами скоростей, и приведенные выше возражения снимаются.
В зарубежной литературе на этот факт впервые обратил внимание Стиллман Дрейк в своей книге «Галилеевские исследования», опубликованной в 1970 г. [27, с. 228—236], который дал точный перевод, подробный анализ и правильное толкование отрывка. Но интересно отметить, что ошибка в переводе была обнаружена много раньше советским исследователем В. П. Зубовым, который отверг трактовку Коэна, связанную с мертонским правилом, хотя и не подверг это место детальному анализу. Приведем здесь перевод В. П. Зубова, адекватный галилеевскому оригиналу:
«Если скорости стоят друг к другу в том же отношении, что и пройденные или имеющие быть пройденными расстояния, то такие расстояния проходятся в равные промежутки времени: в самом деле, если скорости (le velosita), с которыми падающее тело проходит расстояние в четыре локтя, вдвое больше скоростей (delle velocita), с которыми оно прошло первые два локтя (ибо одно расстояние вдвое больше другого), то, стало быть, промежутки времени, затраченные для прохождения того и другого расстояния, одинаковы. Но прохождение одним и тем же телом четырех локтей и двух локтей за один и тот же промежуток времени может иметь место лишь в том случае, если движение происходит мгновенно; мы же видим, что тяжелое тело, падая, совершает свое движение во времени, и что два локтя оно проходит в меньший срок, нежели четыре. Следовательно, неверно, что скорости растут пропорционально пройденным путям» [2, с. 153].
К выводу закона падения
Итак, вооруженный тезисом, что скорость падения пропорциональна лишь времени, Галилей приступает к доказательству своего закона:
«Теорема II. Предложение II. Если тело, выйдя из состояния покоя, падает равномерно-ускоренно, то расстояния, проходимые им за определенные промежутки времени, относятся между собой как квадраты времени» [16, II, с. 249]. Свое доказательство Галилей вновь иллюстрирует чертежом, он говорит: «Изобразим промежуток времени, начинающийся с какого-либо мгновения А, линией АВ и представим себе, что AD и АЕ суть некоторые части этого промежутка времени. Пусть, далее HI будет линией, вдоль которой падающее тело, вышедшее из состояния покоя, движется равномерно-ускоренно, HL — расстояние, пройденное в течение первого промежутка времени AD, HM — расстояние, пройденное в промежуток времени АЕ» [16, II, с. 250].
Затем Галилей несколько усложняет чертеж, введя горизонтальные отрезки OD и РЕ, представляющие максимальную скорость, приобретенную телом к моменту D и Е соответственно. Для доказательства теоремы он пользуется сперва правилом средней скорости. Слегка модернизируя запись и введя vDcp и vEср, обозначающие соответственно среднюю скорость движения к моменту D и Е, получаем: MH=v E ср ∙AE, H=v D cp ∙AD ; откуда MH/LH =
(v E ср /v D cp )∙(AE/AD) , но
и последнее отношение равно: PE/OD = AE/AD, т. е. скорости пропорциональны времени движения; тогда, с одной стороны, MH/LH = (v E ср /v D cp )∙(AE/AD), а с другой (v E ср /v D cp ) = PE/OD = AE/AD.
Комбинируя эти две пропорции, получаем: MH/LH = (AE/AD)∙ (AE/AD) = AE2/AD2, «следовательно, расстояния относятся, как квадраты промежутков времени, что и требовалось доказать».
После этого легко доказывается, что если «скорость возрастает в равные промежутки времени как простой ряд последовательных чисел, то расстояния, пройденные за те же промежутки времени, относятся между собой как последовательные нечетные числа» [16, II, с. 251]. Этот результат, который Галилей приписывает исключительно себе, на самом деле был получен ранее средневековыми физиками, но они опять же не применяли его к исследованию реального движения и не увидели в нем квадратичного закона падения, легко из этого результата получаемого.
Дальнейшие беседы Третьего дня касаются проблемы движения тел по наклонной плоскости, и получающиеся результаты являются следствиями установленного ранее закона падения. Среди них имеются два замечательных утверждения, первое из которых относится к проблеме наискорейшего спуска — одной из наиболее знаменитых задач конца XVII в., а второе содержит наиболее близкую к современной формулировку принципа инерции. Задача наискорейшего спуска может быть сформулирована так: по какой траектории, соединяющей две точки, находящиеся на разных высотах, должно двигаться тело, чтобы переместиться из верхней точки в нижнюю за минимальное время? Постановка и решение этой проблемы положили начало вариационному исчислению. Инфинитезимальными методами было показано, что брахистохроной, т. е. линией наискорейшего спуска, будет не отрезок прямой, соединяющей обе точки, а проходящая через них циклоида. Решение было получено благодаря усилиям самых выдающихся математиков эпохи, включая Иоганна (в первую очередь) и Якоба Бернулли, Лейбница, Лопиталя, Гюйгенса и Ньютона. Галилей близко подошел к правильному результату и в замечании к теореме XXII указал, «что быстрейшее движение от одной конечной точки до другой происходит не по кратчайшей линии, какой является прямая» [16, II, с. 300]. Без помощи методов дифференциального исчисления он, естественно, не мог установить, что траекторией спуска является дуга циклоида, вместо этого он говорит о дуге окружности.
Другое замечание, содержащееся в задаче IX, еще более интересно. Оно касается существа понятия движения и гласит, «что степень скорости, обнаруживаемая телом (при движении) ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними» [16, II, с. 282]. Это утверждение определяет фундаментально новый подход к проблеме движения и покоя, получивший в дальнейшем исчерпывающую разработку в трудах Декарта и Ньютона. До сих пор покой и движение рассматривались как категории, имеющие различный онтологический статус, покой понимался как состояние, естественное для тела и не нуждающееся ни в какой внешней причине. Напротив, движение всегда подразумевало внешнюю причину, необходимо его обусловливавшую. «Естественные» движения надлунных сфер Аристотеля не идут в расчет, поскольку для земной физики они всегда являлись недостижимой абстракцией. Разрушение Галилеем дихотомии земной и небесной физики, естественных и насильственных движений неизбежно должно было привести к изменению точки зрения на движение как таковое. В процитированном выше утверждении Галилея это продемонстрировано с наибольшей ясностью: равномерное движение — так можно перефразировать его слова — ненарушимо лежит в природе тела (этим самым равномерному движению придается тот же онтологический статус, что и покою), в то время как внешние причины могут вызывать ускорение или замедление тела (в этом соблазнительно усмотреть предпосылки ньютоновой концепции силы.
Центральный результат Четвертого дня «Бесед» — закон параболического движения снаряда. Благодаря открытиям Дрейка мы знаем теперь, что Галилей пришел к формулировке этого закона еще в 1608 г., однако, по-видимому, лишь много лет спустя он обрел в его глазах концептуальную доказательность. Косвенным подтверждением этого факта может служить известный отрывок из «Диалога», в котором Галилей утверждает, что падающее тело будет описывать полуокружность, оканчивающуюся в центре Земли. Правда, необходимо отметить, что, поскольку построение полуокружности в данном месте «Диалога» играло второстепенную роль, Галилей мог выбрать окружность из соображений большей простоты и наглядности, с другой стороны, у Галилея никогда не было законченной концептуальной механической системы, и поэтому, естественно, что он мог вводить в обсуждение различные доказательства, часто и не согласующиеся между собой. Наконец, «Диалог» в гораздо большей степени был пропагандистским трактатом, чем «Беседы», где главный акцент делался на математическое доказательство, а не на красноречивое убеждение. Различие между двумя книгами хорошо определил Лодовико Джеймонат, сказав, что «Беседы» «в отличие от „Диалога" не являются манифестом коперниканства, скорее они являются трудом, написанным целиком в рамках нового коперниканского направления науки, углубляющим ее основы и расширяющим ее применение» [12, с. 177].
В Четвертом дне «Бесед» Галилей дает ясные и исчерпывающие формулировки тех принципов, которые косвенно или неявна содержатся в дискуссиях «Диалога». В теореме II он постулирует принцип независимости и сложения движений: «Если какое-либо тело движется равномерно двойственным образом, а именно, горизонтально и вертикально, то импульс, или момент его сложного движения равен в потенции совокупности моментов первоначальных движений» [16, II, с. 315]. Выражение «равен в потенции», очевидно, соответствует временному «равен геометрической сумме», поскольку Галилей снабжает доказательства данного утверждения рисунком, изображающим векторный треугольник. Тот же принцип применяется им и для сложения неравномерного движения с равномерным, причем здесь также утверждается, «что такие движения и скорости слагаются, но не мешают друг другу» [16, II, с. 309]. Это положение кажется Галилею настолько фундаментальным, что он вначале постулирует его для смешанных движений, и лишь потом — для равномерных. Поэтому основной результат дня содержится в самой первой теореме: «Теорема I. Предложение I. При сложном движении, слагающемся из равномерного горизонтального и естественно-ускоренного движений, бросаемое тело описывает полупараболу» [16, II, с. 305].
Галилей пришел к этому выводу давно, но тем не менее, он: еще долго не решался его опубликовать, так как теоретическая основа закона была ему не вполне ясна. В «Диалоге» он основывается на довольно туманном тезисе из анализа неделимых, который даже ему самому не кажется убедительным, и не дает ясной формулировки. Но он отчетливо понимал всю важность своего открытия и столь ревниво относился к вопросу о приоритете. «Диалог» был закончен в январе 1630 г., а два года спустя, одновременно с выходом его в свет, Кавальери опубликовал правильный закон движения снаряда в своей книге «Зажигательное зеркало» (Болонья, 1632). Галилей был совершенно вне себя, как показывает его письмо к Чезаре Марсили:
«Не скрою от вашего превосходительства, что известие едва ли меня обрадовало — видеть, что первый плод более, чем сорокалетних трудов, большую часть которых я открыл под большим секретом вышеназванному Отцу (т. е. Кавальери.— В. К.), должен быть отнят у меня, и что я лишен той славы, которую я столь страстно желал и надеялся получить после столь долгих усилий; ибо действительно первым моим намерением, которое привело меня к размышлению над движением, было найти эту линию, и хотя я смог продемонстрировать это, я знаю, как много несчастий я претерпел, прежде чем прийти к этому выводу» [28, III, с. 1278]. Кавальери был чрезвычайно огорчен, что он явился причиной столь резкого неудовольствия, выраженного его учителем, и немедленно написал, что, во-первых, он многим обязан Галилею и Кастелли, о чем он неоднократно говорит в этой книге, экземпляр которой он послал Галилею, во-вторых, каждому известно, что открытие параболической траектории принадлежит Галилею, и сам Кавальери был убежден, что тот уже давно опубликовал свое открытие, почему он и упомянул об этом в «Зажигательном зеркале». Галилей удовлетворился ответом Кавальери, и таким образом конфликт был улажен. Отношения были полностью восстановлены, и в «Беседах» уже говорится о Кавальери как о новом Архимеде.
Тем не менее вся эта история показывает, насколько высоко ценил Галилей открытие параболической траектории и какую важность он ему придавал в эволюции своего творчества.
Беседы Четвертого дня интересны еще и тем, что в них совершенно корректно, хотя и неявно, используется принцип инерции. Проблема, связанная с оценкой роли Галилея в создании принципа инерции, занимала многих ученых, и она остается открытой до сих пор. Действительно, в разных местах Галилей давал этому принципу противоречивые формулировки и само понятие инерциального движения трактовал по-разному.
В «Диалоге» он, по-видимому, считает инерционным движением движение по окружности с центром в центре Земли: «...к движению, не удаляющемуся от центра и не приближающемуся к центру, тело не имеет ни склонности, ни сопротивления, а следовательно, нет и причины для уменьшения вложенной в него силы» [16, I, с. 248].
В этой формулировке неявно содержатся два предположения: считается, что тело движется, во-первых, в отсутствие внешних движущих сил, а также сил сопротивления; во-вторых,— благодаря внутренней силе наподобие средневекового импетуса.
В «Беседах» анализ движения на наклонной плоскости приводит к мысли о горизонтальном движении на гладкой поверхности как идеальном примере инерционного движения. Но такой вывод сразу ставит перед затруднением, ясно сформулированным Симпличио: «Мы предположили, что горизонтальная плоскость, не имеющая ни наклона, ни подъема, представляет собой как бы прямую линию и что подобная линия во всех своих частях равноудалена от центра; это, однако, неправильно... Отсюда как следствие вытекает, что движение не может быть постоянным» [16, II, с. 309].
Из этого затруднения Галилей предлагает два совершенно различных выхода. Один он предлагает в «Диалоге», где говорит, что путь тела, движущегося по инерции, изгибается тяжестью, а если бы тяжести не существовало, то движение было бы прямолинейным. Так происходит при движении снаряда, брошенного из пращи: «круговое движение бросающего оставляет в бросаемом теле (в момент, когда они разлучаются) импульс движения по прямой, касательной к кругу движения в точке отрыва, и стремление продолжать по ней движение, постоянно удаляясь от бросившего... по такой прямой линии брошенное тело продолжало бы двигаться, если бы его собственная тяжесть не прибавляла склонения вниз, вследствие чего получается изгиб линии движения» [16, I, с. 293]. Это говорит о вполне ясном понимании принципа инерции: инерциальное движение, по-видимому, будет прямолинейным, но вследствие тяжести путь оказывается искривленным.
В «Беседах» же Галилей дает совсем другой ответ. По сути, он уклоняется от него, говоря, что в пределах точности эксперимента кривая и прямая совпадают [16, II, с. 310]. Вместо того, чтобы выяснить, какой будет траектория тела, движущегося по инерции, Галилей здесь пытается для такого тела реализовать на практике отсутствие внешних сил: «Степень скорости, обнаруживаемая телом, ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними; это можно заметить лишь на горизонтальной плоскости, ибо при движении по наклонной плоскости вниз наблюдается ускорение, а при движении вверх — замедление. Отсюда следует, что движение по горизонтали является вечным» [16, II, с. 382]. Здесь Галилей уже не рассматривает круговое движение как инерционное, поскольку внешние причины изменения движения могут быть устранены лишь на плоскости.
Наконец, еще раз подчеркнем, что в выводе параболического закона в Четвертом дне «Бесед» Галилей, возможно еще не вполне осознанно, приходит к тому, что инерционное движение вовсе не нуждается в плоскости под движущимся телом. Горизонтальная компонента движения уже является той самой абстракцией, которая необходима для полного обоснования закона инерции. Лишь непоследовательность не позволяет Галилею сделать этот заключительный шаг.